“Success Taxes,” Entrepreneurial Entry, and Innovation

William M. Gentry and R. Glenn Hubbard*

This Draft: April 30, 2004

* Respectively: Williams College, and Columbia University and the National Bureau of Economic Research. This paper was prepared for presentation at the NBER Conference on Innovation Policy, Washington, DC, April 13, 2004. We thank Josh Lerner and Scott Stern for their comments, and Anne Dorn for research assistance.
“Success Taxes,” Entrepreneurial Entry, and Innovation

Abstract

Interest in the role of entrepreneurial entry in innovation raises the question of the extent to which tax policy encourages or discourages entry. We find that, while the level of the marginal tax rate has a negative effect in entrepreneurial entry, the progressivity of the tax also discourages entrepreneurship, and significantly so for some groups of households. These effects are principally traceable to the "upside" or "success" convexity of the household tax schedule.

Prospective entrants from a priori innovative industries and occupations are no less affected by the considerations we examine than other prospective entrants. In terms of destination-based industry and occupation measures of innovative entrepreneurs, we find mixed evidence on whether innovative entrepreneurs differ from the general population; the results for entrepreneurs moving to innovative industries suggest that they may be unaffected by tax convexity but the possible endogeneity of this measure of innovative entrepreneurs confounds interpreting this specification. Using education as a measure of potential for innovation, we find that tax convexity discourages entry into self-employment for people of all educational backgrounds. Overall, we find little evidence that the tax effects are focused simply on the employment changes of less skilled or less promising potential entrants.

William M. Gentry
Department of Economics
Williams College
Fernald House
Williamstown, MA 01267
wgentry@williams.edu

R. Glenn Hubbard
Graduate School of Business
Columbia University
609 Uris Hall
New York, NY 10027
rgh1@columbia.edu
I. Introduction

Public policy interest in entrepreneurs reflects a number of considerations, from the role of entrepreneurs in innovative activity to the significance of entrepreneurship in wealth accumulation (Gentry and Hubbard, 2002) to the relationship between entrepreneurship and income and wealth mobility (Quadrini, 1999). Entrepreneurship can take many forms, ranging from small mom-and-pop operations to larger firms backed by venture capital. Naturally, some entrepreneurial enterprises are more innovative than others; for example, some entrepreneurs open restaurants that closely follow existing business models while other entrepreneurs develop new computer software. Despite the wide range of entrepreneurial activities and their varied contributions to innovation, entrepreneurship is typically a risky business.1

The risk entailed in entrepreneurship amplifies public policy concerns about whether the government can (or should) foster innovation and entrepreneurship. In addition to specific policies towards entrepreneurship, the tax system can potentially have positive and negative effects on entrepreneurship. Some tax policies, such as accelerated capital recovery for small businesses, target entrepreneurs but other tax effects may arise from general tax policy choices, such as the choice of the shape of the tax rate schedule. Given the riskiness of entrepreneurship, the shape of the tax schedule may play an especially important role in affecting entrepreneurial decisions since with a progressive income successful ventures may face a higher tax rate than unsuccessful ventures face.

In our previous work (Gentry and Hubbard, 2003), we focus on the effect of the

1 For evidence that entrepreneurial outcomes are riskier than earnings in employment, see Borjas (1999), Hamilton (2002), and Gentry and Hubbard (2003).
progressivity of the income tax schedule on the entry decisions of risk averse potential entrepreneurs. On the one hand, when greater tax progressivity can offer insurance through the tax system against uninsured idiosyncratic risk, entry may be enhanced (see, e.g., Kanbur, 1981). On the other hand, the "success tax" feature of a progressive tax combined with imperfect loss offsets can reduce the likelihood of entry. As we discuss more fully below, our focus on the progressivity of the tax system departs from earlier research on taxation and entrepreneurship that mainly focuses on how the level of taxation affects entrepreneurial activity.

In our previous (2003) study, using data from the Panel Study of Income Dynamics (PSID), we estimated the effects of tax progressivity (while controlling for the level of taxation) in empirical estimations of the probability of entry into self-employment.\(^2\) We found robust results that progressive marginal tax rates discourage entry into self-employment and business ownership. Those effects are large: The Omnibus Budget Reconciliation Act of 1993, which raised the top marginal individual income tax rate, was estimated to have reduced the probability of entry into self-employment for upper middle income households by as much as 20 percent. Moreover, those estimated effects were robust to controlling for differences in family structure, spousal income, and measures of transitory income.

An open question in this research is the whether the estimated negative effects of tax progressivity on entrepreneurship translate into negative effects on innovation. That is, we do not know whether the tax system discourages entry by potential entrepreneurs.

\(^2\) We choose this setup as opposed to examining cross-sectional evidence about who is an entrepreneur because we use workers' wage income in constructing our proxy for expected entrepreneurial outcomes. Obviously, self-employment is only one possible definition of entrepreneurship. While other definitions may more naturally capture the notion of innovation, data constraints prevent us from using alternative measures.
who are especially innovative by more or less than it discourages entry by potential
trepreneurs who want to pursue projects that are not terribly innovative or risky. It is
possible that risk and innovation are positively correlated so that entrepreneurs with more
innovative projects are more concerned with the success tax from progressive tax rates
compared to entrepreneurs who undertake safer, less innovative projects. However, it is
also possible that tax factors play less of a role of innovative entrepreneurs due to the
relative importance of other factors dominating the entry decision.

Unfortunately, we do not have a direct measure on how innovative particular
entrants into entrepreneurship are. As an indirect test of whether the tax system
discourages particularly innovative types of entrepreneurship, we examine whether our
estimated effects vary by characteristics of the potential entrepreneur that might plausibly
be correlated with how innovative his or her project may be. As characteristics that
might be correlated with how innovative the potential entrepreneur is, we focus on the
potential entrepreneur’s education, industry, and occupation. Our underlying assumption
is that better educated entrepreneurs are more likely to be innovative than less educated
potential entrepreneurs. In terms of industry and occupation, we assume that more
technical industries and occupations (as opposed to, say, service industries and
occupations) are more innovative forms of entrepreneurship. We use industry and
occupation in two ways to proxy for how innovative the entrepreneur is. First, we use the
potential entrepreneur’s industry and occupation at the time of the decision as measures
of his or her predetermined characteristics; we call this the “origin” basis for defining
innovation as a characteristic. Second, we identify innovative entrepreneurs based on
their “destination” industry and occupation. That is, we test whether entry into self-
employment in innovative industries or occupations is differentially sensitive to tax incentives.

To preview our results, we find some evidence that our estimated effects of tax progressivity discouraging entry into entrepreneurship vary with our proxies for how innovative the potential entrepreneur is. In most cases, the sensitivity to the tax parameters does not vary systematically with our industry and occupation measures of how innovative the entrepreneur is. There is one notable exception: While the benchmark estimated effect of tax convexity is negative, entrepreneurs who enter into innovative industries are essentially unaffected by convexity of the tax system. We also find that the estimated effects suggest that the negative effect of tax progressivity is larger (in absolute value) for people with more than a college degree but these estimated effects are not statistically different from the estimated effects for other education groups. Overall, however, the results suggest that potential entrepreneurs in innovative industries and occupations are less likely to enter self-employment than potential entrepreneurs in other industries and occupations, though these differences are only marginally statistically significant. One explanation for these negative effects is that the activities that we define as “innovative” tend to be undertaken in relatively large scale organizations.

One overall lesson from our results is that the shape of the tax schedule can have substantial effects on whether individuals undertake risky investments. The interactions with measures of innovative occupations and industries do not reveal that these large effects are either more or less likely in such activities. This possible distortion from nonlinear tax schedules is not commonly included in discussions of designing tax
schedules; the sized of our estimated effects and the importance of entrepreneurship in
the economy suggests that this omission may be important. Furthermore, if the estimated
responsiveness to nonlinearities in tax schedules by individuals carries over to corporate
investment, then loss offset rules and other features of the corporate tax system that
create nonlinearities may generate larger distortions in investment than previous
estimates suggest.

This paper is organized as follows. Section II briefly surveys previous empirical
work on the effects of taxation on entrepreneurship. Section III describes our basic
empirical specification of the link between progressivity and entry and describes the data.
We present empirical results in section IV. Section V concludes.

II. Taxation and Entrepreneurship

Tax policy can affect entrepreneurship and innovation through a variety of
channels. Broadly speaking, these channels can be categorized as the effects of general
tax policies, such as a change in marginal tax rates, and targeted tax policies, such as a
tax credit for research. In assessing how general tax policies affect entrepreneurship, the
critical question is why the tax policy would have a differential effect on
entrepreneurship relative to other economic activity (e.g., other occupation or investment
choices). For targeted tax policies, the policy design question is whether the policy can
encourage the desirable behavior without just providing subsidies to projects that would
have taken place without the targeted policy.

One common hypothesis regarding the differential effects of tax rates on self
employment (one measure of entrepreneurship) and working for someone else is that
higher tax rates encourage self employment because self employment provides tax-sheltering opportunities. These tax-sheltering opportunities include both tax evasion (i.e., it is relatively easy to underreport self-employment income) and tax avoidance (e.g., legal opportunities to deduct business-related consumption from one’s taxable income).

The value of these tax-sheltering opportunities increases with the tax rate which leads to the hypothesis that higher tax rates increase the level of self employment in the economy. Previous empirical tests of this hypothesis have yielded mixed results but the bulk of the evidence suggests a positive relationship between tax rates and self-employment.

The tax-sheltering hypothesis provides one channel for general tax policies to affect the decision to be an entrepreneur. In a series of papers, Carroll, Holtz-Eakin, Rider and Rosen (2000a, 2000b, and 2001) examine a separate line of inquiry regarding the role of tax rates and entrepreneurship has been to assess whether taxes affect the ongoing decisions of entrepreneurs. They examine the effects of the tax reforms of the 1980s on investment and hiring decisions of small businesses and on small business income growth. These reforms, which reduced marginal tax rates, could differentially affect small business investment and hiring for several reasons. First, the tax rate reductions for noncorporate businesses were larger than the tax rate reductions for

3 Cullen and Gordon (2002) embed this hypothesis in a broad model of the effects of taxes on entrepreneurship. The general idea, however, has been common through research on taxes and self employment.

4 This tax-shelter hypothesis commonly assumes that self-employment provides a tax advantage since the taxpayer reports a smaller tax base due to underreporting income or taking business deductions for expenses that have a personal consumption aspect. However, tax rate differentials between being an employee and being self-employed can also affect the self-employment decision if there are legislated differences in the tax base between the two employment choices. For example, before 1987, the self-employed could not deduct the cost of “employer-provided” health insurance.

5 Bruce (2000) summarizes this literature and estimates how entry decisions into self-employment depend on both the marginal and average tax rates. The time-series studies of taxes and self-employment include Long (1982a) and Blau (1987). Several studies using household-level data (e.g., Long, 1982b; Moore, 1983; and Schuetze, 2000) report that higher marginal tax rates are associated with higher probabilities of self-employment. In our empirical methodology, we control for the level of the marginal tax rate, which should capture some of these tax-sheltering effects of self employment.
corporate businesses. Second, if the production functions for small businesses include complementarities between the owner’s effort and the use of other factors (i.e., capital or hired workers), then any tax effects on the labor supply of existing entrepreneurs can affect their purchase of other factors. Carroll, Holtz-Eakin, Rider, and Rosen find that higher tax rates reduce investment, hiring, and small business income growth.

A third channel for general tax policies to affect entrepreneurship arises because entrepreneurship is riskier than other occupational choices and innovative investments are riskier than other possible investments. Thus tax policies that affect the returns to taking risks can have consequences for entrepreneurship. Given that the returns to entrepreneurship are relatively risky, the level of the marginal tax rate is unlikely to capture the complete effect of tax policy on entrepreneurship (see Cullen and Gordon, 2002; and Gentry and Hubbard, 2003). To see this, consider the example of a proportional tax on entry by a risk-neutral individual. Because a prospective entrant would pay the same rate of tax on earnings from work for a firm and earnings from self-employment, selection into entrepreneurship would be independent of tax considerations. When investment is risky, the tax effects may depend on the overall shape of the tax schedule which is not captured by a local measure of the marginal tax rate. Thus, nonlinearities in the tax system can affect decisions. Our previous research emphasizes this point, as do the results we present below.

6 In addition to the effects of tax rates, Cullen and Gordon’s (2002) model includes the option to incorporate, which is valuable if double taxation of corporate income reduces the tax burden on investment relative to remaining an unincorporated business. The option value of incorporating depends on being able to decide on organizational form after learning about the prospects of the business. This creates another form of nonlinearity in the tax system.

7 With a constant marginal tax rate, the income tax cannot change the sign of the entry decision for a risk-neutral potential entrant. This flat tax case is the commonly analyzed analogue to the Domar and Musgrave (1944) analysis of a proportional tax on a risky investment for risk-averse potential investors.
Imperfect loss offset provisions provide another example of how relatively risky projects face a higher tax burden than relatively safe projects face. Rather than focusing on the riskiness of occupational choices, the analysis of loss offset provisions usually focuses on corporate investment. For corporations, reporting negative taxable income does not necessarily generate a tax refund. Instead, corporations benefit from losses in one year by applying a set of tax loss carryback and carryforward rules; these rules specify a limited time period over which corporations can essentially average their income. These rules create another form of “success tax” in the tax code, whereby successful firms face a higher tax rate than unsuccessful firms face. In the extreme, if a corporation has negative taxable income in a year but does not have sufficient positive income during the carryback or carryforward period, then it faces a tax rate of zero on the losses; however, had the corporation been successful it might face the top corporate tax rate of 35 percent. Altshuler and Auerbach (1990) and Graham (1996) discuss how these loss offset rules can affect corporate investment and financing decisions.

Capital gains taxation provides a final channel through which general tax policy can affect entrepreneurship. If entrepreneurial activity inherently generates more of its income as capital gains relative to other employment or investment choices, then lower capital gains tax rates may increase entrepreneurial activity. These capital gains tax effects are often discussed in the context of the taxation of venture capital. Poterba (1989) has stressed that the ability of entrepreneurs to shift some of their labor returns

8 Noncorporate firms face similar issues due to progressive tax rates.
9 Our empirical methodology does not account for the effects of these loss offset rules because we focus on the self-employment decision, which often does not entail forming a C-corporation that would face the corporate tax.
10 Theoretical predictions about the effects of tax rates on risk taking are complicated due to the tax system reducing both the mean and the variance of returns. Theoretically, it is possible that a higher tax rate on risky outcomes will increase the amount of risk taking. Domar and Musgrave (1944) is the seminal paper on the effects of taxes on risk taking.
from ordinary income to less heavily taxed capital gains income encourages
entrepreneurial ventures; in addition, the capital gains tax can affect the supply of venture
capital to start-up firms.11

By definition, these effects of general tax policies on entrepreneurship are not the
main objectives of the tax policy process. Presumably, general tax policies are set based
on broad policy goals and the effects on entrepreneurship are only a part of the overall
effects of tax policy. Nonetheless, given the importance of entrepreneurship to the
overall economy, the effects on entrepreneurship could be an important part of the overall
effects of tax policy, especially if the effects on entrepreneurship are large.

In contrast to the effects of general tax policies on entrepreneurship, specific tax
policies can be targeted at small businesses and innovation. Such targeted tax policies
include: (1) tax credits for research and development;12 (2) favorable depreciation rules
for the capital expenditures of small businesses; (3) reduced capital gains taxes after the
initial public offerings of qualified small business stock;13 and (4) preferential
exemptions for business assets under the estate tax. The goals of these policies are aimed
at promoting specific aspects of entrepreneurship or solving problems associated with
taxing small businesses. For small businesses, Slemrod (2003) argues that these tax

11 Our empirical methodology does not incorporate the effects of capital gains taxes since we are focusing
on the self-employment decision. It is unlikely than many of the types of self-employed people in our
sample engage in activities financed by venture capital. Also, one can view our methodology as capturing
the tax on the returns that are taken as personal income (and personal consumption) before the business is
sold.
12 Hall and Van Reenen (2000) survey the design of fiscal incentives for research and development and the
evidence on whether these policies have been effective. They conclude that the evidence suggests that a
dollar in tax credit stimulates an additional dollar of R&D.
13 Guenther and Willenborg (1999) examine the effects of the reduced tax rate on capital gains on initial
public offerings of qualified small business stock. In 1993, Congress reduced by half the capital gains tax
on small business (defined as having assets of less than $50 million) stock purchased from the corporation
by individuals. Guenther and Willenborg find that this policy increased the price that small businesses
were able to charge for their stock, which is consistent with the tax break lowering the cost of capital for
such businesses.
preferences may offset the high tax compliance costs relative to business size that small businesses face.

III. Description of Tests and Data

In a perfect world, tests of effects of tax policy on entrepreneurship would use household-level panel data, with information on employment, entrepreneurial status and capital, and measures of the shape of the tax schedule over both households and time. The hurdle for measuring the relevant shape of the income tax schedule is high, as the measure of progressivity depends both on provisions of the tax and the \textit{ex ante} distribution of outcomes in entrepreneurship. While the former is common across households, households have access to quite different entrepreneurial opportunities. Moreover, to link the potential tax policy effects to innovation, we need a measure of how innovative the different entrepreneurial opportunities are.

We use data from the PSID, relying on self-employment of the head of the household as an indicator of entrepreneurship.\footnote{In the data, “self employment” is defined by the respondent so a self-employed person could work in a business that is organized for legal and tax purposes in either the corporate or noncorporate form.} Self-employment is one of many potential measures of “entrepreneurship.” Our choice of looking at self-employment – rather than some measure of business ownership or investment – is that our empirical methodology is based on household characteristics and we need panel data on a large sample of households.\footnote{For three years (1984, 1989, and 1994), the PSID includes data on asset holdings, including a category covering business assets. For this smaller sample of years, we can calculate entry into entrepreneurship based on business ownership rather than self-employment. The estimated effects of tax convexity on entry into business ownership are similar to the effects on entry into self-employment (Gentry and Hubbard, 2003). However, because the sample size in considerably smaller, the data do not lend themselves to testing whether the effects are similar across subsets of the population; hence, we define entrepreneurship as self-employment for testing whether the effects are similar across subsets of the population.}
employment does not necessarily capture innovative activity which might be concentrated in a small number of entrepreneurial firms. While our methodology cannot be easily adapted to concentrate on small corporations, at a general level, our framework tests whether decision makers respond to nonlinearities in the tax system and an open question is whether the responsiveness that we estimate for individuals entering into self employment can be generalized to comment on how executives in somewhat larger firms respond to nonlinearities in the tax schedule.

Our data cover the period 1979-1993. We start in 1979 because our source for variation in state tax rates begins in the late 1970s; our data end in 1993 because it is the last year of final release data from the PSID. We include in the sample heads of households between the ages of 18 and 60 who are in the workforce in consecutive years. We pool in the sample single men and women and married heads of households; to avoid issues of the endogeneity of labor force participation, we excluded married women. As entry is the object of our attention, our sample conditions on working for someone else (without any self-employment) in the first of the consecutive years for each observation. "Entry," then, is represented by the household reporting self-employment income in year \(t+1 \). On average each year for our sample, 3.1 percent of households enter self-employment each year, with the remainder continuing to work for someone else.

To model entry into entrepreneurship we estimate a probit model for the choice of each household head \(i \) at time \(t + 1 \):

\[
ENTRY_{i,t+1} = f(e_i, x_i, z_i, \gamma_i, TAX_{it}),
\]

where \(e \) represents educational attainment; \(x \) is an individual's earnings potential as an employee; \(z \) captures demographic differences across households; \(TAX \) includes an
individual's marginal tax rate and a measure of the convexity of the tax schedule faced by the individual as an entrepreneurial entrant (described below); and γ reflects time-specific macroeconomic factors.

More specifically, we represent educational status with indicator variables for "less than high school education," "some college," "college," and "some post-college education." 16 As basic controls for the opportunity cost of entry, we include the level and square labor earnings of the head of the household in year \(t \). 17 We also include as a proxy for wealth (reflecting effects of access to capital on entry) interest and dividend income. 18 Finally, we control the level and square of the spouse’s labor earnings in year \(t \) (assigning values of zero for single households).

Variables in \(z \) include the number of children in the household, as well as dummy variables for five-year age ranges for the head, whether the head is nonwhite, female, single, a homeowner, living outside a Standard Metropolitan Statistical Area, and whether the head experienced a marital transition during the year (as a result of marriage, divorce, or death of a spouse). For \(x \), we include Census-region-specific year dummy variables to capture trends in entry decisions or effects of aggregate conditions.

Summary statistics for these non-tax-related control variables are provided in Table I.

Tax variables present several challenges. To construct marginal tax rates, we use the TAXSIM model of the National Bureau of Economic Research (see Feenberg and

16 The omitted category is “high school education.”
17 In Gentry and Hubbard (2003), we conduct substantial sensitivity analysis on this choice of functional form, with little change in the estimated coefficients of interest.
18 Again, wealth data are not available on an annual basis in the PSID.
For the household’s predicted future marginal tax rate, we use household characteristics in year t. and project the tax rate using year $t + 1$ tax code.\(^{19}\)

The other tax variable central to analysis is the measure of the convexity of the tax schedule confronting prospective entrepreneurs. Following Gentry and Hubbard (2003), we use the observed distribution of three-year real wage growth for entrants into self-employment to capture the range of “successful” and “unsuccessful” outcomes for entrants. Based on these outcomes, we calculate marginal tax rates that an entrepreneur would face at various levels of success. Using the observed distribution, we form weighted averages of these marginal tax rates for "successful" and "unsuccessful" entrepreneurial outcomes. This measure of convexity has a value of zero if the marginal tax rate is constant over the range of potential outcomes. Nonzero values occur when entrepreneurial success or failure changes the household’s marginal tax rate. In taking this approach, we are relating the distribution of potential entrepreneurial success to opportunity cost measured by current income. We assume that the variability of the distribution of rewards to entrepreneurial activity is constant in percentage terms across households.\(^{20}\)

Specifically, guided by the three-year real wage growth experience of entrants, we consider four possible "successful" outcomes by entrants, in which labor income increases by 25 percent (with probability 0.4), 50 percent (with probability 0.4), 100 percent (with probability 0.15), or 200 percent (with probability 0.05). Similarly, we consider four possible "unsuccessful" outcomes for entrants, in which labor income falls

\(^{19}\) To capture the effects of wage growth, we allow earnings to grow by five percent in constructing our benchmark tax rate.

\(^{20}\) In Gentry and Hubbard (2003), we relax this assumption. Our estimated effects of tax convexity on the probability of entry are not driven importantly by differences by sex, marital status, or income group.
by 10 percent (with probability 0.5), 25 percent (with probability 0.3), 50 percent (with probability 0.15), and 75 percent (with probability 0.05).\footnote{Our (2003) paper presents an analysis of the wage growth distribution and of alternative proxies for the convexity of the tax schedule faced by a prospective entrant.} Our basic convexity measure is the difference between the weighted average of the marginal tax rates if the entrant succeeds and the weighted average of the marginal tax rates if the entrant is unsuccessful.

In principle, convexity need not be positively correlated with the level of the marginal tax rate or with income. Indeed, convexity depends on tax provisions that vary across households within a state, across similar households in different states and over time. As we discuss in our (2003) paper, the most important source of variation in tax convexity is the household’s location on the tax schedule which is determined by sources of income other than the head of household’s labor income (e.g., spousal income).\footnote{We base this conclusion on the fact that a household’s state of residence, its income decile, and the year under consideration do not explain much of the variation in the tax convexity measure.}

Our (2003) paper showed that the relationship between entry and household income is u-shaped, with higher entry probabilities for the lowest and highest income groups than for middle-income households. This pattern implies that one must control carefully for household income so that non-tax-related variation in entry probabilities across income groups is not assigned to tax considerations alone.

To link these tax effects to innovation, we interact the tax variables with measures of whether a potential entrepreneur is “innovative.” As proxies for “innovative” entrepreneurs, we use information on what industry or occupation the potential entrepreneur is working in when deciding whether to become self-employed. Our choices of “innovative” industries and occupations are somewhat arbitrary, of course, but we lacked data on our R&D intensity or other proxies that could be matched to industry
or occupational categories in PSID. Our definition of innovative industries includes the following: machinery (including electrical), transportation equipment, scientific instruments, chemicals and allied products, petroleum and coal, rubber and plastics, commercial research, development and testing labs, and computer programming services. These industries account for 13.8 percent of the observations in our sample. Overall, workers in these industries are less likely to enter self-employment. The entry rate among workers in these industries is 2.02 percent compared with an entry rate of 3.47 percent for workers in other industries.

Our definition of innovative occupations includes computer specialists, engineers, life and physical scientists, operations and systems researchers, science teachers at the college and university level, and engineering and science technicians. The occupations account for 7.8 percent of our sample. As with our innovative industries, the entry rate is lower for these occupations than for other occupations (2.16 percent compared to 3.38 percent).

These definitions of innovative potential assume that a worker’s industry or occupation in year \(t \) reflects the chance that he or she will undertake an innovative activity conditional on entering self-employment. The entry decision could, however, involve a change in either industry or occupation and this change could be into something more or less innovative than the entrant’s previous industry and occupation. As an alternative measure of innovative industry or occupation, we use the individual’s industry or occupation in year \(t + 1 \). For entrants into self-employment, this measure will capture the industry or occupation in which they are self-employed. For innovative industries, we use the same definitions as above. However, for innovative occupations, we exclude
college and university science teachers as innovative ‘destinations’ for the self-employed. We refer to these proxies for innovative industries and occupations as “destination” – based since they reflect the industry or occupation into which an entrant moves; in contrast, we refer to the proxies based on year t variables as “origin” – based since they capture the field in which the potential entrant starts.

The destination-based proxies for innovative industries and occupations have an important statistical disadvantage relative to the origin-based measures, because they are endogenous. For example, if the tax system discourages entry into particular industries or occupations, then the data will have fewer such observations and we will not capture the people who were discouraged from entering. Given this endogeneity, the results using the destination-based measures should be interpreted with caution.

As we discuss below, we also allow the estimated effects of the tax system to vary with the individual’s level of education. In these specifications, we interpret the level of education as a proxy for the probability that the new entrepreneur will undertake an innovative activity.

IV. Empirical Results

We report our basic results in Table 2. The first column of Table 2 presents estimates of a probit model for entrepreneurial entry in which the non-tax and tax variables described in section II are included as explanatory variables but interactions with the measures of being innovative are not included. We report estimated marginal effects, accompanied by robust standard errors which allow for intertemporal correlation

23 Of course, given the organization of colleges and universities, workers in these occupations are unlikely to be self-employed.
for observations from the same household. These base case results are consistent with those of Gentry and Hubbard (2003). For the tax variables, the estimated effect at the level of the marginal tax rate on the probability of entry is negative (-0.000314) and statistically different from zero at the 95 percent confidence level.24 Note that the sign of the estimated coefficient is not consistent with the argument that high tax rates stimulate entry to take advantage of tax-avoidance possibilities. The estimated coefficient on the marginal tax spread, however, is negative (-0.00173) and statistically significantly different from zero at the 99 percent level. Consistent with the "success tax" prediction and inconsistent with the "insurance" prediction, convexity of the tax schedule decreases the likelihood of entrepreneurial entry, all else equal.25

As a way of interpreting this estimated coefficient, consider a five-percentage-point reduction in convexity (which is roughly a one standard-deviation reduction in the convexity measure). This reduction would increase the entry probability by 0.86 percentage points; given a baseline entry probability of 3.2 percent, this reduction in convexity would increase the entry rate by about 25 percent. Hence the estimated effect of tax convexity is economically significant.

In the second through fifth columns of Table 2, we investigate how the estimated tax effects vary across “non-innovative” and “innovative” potential entrants. The second and third columns of Table 2 report results for potential entrants from innovative

24 While this estimated coefficient is statistically different from zero, sensitivity analysis in Gentry and Hubbard (2003) suggests this result is fragile. For example, alternative functional forms for controlling for income or alternative definitions of the sample yield estimated coefficients that change in sign and are typically not statistically different than zero. In contrast, the estimated effects of tax convexity are robust to a wide variety of sensitivity tests.

25 In terms of the (unreported) non-tax variables, higher levels of educational attainment are associated with higher entry probabilities. Once we control for education, current labor earnings have a negative effect on the likelihood of entry except for very high income households. As a proxy for potential entrants’ wealth, capital income positively affects the entry probability. Finally, all else equal, minority and female heads and household are substantially less likely to entry self-employment than white male heads of households.
occupations or moving to innovative occupations, respectively. The fourth and fifth columns of Table 2 report results with innovative defined based on industry on a origin and destination basis, respectively. Across all of the specifications, the baseline coefficient estimates for the level and convexity of the tax system are very similar to those reported in the first column. Furthermore, the interaction terms are not statistically significant in three of the four columns; these results suggest that innovative potential entrants are not affected by the tax incentives differentially than other potential entrants.

The one exception to this pattern is when we define innovative based on the occupation for year $t + 1$, which is the occupation into which the entrant moves. In this case, the estimated effects of the interactions on the level of the tax rate and the convexity of the tax system are positive. The overall effect of the tax incentives for these groups is the sum of the estimated coefficients with and without the interaction. For example, tax convexity appears to have very little overall effect on entry into the innovative occupations based on adding together the estimated coefficient on tax convexity (-0.00169) and the estimated coefficient on the interaction term (0.00175). As mentioned above, the destination-based results should be interpreted with caution since the observed year $t + 1$ occupation is endogenous to the entry decision.\footnote{To see how the endogeneity problem could affect the estimated coefficients, consider the following extreme example. Suppose that tax convexity reduced the number of entrants into innovative occupations to zero. It would appear in the destination-based entry data that the variation in tax convexity would be unrelated to the entry decision when in fact tax convexity has a large negative effect on entry into these occupations.}

Following our (2003) paper, we break our convexity into two parts. The first part is the difference between the average marginal tax rate on “successful” entrepreneurial outcomes and the benchmark tax rate; we refer to this part as “upside” convexity. The second part is the difference between the benchmark tax rate and the average marginal
tax rate on “unsuccessful” outcomes; we refer to this part as “downside” convexity. Intuitively, the notion of a convex tax system creating a success tax is more related to upside convexity than to downside convexity. To examine whether potential entrepreneurs respond differently to the shape of the tax schedule above versus below their benchmark tax rate, we allow the estimated effects of tax convexity to vary between upside and downside convexity. Furthermore, we explore whether the effects of upside and downside convexity differ with our proxies for innovative potential entrepreneurs.

Table 3 reports the results from decomposing the tax convexity effect into upside and downside convexity. The format of Table 3 follows that of Table 2 with the columns containing different definitions of innovative potential entrepreneurs. As in Gentry and Hubbard (2003), the negative estimated effect of upside tax convexity is roughly twice the size as the negative estimated effect of downside convexity, although both estimated effects are statistically different from zero at the 99 percent confidence level. Turning to the interactions with innovative occupations, the estimated coefficients on the interaction terms are small and imprecisely estimated suggesting that the effects of tax convexity do not differ across our categories of occupations. The same result holds when we define “innovative” using the potential entrepreneur’s industry of origin. When we define “innovative” using the destination industry, the estimated coefficients on the interactions roughly offset the estimated effect of the main tax variable; however, this offset appears to be stronger for downside convexity than it is for upside convexity suggesting that upside convexity may still have a negative effect on entry decisions.
As another *a priori* measure of how innovative a potential entrepreneur may be, we consider how the estimated tax effects vary by education groups. Education might be correlated with the responsiveness to tax convexity, especially if the motives for entrepreneurial entry vary by education groups. For example, entrants with low skill or educational levels may be "pushed" into self-employment by a spell of unemployment, while high-skill entrants may enter with the explicit goal of creating wealth. Moreover, if workers with few skills (as measured by low educational attainment) drive our main results, then one might be tempted to infer that the estimated tax effects are unrelated to innovative entrepreneurship.

To explore this possibility, we interact the tax effects with five educational attainment groups: (1) less than high school; (2) high school; (3) some college; (4) college; and (5) post-graduate work. Table 4 reports the results of these interactions. In the first row of Table 4, the estimated coefficients on the level of the marginal tax rate across education groups provide an example of the fragility of the estimates of this parameter; the estimated coefficient varies across education groups and is only statistically different from zero for people with a high school education.

In contrast, the estimated effect of tax convexity is consistently negative, of roughly similar magnitude across education groups, and statistically different from zero at the 99 percent confidence level for all five groups. In comparing the estimated effect of tax convexity among the education groups, the largest (in absolute value) estimated effect is for highly-educated people, though we cannot reject the hypothesis that the

27 Separating households by income levels provides another possible categorization that might be related to how innovative a potential entrepreneur is. Gentry and Hubbard (2003) reports results for a specification that allows the tax effects to vary by income quintile (defined on an annual basis). These results do not suggest any strong relationship between income and the responsiveness to tax convexity.
estimated effects are equal across education groups. Overall, it does not appear that the negative estimated effect of tax convexity is concentrated among lower education groups (which one might expect to be less innovative).²⁸

V. Conclusion

Interest in the role of entrepreneurial entry in innovation raises the question of the extent to which tax policy encourages or discourages entry. We find that, while the level of the marginal tax rate has a negative effect in entrepreneurial entry, the progressivity of the tax also discourages entrepreneurship, and significantly so for some groups of households. These effects are principally traceable to the "upside" or "success" convexity and household tax schedule.

Prospective entrants from a priori innovative industries and occupations are no less affected by the considerations we examine than other prospective entrants. In terms of destination-based industry and occupation measures of innovative entrepreneurs, we find mixed evidence on whether innovative entrepreneurs differ from the general population; the results for entrepreneurs moving to innovative entrepreneurs suggest that they may be unaffected by tax convexity but the possible endogeneity of this measure of innovative entrepreneurs confounds interpreting this specification. Using education as a measure of potential for innovation, we find that tax convexity discourages entry into self-employment for people of all educational backgrounds. Overall, we find little evidence that the tax effects are focused simply on the employment changes of less skilled or less promising potential entrants.

²⁸ We also estimated models in which the education groups interacted with upside and downside convexity separately. The results from this expanded model did not reveal any strong patterns among education and the estimated effects of upside or downside convexity.
Three extensions are promising. The first is to investigate more completely which types of businesses are being discouraged by tax policy. Second, effects of tax policy on innovation may also come through impacts on individual's willingness to pursue education or change jobs or careers (see, e.g., Gentry and Hubbard, forthcoming). The third is to integrate tax policy effects on entrepreneurial decisions in more general models of savings, investment, and economic growth.
References

<table>
<thead>
<tr>
<th>Table 1: Summary Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Marginal tax rate</td>
</tr>
<tr>
<td>Marginal tax rate convexity measure</td>
</tr>
<tr>
<td>Average tax rate</td>
</tr>
<tr>
<td>Average tax rate convexity measure</td>
</tr>
<tr>
<td>Head’s labor earnings</td>
</tr>
<tr>
<td>Spouse’s labor earnings</td>
</tr>
<tr>
<td>Dividend and interest income</td>
</tr>
<tr>
<td>Other property income</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Minority (non-white = 1)</td>
</tr>
<tr>
<td>Female head</td>
</tr>
<tr>
<td>Married (single = 1)</td>
</tr>
<tr>
<td>Number of kids</td>
</tr>
<tr>
<td>Homeowner</td>
</tr>
<tr>
<td>Rural</td>
</tr>
<tr>
<td>Less than high school</td>
</tr>
<tr>
<td>High school</td>
</tr>
<tr>
<td>Some college</td>
</tr>
<tr>
<td>College</td>
</tr>
<tr>
<td>Some post-college education</td>
</tr>
</tbody>
</table>

Source: Authors' calculations based on data from the PSID.
Notes: Our sample pools data from 1978 to 1993. The number of observations is 53,151. The sample includes households for which the head works for someone else in year \(t \) and is not out of the labor force in \(t + 1 \). We include only those households whose age is between 18 and 60 and whose labor income is positive in \(t \). We drop all observations with average or marginal tax rates larger than 75 percent or smaller than -20 percent. We also drop observations with average or marginal tax rates for the successful or the unsuccessful case larger than 75 percent or smaller than –20 percent. The sample is weighted to reflect oversampling of low-income households.
Table 2: Effects of Tax Rates and Tax Convexity on Entry Decisions

<table>
<thead>
<tr>
<th></th>
<th>Base Case</th>
<th>Occupation</th>
<th>Industry</th>
<th>Origin</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax rate -0.000314*</td>
<td></td>
<td>-0.000320*</td>
<td>-0.000333*</td>
<td>-0.000309*</td>
<td>-0.000346*</td>
</tr>
<tr>
<td>(0.000147)</td>
<td></td>
<td>(0.000146)</td>
<td>(0.000145)</td>
<td>(0.000146)</td>
<td>(0.000134)</td>
</tr>
<tr>
<td>Tax convexity -0.00173**</td>
<td></td>
<td>-0.00170**</td>
<td>-0.00168**</td>
<td>-0.00171**</td>
<td>-0.00169**</td>
</tr>
<tr>
<td>(0.000240)</td>
<td></td>
<td>(0.000237)</td>
<td>(0.00024)</td>
<td>(0.000241)</td>
<td>(0.000230)</td>
</tr>
<tr>
<td>Tax rate * innovative 0.000416</td>
<td></td>
<td>0.000416</td>
<td>0.000782</td>
<td>0.000121</td>
<td>0.00134**</td>
</tr>
<tr>
<td>(0.000527)</td>
<td></td>
<td>(0.000530)</td>
<td>(0.000333)</td>
<td>(0.000368)</td>
<td></td>
</tr>
<tr>
<td>Tax convexity * innovative 0.000325</td>
<td></td>
<td>0.000325</td>
<td>0.000160</td>
<td>0.000248</td>
<td>0.00175**</td>
</tr>
<tr>
<td>(0.000933)</td>
<td></td>
<td>(0.000936)</td>
<td>(0.000652)</td>
<td>(0.000666)</td>
<td></td>
</tr>
<tr>
<td>Dummy variable for ‘innovative’-0.0217</td>
<td></td>
<td>-0.0217</td>
<td>-0.0259**</td>
<td>-0.0158</td>
<td>-0.0380**</td>
</tr>
<tr>
<td>(0.00777)</td>
<td></td>
<td>(0.00486)</td>
<td>(0.00718)</td>
<td>(0.00311)</td>
<td></td>
</tr>
<tr>
<td>Pseudo-R² 0.0779</td>
<td></td>
<td>0.0804</td>
<td>0.0811</td>
<td>0.0807</td>
<td>0.0884</td>
</tr>
</tbody>
</table>

Notes: The sample has 53,151 observations. The reported coefficients are the marginal effects from a probit regression. A * denotes coefficient estimates that are statistically different from zero at the 95 percent confidence level and ** denotes coefficient estimates that are statistically different from zero at the 99 percent confidence level. The last four columns reflect different definitions of “innovative” – by industry or occupation – using year t or year t + 1 data. Robust standard errors are in parentheses. The regressions also include the following covariates: labor earnings and labor earnings squared for the head of household; labor earnings and labor earnings squared for the spouse (or zero for unmarried individuals); dividend and interest income; other property income; dummy variables for five-year age ranges; number of children; dummy variables for race, female-headed households, single, got married during the year, got divorced during the year, spouse passed away during the year, homeownership, lived outside of an SMSA, less than a high school education, some college education, college graduate, and post-college education; and Census-region-year effects.
Table 3: Comparison of Upside and Downside Tax Convexity Effects on Entry Decisions

<table>
<thead>
<tr>
<th></th>
<th>Base Case</th>
<th>Occupation</th>
<th></th>
<th>Industry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Origin</td>
<td></td>
<td>Destination</td>
<td></td>
</tr>
<tr>
<td>Tax rate</td>
<td>-0.000494**</td>
<td>-0.000495**</td>
<td>-0.000514**</td>
<td>-0.000488**</td>
<td>-0.000507**</td>
</tr>
<tr>
<td>(0.000155)</td>
<td>(0.000154)</td>
<td>(0.000153)</td>
<td>(0.000154)</td>
<td>(0.000145)</td>
<td></td>
</tr>
<tr>
<td>Upside tax convexity</td>
<td>-0.00227**</td>
<td>-0.00223**</td>
<td>-0.00226**</td>
<td>-0.00229**</td>
<td>-0.00218**</td>
</tr>
<tr>
<td>(0.000294)</td>
<td>(0.000294)</td>
<td>(0.000293)</td>
<td>(0.000298)</td>
<td>(0.000284)</td>
<td></td>
</tr>
<tr>
<td>Downside tax convexity</td>
<td>-0.00110**</td>
<td>-0.00109**</td>
<td>-0.00102**</td>
<td>-0.00105**</td>
<td>-0.00113**</td>
</tr>
<tr>
<td>(0.000305)</td>
<td>(0.000303)</td>
<td>(0.000304)</td>
<td>(0.000306)</td>
<td>(0.000295)</td>
<td></td>
</tr>
<tr>
<td>Tax rate * innovative</td>
<td>0.000351</td>
<td>0.000955</td>
<td>0.000194</td>
<td>0.00123**</td>
<td></td>
</tr>
<tr>
<td>(0.000581)</td>
<td>(0.000553)</td>
<td>(0.000356)</td>
<td>(0.000363)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upside tax convexity * innovative</td>
<td>0.000044</td>
<td>0.000128</td>
<td>0.000853</td>
<td>0.00143</td>
<td></td>
</tr>
<tr>
<td>(0.000112)</td>
<td>(0.000140)</td>
<td>(0.000870)</td>
<td>(0.000921)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downside tax convexity * innovative</td>
<td>0.000570</td>
<td>-0.00104</td>
<td>-0.000375</td>
<td>0.00207*</td>
<td></td>
</tr>
<tr>
<td>(0.00122)</td>
<td>(0.00130)</td>
<td>(0.000957)</td>
<td>(0.000908)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy variable for ‘innovative’</td>
<td>-0.0207</td>
<td>-0.0271**</td>
<td>-0.0171</td>
<td>-0.0372**</td>
<td></td>
</tr>
<tr>
<td>(0.00878)</td>
<td>(0.00440)</td>
<td>(0.00713)</td>
<td>(0.00305)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo-R²</td>
<td>0.0791</td>
<td>0.0816</td>
<td>0.0825</td>
<td>0.0820</td>
<td>0.0895</td>
</tr>
</tbody>
</table>

Notes: The sample has 53,151 observations. The reported coefficients are the marginal effects from a probit regression. A * denotes coefficient estimates that are statistically different from zero at the 95 percent confidence level and ** denotes coefficient estimates that are statistically different from zero at the 99 percent confidence level. The last four columns reflect different definitions of “innovative” – by industry or occupation – using year t or year t + 1 data. Robust standard errors are in parentheses. The regressions also include the following covariates: labor earnings and labor earnings squared for the head of household; labor earnings and labor earnings squared for the spouse (or zero for unmarried individuals); dividend and interest income; other property income; dummy variables for five-year age ranges; number of children; dummy variables for race, female-headed households, single, got married during the year, got divorced during the year, spouse passed away during the year, homeownership, lived outside of an SMSA, less than a high school education, some college education, college graduate, and post-college education; and Census-region-year effects.
Table 4: Effects of Tax Rates and Tax Convexity on Entry Decisions, By Educational Attainment

<table>
<thead>
<tr>
<th>Level of Educational Attainment</th>
<th>Less than High School</th>
<th>High School</th>
<th>Some College</th>
<th>College</th>
<th>Post-College Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax rate</td>
<td>-0.000091</td>
<td>-0.000495*</td>
<td>-0.000192</td>
<td>-0.000332</td>
<td>-0.000342</td>
</tr>
<tr>
<td></td>
<td>(0.000259)</td>
<td>(0.000199)</td>
<td>(0.000231)</td>
<td>(0.000257)</td>
<td>(0.000429)</td>
</tr>
<tr>
<td>Tax convexity</td>
<td>-0.00160**</td>
<td>-0.00175**</td>
<td>-0.00162**</td>
<td>-0.00177**</td>
<td>-0.00261**</td>
</tr>
<tr>
<td></td>
<td>(0.000424)</td>
<td>(0.000341)</td>
<td>(0.000428)</td>
<td>(0.000475)</td>
<td>(0.000878)</td>
</tr>
<tr>
<td>Dummy variable for education</td>
<td>-0.00719</td>
<td>N/A</td>
<td>0.000131</td>
<td>0.00856</td>
<td>0.0143</td>
</tr>
<tr>
<td></td>
<td>(0.00630)</td>
<td>(0.00803)</td>
<td>(0.0117)</td>
<td>(0.0219)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The sample has 53,151 observations. The Pseudo-R² is 0.0785. For the education dummy variables, high school education is the omitted category. The reported coefficients are the marginal effects from a probit regression. A * denotes coefficient estimates that are statistically different from zero at the 95 percent confidence level and ** denotes coefficient estimates that are statistically different from zero at the 99 percent confidence level. The last four columns reflect different definitions of “innovative” – by industry or occupation – using year t or year t + 1 data. Robust standard errors are in parentheses. The regressions also include the following covariates: labor earnings and labor earnings squared for the head of household; labor earnings and labor earnings squared for the spouse (or zero for unmarried individuals); dividend and interest income; other property income; dummy variables for five-year age ranges; number of children; dummy variables for race, female-headed households, single, got married during the year, got divorced during the year, spouse passed away during the year, homeownership, and lived outside of a SMSA; and Census-region-year effects.