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Abstract

This paper presents a new approach to the old problem of linear dependency of age, cohort

and time effects. It is shown that second differences of the effects can be estimated without

any normalization restrictions, providing information on the shape of the age, cohort and time

effect profiles, and enabling identification of structural breaks. A Wald test is provided to

test the popular linear and quadratic specifications against a very general alternative. First

differenced and level effects can then be consistently estimated with a small number of additional

normalizing assumptions. Moreover, it is demonstrated that coefficients on additional exogenous

regressors can be consistently estimated in this framework without the need for normalizing

assumptions.
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1 Introduction

Many economic and social phenomena are modelled as a confluence of age, birth cohort, and time

effects. General linear models which attempt to capture all three effects are faced with one of the

most well-known identification problems in economics: a person’s age added to their birth year gives

the current year, so that there is an exact linear relationship between the age, cohort, and time

effects. Identifying the level effects of these three factors therefore requires additional normalization

or exclusion assumptions, which is the current practice in the literature.

In this paper we provide a different approach to the identification of these effects in the additively

separable model. Using pseudo-panel methods, we show that although the level effects can not be

identified without further restrictions, one can identify economically meaningful linear combinations

of these effects. In particular, with no normalizing assumptions, one can identify second differences

of the effects. These effectively provide the second derivatives of the age, cohort, and time effect

profiles, providing valuable information on changes in growth rates, the convexity or concavity of

the effects, and enabling structural breaks to be seen. Furthermore, we show that Wald tests on the

estimated second differenced effects can be used to test whether either a quadratic or a linear term

can adequately capture a given effect. Next, we show that with only one normalizing assumption

on the slopes, the first differences of all three effects can be identified, with identification of the

level effects requiring two further assumptions. The method is illustrated with pseudo-panel data

from Mexico, and clearly shows the time effect of the 1995 peso crisis on consumption, and that a

quadratic in age is not sufficient for explaining the age effect.

As a second example application, we consider the shape of the age effect profile for the variance of

log consumption in Taiwan. Deaton and Paxson (1994) show that the permanent income hypothesis

(PIH) implies that consumption inequality increases with age. However, whether the age effect

profile is concave or convex depends on the degree of persistence in shocks to earnings. If the PIH

is correct, then a convex age effects profile implies that individual earnings must contain a large

stationary component. Applying the methods of this paper, it is found that the second derivatives

of the age effect profile are in fact fairly equal and statistically insignificant from zero for most ages,
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implying that convexity is not a strong feature of the data.

While in some settings the focus is on the cohort, age, and time effects themselves, in other

applications the researcher merely wishes to control for these effects when determining the influence

of additional regressors. A second contribution of the paper lies in showing that one can consis-

tently estimate the coefficients on these additional regressors, without requiring any normalizing

assumptions on the age, cohort and time effects, provided that the additional regressors in question

exhibit sufficient variation over age, cohorts and time. The same methods proposed here are equally

applicable with genuine panel data when it is available, and we finish by showing how our methods

can be applied to this form of data.

The existing economics literature1 suggests a variety of restrictions for overcoming the identifi-

cation problem. One view is that the age, cohort, and time effects are proxy variables for underlying

unobserved variables which are not themselves linearly dependent (Heckman and Robb, 1985). In

some situations, the business cycle may capture the period effect and cohort size the cohort effect.

Foster (1990) notes that, in demography, parametric schedules which take advantage of strong regu-

larities in the age patterns of vital rates in human populations can be used to capture demographic

events. When multiple proxies are available, Heckman and Robb (1985) propose a latent variable

approach, enabling estimation of a multiple-cause-multiple-indicator model. However, often the un-

derlying variable(s) for a given effect may be unclear, and so the researcher prefers to agnostically

model all three effects simultaneously.

A second approach is then to model the age and cohort effects with small-order polynomials, in

some cases just linear effects. For example, Japelli (1999) uses fifth order polynomials in age and

cohort, while Denton, Mountain and Spencer (1999) use a quadratic for cohort and time effects,

and a cubic spline for age effects with knots at 17 and 57 to capture variations associated with

lifecycle transitions. These models may be reasonable, but there is often an ad-hoc nature to their

specification, and they can struggle to adequately capture trend breaks. Using non-parametric

methods, Heckman and Vytlacil (2001) find no support for the widely accepted practice of imposing

1See the volume edited by Mason and Fienberg (1985) for a discussion of the identification approaches used in
other social sciences.
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linear effects of time and age. Deaton (1997) argues that when data are plentiful, it is better to

allow dummy variables for all three sets of effects, allowing the data to choose the profiles. He

provides a normalization which makes the year effects orthogonal to a time trend, so that all growth

is attributed to age and cohort effects. This approach has rightly become quite popular, in part

due to its flexibility in capturing the effects of interest. The present paper allows greater flexibility

still, while enabling the researcher to explicitly test whether the popular quadratic or linear trends

can adequately capture specific effects. The ability to estimate the effects of additional regressors

whilst controlling generally for age, cohort and time effects should also be of interest to the applied

researcher.

The remainder of this paper is organized as follows. Section 2 presents the basic additive model

in age, cohort, and time effects to be used in this paper. Section 3 shows that one can consistently

estimate second derivatives without further parameter restrictions, and provides a Wald test for

testing whether the effects can be captured by quadratic or linear terms. In Section 4 it is shown that

the introduction of one normalization assumption can allow identification of first derivatives, while

two more normalizations allow identification of actual effects. The method is applied to Mexican

household consumption data and Taiwanese inequality data in Section 5. Section 6 introduces

additional regressors to the base model and Section 7 shows how the same method can be used with

genuine panel data. Section 8 concludes and mathematical proofs are presented in Section 9.

2 Model

Observations are made on individuals of A age groups, a1, ..., aA, over T time periods, t1, ..., tT . The

population is divided into C = A+T − 1 cohorts, with some cohorts observed in more time periods

than others due to the restriction on ages. The cohort of individuals aged aj in time period tk is

denoted as cohort cj−k+1. For example, cohort c1 is aged a1 at time t1, while cohort cA is aged aA

at time t1. We assume that selection of the number of age groups and cohorts is predetermined,

leaving issues of optimal cohort selection for further research. The number of individuals sampled

from cohort cj is ncj , which can vary from cohort to cohort, but for notational purposes is assumed
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to be the same in each time period the cohort is sampled.

For individual i in cohort cj−k+1, of age aj in time period tk, the variable of interest yi,cj−k+1,aj ,tk

is modelled as the sum of a cohort effect, an age effect, a time effect, and an individual error term2:

yi,cj−k+1,aj ,tk = αcj−k+1 + βaj + γtk + εi,cj−k+1,aj ,tk (1)

The error term εi,cj−k+1,aj ,tk is assumed to satisfy either

Assumption 1

εi,cj−k+1,aj ,tk = ωi,cj−k+1 + ηi,cj−k+1,aj ,tk (2)

where ωi,cj−k+1 ∼ i.i.d.
¡
0,σ2ω

¢
, ηi,cj−k+1,aj ,tk ∼ i.i.d.

¡
0,σ2η

¢
, ωi,cj−k+1 and ηi,cj−k+1,aj ,tk are

independent, and E
³
ε4i,cj−k+1,aj ,tk

´
<∞.

or

Assumption 2

εi,cj−k+1,aj ,tk = ωi,cj−k+1 + νcj−k+1,aj ,tk + ηi,cj−k+1,aj ,tk (3)

where ωi,cj−k+1 ∼ i.i.d.
¡
0,σ2ω

¢
, νcj−k+1,aj ,tk ∼ i.i.d.

¡
0,σ2ν

¢
, ηi,cj−k+1,aj ,tk ∼ i.i.d.

¡
0,σ2η

¢
, ωi,cj−k+1 ,

νcj−k+1,aj ,tk and ηi,cj−k+1,aj ,tk are independent of one another, and E
³
ε4i,cj−k+1,aj ,tk

´
<∞.

Note that Assumption 2 reduces to Assumption 1 if σ2ν = 0. This is the case if the error term

consists of only individual idiosyncratic components, and contains no cohort-level variation.3

With repeated cross-sections, individuals are only observed once, and so we proceed by taking

means of equation (1) over cohorts at each time period:

1

ncj−k+1

ncj−k+1X
i=1

yi(tk),cj−k+1,aj ,tk = αcj−k+1 + βaj + γtk +
1

ncj−k+1

ncj−k+1X
i=1

εi(tk),cj−k+1,aj ,tk . (4)

2This is the additively separable model common in some of the literature. It could be further motivated in practice
by estimating a saturated model of cohort, age, and interaction effects, and testing that the interaction terms are
zero.

3The independence assumptions made here simplify the presentation of the results in this paper. Consistent
estimation is possible in pseudo-panels under certain forms of weak temporal and spatial correlation, and is discussed
in the context of dynamic models in Mckenzie (2001a).
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Here the i (tk) subscript is used to make explicit the fact that different individuals are observed

in each time period in the pseudo-panel. Letting ycj−k+1,aj ,tk =
1

ncj−k+1

Pncj−k+1
i=1 yi(tk),cj−k+1,aj ,tk

denote the cohort sample mean of the variable of interest for cohort cj−k+1 in time period tk, the

pseudo-panel version of equation (1) is

ycj−k+1,aj ,tk = αcj−k+1 + βaj + γtk + εcj−k+1,aj ,tk . (5)

The identification problem which arises is that an individual’s birth year added to their age gives

the current year, so that the regressor matrix of equation (5) is singular. That is, without further

assumptions, one cannot separately identify age, cohort and time effects. In fact, even linear trends

in all three effects cannot be separately identified.

3 Identification with no parameter restrictions:

Second Derivatives

3.1 Age Effects

Consider equation (5) for cohort c1 at time periods t1 and t2:

yc1,a1,t1 = αc1 + βa1 + γt1 + εc1,a1,t1 (6)

yc1,a2,t2 = αc1 + βa2 + γt2 + εc1,a2,t2 (7)

Subtracting (6) from (7) eliminates the cohort effect and gives

∆tyc1,a2,t2 =
¡
βa2 − βa1

¢
+
¡
γt2 − γt1

¢
+∆tεc1,a2,t2 . (8)

where ∆tyc1,a2,t2 ≡ yc1,a2,t2 − yc1,a1,t1 denotes the first time difference of yc1,a2,t2 , and similarly

∆tεc1,a2,t2 is the first time differenced error term. In terms of notation, we define differences over

cohorts and time periods, which will also implicitly define age differences. A c and/or t subscript
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indicates that the difference is taken over cohorts and/or time periods, while the absence of a

subscript for cohort (or time) indicates that the difference is for the same cohort (or time). Negative

signs indicate forward differences. For example, ∆c,tyc2,a3,t2 = yc2,a3,t2−yc1,a1,t1 and ∆−tyc2,a3,t2 =

yc2,a3,t2 − yc2,a4,t3 . Similarly, time differencing the observations for cohort c2 between time periods

t1 and t2 gives:

∆tyc2,a3,t2 =
¡
βa3 − βa2

¢
+
¡
γt2 − γt1

¢
+∆tεc2,a3,t2 . (9)

Now subtracting (8) from (9) eliminates the differenced time effect and yields:

∆c∆tyc2,a3,t2 =
¡
βa3 − βa2

¢− ¡βa2 − βa1
¢
+∆c∆tεc2,a3,t2 (10)

where ∆c∆tyc2,a3,t2 ≡ ∆tyc2,a3,t2 − ∆tyc1,a2,t2 denotes the first cohort difference of ∆tyc2,a3,t2 .

Likewise, for cohort cj , j = 2, ..., A− 1 we have at time period t2:

∆c∆tycj ,aj+1,t2 =
³
βaj+1 − βaj

´
−
³
βaj − βaj−1

´
+∆c∆tεcj ,aj+1,t2 (11)

More generally, taking time differences between periods tk and tk−1 for cohort cj−k+2, gives for

j = 2, ..., A− 1; k = 2, ..., T :

∆c∆tycj−k+2,aj+1,tk =
³
βaj+1 − βaj

´
−
³
βaj − βaj−1

´
+∆c∆tεcj−k+2,aj+1,tk . (12)

Defining eβaj+1 = ³βaj+1 − βaj

´
−
³
βaj − βaj−1

´
, we arrive at the following regression, for

j = 2, ..., A− 1; k = 2, ..., T :

∆c∆tycj−k+2,aj+1,tk =
eβaj+1 +∆c∆tεcj−k+2,aj+1,tk . (13)

Let bβaj+1 denote the ordinary least squares estimator of eβaj+1 from equation (13). That is

bβaj+1 = 1

T − 1
TX
k=2

∆c∆tycj−k+2,aj+1,tk (14)
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The following assumption is made on the relative cohort sizes, which assures that one continues

to obtain new observations from each cohort as the total sample grows:

Assumption 3 : For all s = 2 − T, ..., A, there exists 0 < δs < ∞, such that ncs/nc1 → δs as

nc1 →∞ .

The following theorem then applies:

Theorem 1 For the data generating process given in (1),

(a) under Assumptions 1 and 3, as nc1 →∞, for T fixed,

bβaj+1 p→ eβaj+1 = ³βaj+1 − βaj

´
−
³
βaj − βaj−1

´

for all j = 2, ..., A− 1.

(b) under Assumption 2, as T →∞, for ncs fixed for all s = 2− T, ..., A,

bβaj+1 p→ eβaj+1 = ³βaj+1 − βaj

´
−
³
βaj − βaj−1

´

for all j = 2, ..., A− 1.

(c) (Corollary) Under Assumptions 1 and 3, (i) bβaj+1 p→ eβaj+1 in sequential limit as (nc1 , T →∞)seq
and under Assumptions 2 and 3, (ii) bβaj+1 p→ eβaj+1 in sequential limit as (T, nc1 →∞)seq and
(iii) bβaj+1 p→ eβaj+1 in sequential limit as (nc1 , T →∞)seq.

(d) under Assumptions 1 and 3, as nc1 →∞, for T fixed,

√
nc1

³bβaj+1 − eβaj+1´ d→ N (0, σj+1) ,

where σj+1 = 2
¡
σ2ω + σ2η

¢ 1

(T − 1)2
TX
k=2

µ
1

δj−k+2
+

1

δj−k+1

¶
,

and letting varc
¡
yi,cj−k+2,aj+1,tk

¢ ≡ 1
ncj−k+2

ncj−k+2P
i=1

³
yi,cj−k+2,aj+1,tk − ycj−k+2,aj+1,tk

´2
denote
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the cross-sectional sample variance across individuals in cohort cj−k+2 at time tk, we have

varc
¡
yi,cj−k+2,aj+1,tk

¢ p→ ¡
σ2ω + σ2η

¢
.

(e) under Assumptions 1 and 3, as nc1 →∞, for T fixed,

s2 =
1

T − 2
TX
k=2

³
∆c∆tycj−k+2,aj+1,tk − bβaj+1´2 p→ 0 .

Remarks:

(a) It is thus possible to identify changes in the slopes of the age effects profile without any

parameter restrictions. In essence, one obtains the second derivative of the age effect function.

For example, eβa3 = ¡βa3 − βa2
¢−¡βa2 − βa1

¢
gives the difference in the slope of the age profile

between ages a2 and a3 from the slope between ages a2 and a1 . If the age effects are linear,

these terms should all be zero.

(b) In most practical settings, the number of individuals per cohort, nc, will be large relative to

the number of time periods, hence the use of nc → ∞ asymptotics will be most appropriate.

For fixed T , this requires that the error terms ∆c∆tεcj−k+2,aj+1,tk converge to zero as nc →∞,

which is only the case if σ2ν = 0, that is if there are only individual level components in the

error term. Such a condition is a common restriction in pseudo-panel estimation with a fixed

number of time periods. For example, Verbeek (1995) notes that such a condition is required

for consistency of the pseudo-panel estimator of Deaton (1985) as nc1 →∞ for T fixed.

(c) If T is also large, then part (b) shows that one can allow for cohort-level error components

and the estimator in (14) is still consistent. However, an implicit assumption in equation (1)

is that the age effects are independent of time. This assumption is more credible over a small

number of time periods, and as T gets large, one may wish to allow the age effects themselves

to depend on time. If one wishes to do this generally, then again one is forced to rely on

nc1 →∞ asymptotics and assume that σ2ν = 0.

(d) Part (d) shows that the variance of bβaj+1 can be estimated using the cross-sectional sample
9



variance and the relative sample sizes of the different cohorts. That is, a consistent estimator

of the variance of
√
nc1

³bβaj+1 − eβaj+1´ is
eσj+1 = 2varc ¡yi,cj−k+2,aj+1,tk¢ 1

(T − 1)2
TX
k=2

µ
nc1

ncj−k+2
+

nc1
ncj−k+1

¶
. (15)

The efficiency of this estimator can be improved by averaging the cross-sectional sample vari-

ances for all cohorts and all time periods, to arrive at the estimator:

bσj+1 = 2 1

(T − 1)2
TX
k=2

µ
nc1

ncj−k+2
+

nc1
ncj−k+1

¶
1

AT

TX
k=1

AX
j=1

varc
¡
yi,cj−k+2,aj+1,tk

¢
. (16)

(e) Note that although the estimator bβaj+1 is obtained by running OLS on (13), part (e) shows
that the usual OLS standard errors will not be correct. Hence the need to use cross-sectional

sample variances as in (16).

3.2 Time Effects

Time differencing the observations for cohort c0 between time periods t2 and t3 gives

∆tyc0,a2,t3 =
¡
βa2 − βa1

¢
+
¡
γt3 − γt2

¢
+∆tεc0,a2,t3 (17)

Subtracting equation (8) from (17) eliminates the age effects, giving

∆−c,t∆tyc0,a2,t3 =
¡
γt3 − γt2

¢− ¡γt2 − γt1
¢
+∆−c,t∆tεc0,a2,t3 , (18)

where ∆−c,t∆tyc0,a2,t3 ≡ ∆tyc0,a2,t3 − ∆tyc1,a2,t2 and ∆−c,t∆tεc0,a2,t3 = ∆tεc0,a2,t3 − ∆tεc1,a2,t2 .

Likewise, for cohort cj−2, j = 2, ..., A, in time period t3 we have

∆−c,t∆tycj−2,aj ,t3 =
¡
γt3 − γt2

¢− ¡γt2 − γt1
¢
+∆−c,t∆tεcj−2,aj ,t3 (19)
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More generally still, for cohort cj−k+1, j = 2, ..., A, in time period tk, k = 3, ..., T ,

∆−c,t∆tycj−k+1,aj ,tk =
³
γtk − γtk−1

´
−
³
γtk−1 − γtk−2

´
+∆−c,t∆tεcj−k+1,aj ,tk (20)

Defining eγtk = ³γtk − γtk−1

´
−
³
γtk−1 − γtk−2

´
, we arrive at the following regression, for j = 2, ..., A;

k = 2, ..., T :

∆−c,t∆tycj−k+1,aj ,tk = eγtk +∆−c,t∆tεcj−k+1,aj ,tk . (21)

Let bγtk denote the ordinary least squares estimator of eγtk from equation (21). That is

bγtk = 1

A− 1
AX
j=2

∆−c,t∆tycj−k+1,aj ,tk (22)

The following theorem then shows that consistent estimation of changes in the slopes of the time

effect profile is possible under appropriate assumptions.

Theorem 2 For the data generating process given in (1), for all k = 2, ..., T ,

(a) under Assumptions 1 and 3, as nc1 →∞, for T fixed,

bγtk p→ eγtk = ³γtk − γtk−1

´
−
³
γtk−1 − γtk−2

´
.

(b) under Assumption 2, as A→∞, for ncs fixed for all s = 2− T, ..., A, bγtk p→ eγtk .
(c) (Corollary) Under Assumptions 1 and 3, (i) bγtk p→ eγtk in sequential limit as (nc1 , A→∞)seq

and, under Assumptions 2 and 3, (ii) bγtk p→ eγtk in sequential limit as (A,nc1 →∞)seq and
(iii) bγtk p→ eγtk in sequential limit as (nc1 , A→∞)seq.

(d) under Assumptions 1 and 3, as nc1 →∞, for T fixed,

√
nc1

¡bγtk − eγtk¢ d→ N (0,κk) ,

where κk = 2
¡
σ2ω + σ2η

¢ 1

(A− 1)2
AX
j=2

µ
1

δj−k+2
+

1

δj−k+1

¶
.
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Remarks:

(a) While asymptotics as the number of age groups A → ∞ may seem strange, recall that the

number of cohorts C = A + T − 1. Hence one can reinterpret parts (b) and (c) as giving

asymptotic results as the number of cohorts, C, tends to infinity. Asymptotics as C → ∞ is

reasonably common in pseudo-panel econometric work.4 However, in many practical situations

it is likely to be the case that the number of individuals per cohort, nc, is larger than the number

of cohorts, C, meaning that the asymptotics in either part (a) of Theorem 2, or in part (c) as

(nc1 , A→∞)seq are likely to be more appropriate.

(b) Note that Theorem 2 requires at least three time periods for changes in relative time effects

to be identified, whereas Theorem 1 shows that changes in the slope of the age profile can be

identified with only two time periods, which may be all that is available for some data sets.

(c) The variance κk can be estimated using cross-sectional sample variances and relative cohort

sample sizes as was done for the age effects.

3.3 Cohort Effects

Finally, to estimate changes in cohort effects, first consider (5) for cohort c2 at time period t2:

yc2,a3,t2 = αc2 + βa3 + γt2 + εc2,a3,t2 . (23)

Subtracting (7) from (23) eliminates the time effects and gives:

∆cyc2,a3,t2 = (αc2 − αc1) +
¡
βa3 − βa2

¢
+∆cεc2,a3,t2 , (24)

4For example, see Verbeek and Nijman (1993) and Collado (1997).
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where ∆cyc2,a3,t2 = yc2,a3,t2 − yc1,a2,t2 denotes the first cohort difference of yc2,a3,t2 . Taking first

cohort differences of yc3,a3,t1 likewise gives:

∆cyc3,a3,t1 = (αc3 − αc2) +
¡
βa3 − βa2

¢
+∆cεc3,a3,t2 . (25)

Subtracting (24) from (25) eliminates the age effects, giving

∆c,−t∆cyc3,a3,t1 = (αc3 − αc2)− (αc2 − αc1) +∆c,−t∆cεc3,a3,t1 , (26)

where ∆c,−t∆cyc3,a3,t1 ≡ ∆cyc3,a3,t1 −∆cyc2,a3,t2 . For k = 1, ...,min (A− 2, T − 1) this extends to

∆c,−t∆cyc3,ak+2,tk = (αc3 − αc2)− (αc2 − αc1) +∆c,−t∆cεc3,ak+2,tk . (27)

and for cohort j, j = 4− T, ..., A, k = 1, ..., T − 1, such that 2 ≤ k + j − 1 ≤ A,

∆c,−t∆cycj ,ak+j−1,tk =
¡
αcj − αcj−1

¢− ¡αcj−1 − αcj−2
¢
+∆c,−t∆cεcj ,ak+j−1,tk . (28)

Cohort j is only observed when its members are aged a1, ..., aA. Defining eαcj = ¡
αcj − αcj−1

¢ −¡
αcj−1 − αcj−2

¢
, we arrive at the following regression for j = 4− T, ..., A, k = 1, ..., T − 1 such that

2 ≤ k + j − 1 ≤ A,

∆c,−t∆cycj ,ak+j−1,tk = eαcj +∆c,−t∆cεcj ,ak+j−1,tk . (29)

Let bαcj denote the ordinary least squares estimator of eαcj from equation (29). That is

bαcj = 1

Hj

min(A−j+1,T−1)X
k=max(3−j,1)

∆c,−t∆cycj ,ak+j−1,tk , (30)

where Hj = min (A− j + 1, T − 1)−max (3− j, 1) + 1 is the number of times ∆c,−t∆cycj ,ak+j−1,tk
is observed for a given cj .The following theorem provides for consistent estimation of the change in

slopes of the cohort effect profile.
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Theorem 3 For the data generating process given in (1), for all j = 4− T, ..., A.

(a) under Assumptions 1 and 3, as nc1 →∞, for T fixed,

bαcj p→ eαcj = ¡αcj − αcj−1
¢− ¡αcj−1 − αcj−2

¢
.

(b) under Assumption 2, as A→∞ and T →∞, for ncs fixed for all s = 2− T, ..., A, bαcj p→ eαcj .
(c) (Corollary) Under Assumptions 1 and 3, (i) bαcj p→ eαcj in sequential limit as (nc1 , T →∞)seq

and, under Assumptions 2 and 3, (ii) bαcj p→ eαcj in sequential limit as (nc1 , T →∞)seq and
(iii) bαcj p→ eαcj in sequential limit as (A→∞ and T →∞, nc1 →∞)seq.

(d) under Assumptions 1 and 3, as nc1 →∞, for T fixed,

√
nc1

¡bαcj − eαcj¢ d→ N (0,πj) ,

where πj =
¡
σ2ω + σ2η

¢ 1

H2
j

min(A−j+1,T−1)X
k=max(3−j,1)

µ
1

δj
+

2

δj−1
+

1

δj−2

¶
.

Remark:

Part (b) shows that if the number of individuals per cohort is held fixed, both the number of time

periods and the number of age groups need to pass to infinity for consistency. This arises as the age

restriction causes the number of times a given cohort is observed to depend on both the number of

age groups and the number of time periods.

3.4 Wald Tests of Age, Cohort and Time Effects

In addition to consistently estimating changes in the slopes of the age, cohort and time effect profiles,

one can also carry out Wald tests to test specific hypotheses about the shapes of these profiles. In

particular, one may wish to test one of the following hypotheses:

i) H10 : eβa3 = eβa4 = ... = eβaA
⇔ ¡

βa3 − βa2
¢−¡βa2 − βa1

¢
=
¡
βa4 − βa3

¢−¡βa3 − βa2
¢
= ... =

³
βaA − βaA−1

´
−
³
βaA−1 − βaA−2

´
14



ii) H20 : eβa3 = eβa4 = ... = eβaA = 0 ⇔ ¡
βa2 − βa1

¢
=
¡
βa3 − βa2

¢
= ... =

³
βaA − βaA−1

´
Testing H10 enables one to see whether the change in the slope of the age effect function itself

changes over the range of ages considered, which can be considered a test of whether the age effect

function is quadratic. The corresponding test applied to time effects will also enable one to determine

whether there are any trend breaks in the time effect function. The second hypothesis, H20, goes

further, testing for linearity of the age effect. Failure to reject H20 means failing to reject that the

age effects can be replaced by a linear age term. The corresponding tests of whether all of the eαcj
or all of the eγtk are zero likewise enables one to determine whether cohort effects or time effects are
linear in the data.

Stack the estimates bβaj+1 from (14) to form the vector bB =
³bβa3 , bβa4 , ..., bβaA´0, let B =³eβa3 , eβa4 , ..., eβaA´0, and Ωa be the (A− 2)×(A− 2) covariance matrix of the√nc1 ³bβaj+1 − eβaj+1´’s,

with elements to be given shortly. Let bΩa be the consistent estimator of Ωa obtained by estimating¡
σ2ω + σ2η

¢
by 1

AT

PT
k=1

PA
j=1 varc

¡
yi,cj−k+2,aj+1,tk

¢
and δcj−k+2 by

ncj−k+2
nc1

. The Wald test of the

null hypothesis H0 : RB = r, for a known d× (A− 2) matrix R and d× 1 vector r, is then given by

its standard form:

Wnc1
= nc1

³
R bB − r´0 ³RbΩaR0´−1 ³R bB − r´

Theorem 4 under Assumptions 1 and 3, as nc1 →∞, for T fixed,

(a) Ωa has elements Ωj,h = cov
³√
nc1

³bβaj+1 − eβaj+1´ ,√nc1 ³bβah+1 − eβah+1´´,
for j, h = 2, ..., A− 1 given by

Ωj,h =



(σ2ω+σ
2
η)

(T−1)2
PT
k=2

³
2

δj−k+2
+ 2

δj−k+1

´
if h = j

−(σ2ω+σ2η)
(T−1)2

hPT−1
k=2

³
3

δcj−k+2
+ 1

δcj−k+1

´
+ 2

δcj−T+2

i
if h = j + 1

(σ2ω+σ
2
η)

(T−1)2
PT−1
k=2

1
δcj−k+2

if h = j + 2

0 otherwise

(b) under H0 : RB = r, Wnc1

d→ χ2d.

Wald tests on the cohort effects and time effects can similarly be formulated in the standard way,

and will also have the usual χ2 distribution under the null hypothesis.
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4 Identification with Normalizations

4.1 One Normalization: First Derivatives

The preceding section showed that with no restrictions on parameters, one can identify changes in the

slopes of the age, cohort, and time effect functions. Next we show that with a normalization on one

of the slopes of these effects, one can move from identifying the second derivatives of the age, cohort,

and time effect profiles to identifying the first derivatives. That is, one normalizing assumption will

enable the actual slopes of the age, cohort, and time effect functions to be identified. Generalizing

equation (8), we have for k = 1, ..., T − 1, and j = 1, ..., A− 1,

∆tycj−k+1,aj+1,tk+1 =
³
βaj+1 − βaj

´
+
³
γtk+1 − γtk

´
+∆tεcj−k+1,aj+1,tk+1 . (31)

and generalizing equation (24), for k = 1, ..., T − 1, and j = 1, ..., A− 1,

∆cycj−k+1,aj+1,tk+1 =
¡
αcj−k+1 − αcj−k

¢
+
³
βaj+1 − βaj

´
+∆cεcj−k+1,aj+1,tk+1 . (32)

From (31) and (32) it becomes clear that by normalizing any one particular slope for one effect, a

normalization can then be recovered for the slopes of the remaining two effects. The Wald tests

given above may be used to guide the normalization choice, and together with the sample context

will determine which explicit normalization the researcher has the most confidence in making. In

many economic applications, the number of time periods is relatively small, and the time effects may

be believed to vary greatly from period to period.5 In contrast, with a reasonable number of age

groups and cohorts, one may be more willing to defend an explicit normalization for one of these

effects. For example, one could make the normalization βa2 = βa1 . With a large number of age

groups, the difference in age effects between two successive ages may be relatively small, making this

assumption more credible. More generally, we make the following normalization assumption:

5On the other hand, the researcher may wish to use information from other sources, such as macroeconomic
statistics, to argue that time effects are relatively constant in a certain period. The procedure given here can be easily
adapted for the case where the normalizing assumption is on the time effects.
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Assumption 4 (Normalization of Age Effects):
³
βah+1 − βah

´
= λ for some constant λ and a

given h ∈ (1, A− 1).

With this assumption, one can then recover all remaining slopes of the age effect profile using the

estimated bβaj+1 ’s. Letting bbaj ≡ d³
βaj − βaj−1

´
denote the estimator of the slope of the age profile

between age aj−1 and aj , we recover:

bbah−s = λ−
sX

m=0

bβah−m+1
for s = 0, 1, ..., j − 2 ,

bbah+s = λ+
sX

m=2

bβah+m for s = 2, 3, ..., A− j . (33)

If the normalization made in Assumption 4 is true, then under the conditions for consistency of the

bβaj+1 given in Theorem 1, we have that bbaj p→
³
βaj − βaj−1

´
as either nc1 → ∞ or T → ∞ (or

both). Recall that bB =
³bβa3 , bβa4 , ..., bβaA´0, and so we can write bbaj = λ + m0

j
bB, where mj is a

(A− 2)× 1 vector with elements of zeros, ones, and negative ones, as given in (33). Then from the

proof of the Wald test, we have
√
nc1

³ bB −B´ d→ N (0,Ωa), and hence

√
nc1

³bbaj+s − ³βaj+s − βaj+s−1

´´
d→ N

¡
0,m0

j+sΩamj+s

¢
. (34)

Substituting
³
βah+1 − βah

´
= λ into equations (31) and (32), one then obtains the following esti-

mators of the slopes of the time and cohort effects for k = 1, .., T − 1:

g³
γtk+1 − γtk

´
= ∆tych−k+1,ah+1,tk+1 − λ ,

g¡
αch−k+1 − αch−k

¢
= ∆cych−k+1,ah+1,tk+1 − λ . (35)

Under assumptions 1, 3, and 4, as nc1 → ∞ these estimators will be consistent estimators of the

slopes of the time effect and cohort effect profiles since the error terms in (31) and (32) will both

converge in probability to zero. However, more efficient estimators than those in (35) can be obtained

by also using the estimated changes in age effects, bbaj . Substituting the bbaj into (31) and (32) and
17



rearranging gives for k = 1, ..., T − 1, and j = 1, ..., A− 1,

∆tycj−k+1,aj+1,tk+1 −bbaj+1 =
³
γtk+1 − γtk

´
+∆tεcj−k+1,aj+1,tk+1 (36)

∆cycj−k+1,aj+1,tk+1 −bbaj+1 =
¡
αcj−k+1 − αcj−k

¢
+∆cεcj−k+1,aj+1,tk+1 (37)

Let bgtk+1 ≡ d³
γtk+1 − γtk

´
and bacj = d¡

αcj − αcj−1
¢
denote the least squares estimators of

³
γtk+1 − γtk

´
and

¡
αcj − αcj−1

¢
, based on A − 1 and H1j = min (T,A− j + 1) − max (1, 3− j) + 1 cohort-level

observations respectively. This can be done for a particular k, with the remaining slopes being recov-

ered from the bγtk and bαcj through the time and cohort effect versions of equation (33). Alternatively,
(36) and (37) can be used to obtain each cohort and time slope.

Theorem 5 For the data generating process given in (1), under Assumption 4, and

(a) Assumptions 1 and 3, as nc1 →∞, bgtk+1 p→
³
γtk+1 − γtk

´
and bacj p→ ¡

αcj − αcj−1
¢
.

(b) Assumption 2, as A→∞ and T →∞ (i) , bgtk+1 p→
³
γtk+1 − γtk

´
; and (ii) bacj p→ ¡

αcj − αcj−1
¢
.

Remark:

With the normalization in Assumption 4, one can identify relative age, time and cohort effects, and

see whether such effects exist. For example, a Wald test of bbaj+1 = 0 for all j would test whether
the age effect is the same for each age group, while finding that bbaj+1 > 0 would indicate that the
age effect is greater for age group aj+1 than it is for age aj .

4.2 Identification of Actual Effects

To identify the age, cohort, and time effects themselves, rather than just their changes, additional

normalizations are required. From the basic specification in equation (5), it can be seen that normal-

izing two of the effects implicitly places a normalizing restriction on the third effect. We normalize

by setting the first time effect and the first cohort effect both equal to zero, that is:

Assumption 5 : γt1 = 0 and αc1 = 0.
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Under these normalizations, one can recover estimates of the other time effects and cohort effects

from the slope estimators bgtk+1 and bacj , namely:
γ∗tk =

kX
s=2

bgts for k = 2, ..., T ,
α∗cj =

jX
h=2

bach for j = 2, ..., A ,
α∗c−j = −

0X
h=j

bach+1 for j = 2− T, ..., 0 . (38)

Under the conditions of Theorem 5 and Assumption 5, γ∗tk will be a consistent estimator of γtk and

α∗cj a consistent estimator of αcj , where the asymptotic directions are as in Theorem 5. Substituting

these effects into (5) and rearranging gives for k = 1, ..., T , and j = 1, .., A,

ycj−k+1,aj ,tk − α∗cj−k+1 − γ∗tk = βaj + εcj−k+1,aj ,tk . (39)

Let β∗aj be the least squares estimator of βaj from (39), ie.

β∗aj =
1

T

TX
k=1

³
ycj−k+1,aj ,tk − α∗cj−k+1 − γ∗tk

´
(40)

Then β∗aj
p→ βaj as nc1 →∞ under Assumptions 1, 3, 4 and 5, and as A→∞ and T →∞, under

Assumptions 2, 3, 4 and 5.

Note that it is only meaningful to talk of positive or negative cohort, age, and time effects if

the normalizations in Assumption 5 are correct. Otherwise, all comparisons are relative to the

normalizations, and the differentials in these effects should be the primary concern. The focus in

empirical work should therefore be on changes in effects, rather than the effects themselves, unless

convincing normalizaations are available.
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5 Empirical Examples

Figure 1 graphs Mexican household consumption by two-year birth cohort against two-year age

group. The data are taken from the 1992, 1994, 1996, 1998 and 2000 Mexican ENIGH household

surveys of income and expenditure, and are described in more detail in Mckenzie (2001b). The 1995

peso crisis resulted in large drops in income and consumption between 1994 and 1996. The standard

hump-shaped age pattern can be seen, although there is a lot of noise around this, and it appears

that at a given age, younger cohorts generally consume less than older cohorts did.

Figure 1: Household Consumption by Cohort
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The top row of Figure 2 plots the estimated changes in the slopes of the age, cohort, and time effect

profiles estimated using the methods developed in this paper. There are noticeable variations in the

slopes of the age and cohort effect functions, suggesting that a quadratic in age and in cohort would

not adequately capture these effects. The Wald test statistic for testing the hypothesis that the

changes in the slope of the age profile are constant is 593.5, with 17 degrees of freedom. One thus

overwhelmingly rejects that a quadratic captures the age effects present in the data. The time effects

are easier to interpret. The slope of the time effect function has a growth effect on consumption,

and hence the second derivative essentially captures a change in growth rate. The effects of the peso

crisis are seen in a slowdown in the growth rate between 1994 and 1996, as compared to between 1992

and 1994, and are captured by the negative value of the second derivative in 1996. The subsequent
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Figure 2: Estimated Age, Cohort and Time Effects for Mexican Household Consumption
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First Derivative of Time Profile
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recovery is seen in the positive coefficients on the second derivative in 1998 and 2000.

The second derivative of the age effect function is relatively constant around age 46, and coupled

with life-cycle theory which suggests that this is a relatively stable period of life, we normalize

bysetting βa46 − βa44 = 0. With this one normalization, we arrive at the first derivatives shown in

the second row of Figure 2. Making the further normalizations that the cohort effect at age 38 is

zero, and the time effect in 2000 is zero, we arrive at the estimated profiles in the bottom row of

Figure 2. The age and cohort effects are seen to offset each other to a degree, while the large time

effects reflect well Mexico’s macroeconomic performance over the period of study.

As a second example, we examine the age effects in the variance of log consumption in Taiwan,

studied in Deaton and Paxson (1994). The data are annual data on real household consumption from

1976-96, taken from the Personal Income Distribution Surveys and described further in Mckenzie

(2001c). One year cohorts are formed based on the birth year of the household head, and all heads

aged 20-75 are considered. Approximately 300-400 heads of each age group are observed each year,

although less than 100 observations are made on average for heads aged under 22 or above 66. Figure

3 plots the second differences in age effects estimated from equation (14) for each age group, together

with an approximate 95 percent pointwise confidence interval about zero.6 The effect of smaller cell

sizes is seen in a widening of the confidence bands at very young and older age groups. Below age 55,

the second differences in age effects appear relatively equal, suggesting at most a quadratic is needed

to model age effects over this range. Furthermore, between ages 30 and 55, the second differenced

effects are insignificant from zero, suggesting linearity of the age effect profile, rather than convexity

or concavity, over this range. Above age 55, the differenced age effects appear more noisy, but we

start to see some significant second differenced effects.

Figure 4 then shows the estimated age effects under different normalizing assumptions. Deaton

and Paxson (1994) just use a set of age and cohort dummies, omitting the time effects, and normalize

the age effect at age 38 to be the actual variance of log consumption. Normalizing the slope of the

age effect function to be 0.005 at age 40 and using the second derivative estimates from Figure 3

6The confidence interval assumes normality of log consumption in order to be able to calculate the standard error
of the sample variances.
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Figure 3: Second Differenced Age Effects for the 
Variance of Taiwanese Log Consumption 
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Figure 4: Estimated Age Effects in the Variance of Taiwanese Log Consumption 

under Different Normalization Assumptions 
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is seen to give very similar results. However, if we change this normalization slightly, setting the

slope at age 40 to be zero, the estimated curve now appears much more U-shaped, with inequality

at first decreasing and then increasing. Finally, fitting a quadratic in age along with a set of cohort

dummies leads to a fairly linear upward sloping profile. The strong convexity present in Deaton and

Paxson’s estimates therefore seem to be mainly an artifact of the normalization used.

6 Adding Additional Regressors

While in some settings interest centres on the cohort, age, and time effects themselves, in other

settings the researcher merely wishes to control for these effects when examining the relationship

between yi,cj−k+1,aj ,tk and a r × 1 vector of other regressors, xi,cj−k+1,aj ,tk . That is, the question of

interest is to estimate the vector of parameters ϕ in the model:

yi,cj−k+1,aj ,tk = αcj−k+1 + βaj + γtk + x
0
i,cj−k+1,aj ,tkϕ+ εi,cj−k+1,aj ,tk . (41)

Taking cohort means in each time period, the pseudo-panel version is

ycj−k+1,aj ,tk = αcj−k+1 + βaj + γtk + x
0
cj−k+1,aj ,tkϕ+ εcj−k+1,aj ,tk . (42)

Proceeding as before, for j = 2, ..., A− 1, and k = 2, ..., T , (13) generalizes to

∆c∆tycj−k+1,aj ,tk =
eβaj+1 +∆c∆tx0cj−k+1,aj ,tkϕ+∆c∆tεcj−k+1,aj ,tk , (43)

equation (21) generalizes for j = 2, ..., A, and k = 3, ..., T , to

∆−c,t∆tycj−k+1,aj ,tk = eγtk +∆−c,t∆tx0cj−k+1,aj ,tkϕ+∆−c,t∆tεcj−k+1,aj ,tk , (44)
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and for j = 4− T, ..., A, k = 1, ..., T − 1, and 2 ≤ k + j − 1 ≤ A, (29) generalizes to

∆c,−t∆cycj−k+1,aj ,tk = eαcj +∆c,−t∆cx0cj−k+1,aj ,tkϕ+∆c,−t∆cεcj−k+1,aj ,tk . (45)

Equations (43), (44) and (45) can now either be used separately, or together, to estimate ϕ, providing

certain identifying conditions are met.

First consider estimating ϕ using just the set of equations in (43). There are (T − 1)× (A− 2)

equations to estimate the (A− 2)+r parameters
neβaj+1oA−1

j=2
and ϕ. Estimation of ϕ is only possible

if r ≤ (A− 2) (T − 2), which requires that there be at least three time periods and age groups for

any estimation to take place. The ordinary least squares estimator of ϕ from (43), bϕ, is given by
bϕ = ϕ+ F

−1
G

where F =
A−1X
j=2

1

T − 1
TX
k=2

∆c∆txcj−k+1,aj ,tk∆c∆tx
0
cj−k+1,aj ,tk

−
A−1X
j=2

Ã
1

T − 1
TX
k=2

∆c∆txcj−k+1,aj ,tk

!Ã
1

T − 1
TX
k=2

∆c∆tx
0
cj−k+1,aj ,tk

!

and G =
A−1X
j=2

1

T − 1
TX
k=2

∆c∆tεcj−k+1,aj ,tk∆c∆txcj−k+1,aj ,tk

−
A−1X
j=2

Ã
1

T − 1
TX
k=2

∆c∆tεcj−k+1,aj ,tk

!Ã
1

T − 1
TX
k=2

∆c∆txcj−k+1,aj ,tk

!
. (46)

Consistency of bϕ requires the following assumption:
Assumption 6 Either

(a) xi,cj−k+1,aj ,tk = xcj−k+1,aj ,tk + ξi,cj−k+1,aj ,tk , where ξi,cj−k+1,aj ,tk ∼ i.i.d. (0,Σξ), xcj−k+1,aj ,tk ,

ξi,cj−k+1,aj ,tk and ηi,cj−k+1,aj ,tk are independent of one another, and F1 is of full rank r, where

F1 =
A−1X
j=2

1

T − 1
TX
k=2

∆c∆txcj−k+1,aj ,tk∆c∆tx
0
cj−k+1,aj ,tk

−
A−1X
j=2

Ã
1

T − 1
TX
k=2

∆c∆txcj−k+1,aj ,tk

!Ã
1

T − 1
TX
k=2

∆c∆tx
0
cj−k+1,aj ,tk

!
, (47)
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or

(b) xi,cj−k+1,aj ,tk = xcj−k+1,aj ,tk + ζcj−k+1,aj ,tk + ξi,cj−k+1,aj ,tk where ζcj−k+1,aj ,tk ∼ i.i.d. (0,Σζ),

ξi,cj−k+1,aj ,tk ∼ i.i.d. (0,Σξ), xcj−k+1,aj ,tk , ζcj−k+1,aj ,tk , ξi,cj−k+1,aj ,tk , νcj−k+1,aj ,tk and ηi,cj−k+1,aj ,tk
are independent of one another; for all i, j, k, E

¡
xi,cj−k+1,aj ,tkωi,cj−k+1

¢
<∞,

lim
T→∞

1

T − 1
TX
k=2

∆c∆txcj−k+1,aj ,tk ≡ Et
¡
∆c∆txcj−k+1,aj ,tk

¢
<∞, and

lim
T→∞

1

T − 1
TX
k=2

∆c∆txcj−k+1,aj ,tk∆c∆tx
0
cj−k+1,aj ,tk ≡ Et

³
∆c∆txcj−k+1,aj ,tk∆c∆tx

0
cj−k+1,aj ,tk

´
<∞ ;

and

F2 ≡
A−1X
j=2

³
Et

³
∆c∆txcj−k+1,aj ,tk∆c∆tx

0
cj−k+1,aj ,tk

´
−Et

¡
∆c∆txcj−k+1,aj ,tk

¢
Et

³
∆c∆tx

0
cj−k+1,aj ,tk

´´
+ 4 (A− 2)

µ
Σζ +

Σξ
nc1

¶
is of full rank r .

Note that we do not require that E
¡
xi,cj−k+1,aj ,tkωi,cj−k+1

¢
= 0, so that we allow for the possibility

that individual-specific effects are correlated with some of the included regressor variables. We now

have:

Theorem 6 For the data generating process given in (41),

(a) under Assumptions 1, 3, and 6(a), as nc1 →∞, for T fixed, bϕ p→ ϕ.

(b) under Assumptions 2, 3, and 6(b), as T →∞, for nc1 fixed, bϕ p→ ϕ.

Remarks:

(a) A necessary condition to identify ϕ is that ∆c∆t
¡
xcj−k+1,aj ,tk

¢
p
6= 0 for some j and k and

each p = 1, 2, ..., r, where
¡
xcj−k+1,aj ,tk

¢
p
denotes the pth column of xcj−k+1,aj ,tk . That is, each

of the variables in x must exhibit variation both over cohorts and across time. Intuitively,

if one wishes to ascertain the impact of x on y, controlling for cohort, age, and time effects,
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then x must not be colinear with these effects. This rules out aggregate variables such as

macroeconomic effects, and also time-invariant variables such as sex and race.7 Note that

such variables are implicitly being controlled for, but one can not consistently estimate their

coefficients together with cohort and time effects.

(b) Note that the changes in the slopes of the age effect function, the eβaj+1 ’s, can also be consis-
tently estimated along with ϕ. In a similar manner, ϕ could be also estimated using either

(44) or (45) separately, enabling the changes in the slopes of the cohort effect and time ef-

fect functions to also be estimated. The parameter estimators α∗cj−k+1 , β
∗
aj , and γ∗tk can then

be recovered using the normalizing assumptions 4 and 5, as was done for the model without

additional regressors.

(c) Under these normalizing assumptions, it is possible to obtain consistent estimates of coefficients

on time-invariant and cohort-invariant (aggregate) variables. For example, consider adding the

time-invariant term Z0i,cj−k+1ρ to (41). Then ρ can be estimated using the regression:

ycj−k+1,aj ,tk − α∗cj−k+1 − β∗aj − γ∗tk − x0cj−k+1,aj ,tkbϕ = Z 0cj−k+1ρ+ υcj−k+1,aj ,tk . (48)

The least squares estimator of ρ from (48) will be consistent as nc1 → ∞ under the nor-

malization assumptions. For fixed nc1 , least squares will not be consistent as T → ∞ if

E
¡
Zi,cj−k+1ωi,cj−k+1

¢ 6= 0. The approach of Hausman and Taylor (1981) could then be used
to obtain consistent estimates if there are sufficient columns of x0cj−k+1,aj ,tk which are uncor-

related with ωcj−k+1 , and can thus be used as an instrument for Z
0
cj−k+1 .

Stacking the equations in (43) with those in (44) and (45), one can potentially achieve greater

efficiency using all equations together. Let eY be the vector consisting of stacked ∆c∆tycj−k+1,aj ,tk ’s,
∆−c,t∆tycj−k+1,aj ,tk ’s and ∆c,−t∆cycj−k+1,aj ,tk ’s; Θ the vector of stacked parameters

neβaj+1oA−1
j=2

,

7Note that while the sex or race composition of a birth cohort may change over time, due to non-random mortality
for example, such changes mean that we are not comparing the same group of individuals from one period to the next,
and hence are generally a cause for concern rather than a means of identifying the effects of time-invariant individual
level variables.
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©eγtkªTk=3, ©eαcjªAj=4−T and ϕ; and eX and ² the corresponding matrix of stacked regressors and vector

of stacked errors respectively. Letting bΘ = ³ eX 0 eX´−1 eX 0 eY be the least squares estimator from this

stacked regression, it should be clear that under Assumptions 1 and 3, as nc1 → ∞, for T fixed,
bΘ p→ Θ, provided that the identification condition that lim

nc1→∞
eX 0 eX is of full rank 2 (A+ T ) + r− 8

holds.

7 Genuine Panel Data

The methods presented in this paper can easily be applied with only a few modifications to the

genuine panel data case. The panel data version of (13) for j = 2, ..., A − 1, k = 2, ..., T , and

i = 1, ..., ncj−k+2 , is

∆c∆tyi,cj−k+2,aj+1,tk =
eβaj+1 +∆c∆tεi,cj−k+2,aj+1,tk , (49)

where ∆c∆tyi,cj−k+2,aj+1,tk = ∆tyi,cj−k+2,aj+1,tk −∆tyi,cj−k+1,aj ,tk . Letting Nj =
PT
k=2 ncj−k+2 be

the total number of observations available for estimating eβaj+1 , it is straightforward to show thatbβaj+1 = 1
N

PT
k=2

Pncj−k+2
i=1 ∆c∆tyi,cj−k+2,aj+1,tk

p→ eβaj+1as Nj → ∞ under Assumption 1, and as

T →∞ under Assumption 2. Likewise, one can show that as Nj →∞, under Assumption 1,

p
Nj

³bβaj+1 − eβaj+1´ d→ N
¡
0, 4σ2η

¢
. (50)

One can hence consistently estimate the second differences of the age effects with genuine panel data.

Note that with genuine panel data,∆c∆tωi,cj−k+1 = 0, and hence the individual effects are eliminated

by the differencing process and therefore their variance does not appear in the limiting distribution

of the standardized estimator. This contrasts with the pseudo-panel case, where ∆c∆tωcj−k+1 6= 0

due to a different sample of individuals being taken each period from a given cohort. Wald tests can

again be used on the bβaj+1 to test whether they all equal (the age profile is quadratic) or all equal
to zero (linear age profile).
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Similarly, for the time effects, we have bγtk = 1
Dk

PA
j=2

Pncj−k+2
i=1 ∆−c,t∆tyi,cj−k+1,aj ,tk

p→ eγtk
as Dk =

PA
j=2 ncj−k+2 → ∞ under Assumption 1. That is identification of second differenced

time effects requires the number of observations in a given time period to pass to infinity. For the

second differenced cohort effects, bαcj = 1
Fj

Pmin(A−j+1,T−1)
k=max(3−j,1)

Pncj−k+2
i=1 ∆c,−t∆cyi,cj ,ak+j−1,tk

p→ eαcj
as Fj =

Pmin(A−j+1,T−1)
k=max(3−j,1) ncj−k+2 → ∞ under Assumption 1. Normalization assumptions can then

be further imposed in the same way as was done for the pseudo-panel data. The more general model

in (41) can also be estimated with panel data by applying the techniques given in the previous

section.

8 Conclusions

Our analysis shows that the linear dependence of age, cohort and time effects does not prevent the

estimation of meaningful linear combinations of these effects without the need to impose further

normalizing restrictions. Estimation of what is effectively the second derivative of each of the age,

cohort, and time effect profiles provides some information about their shapes, clearly identifies

trend breaks, and enables testing of quadratic and linear specifications to be done with respect to

a very general alternative. We have also provided minimal normalizing assumptions, and shown

that normalizing one of the effects imposes explicit normalization restrictions on the other effects.

Estimation of more general models which include other regressors is possible without the need to

make these normalizations. It is hoped that the methods provided will be of use in the wide variety

of empirical applications in which age, cohort and time effects potentially figure.
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9 Mathematical Proofs

9.1 Proof of Theorem 1

Proof. To prove part (a), recall that under Assumption 1,

εcj−k+2,aj+1,tk =
1

ncj−k+2

ncj−k+2X
i=1

εi(tk),cj−k+2,aj+1,tk

=
1

ncj−k+2

ncj−k+2X
i=1

ωi(tk),cj−k+2 +
1

ncj−k+2

ncj−k+2X
i=1

ηi(tk),cj−k+2,aj+1,tk

Now as nc1 → ∞, under Assumption 3 ncj−k+2 → ∞, and then the Weak Law of Large Numbers

(WLLN) for i.i.d. random variables gives that 1
ncj−k+2

Pncj−k+2
i=1 ωi(tk),cj−k+2

p→ E (ωi) = 0 and

1
ncj−k+2

Pncj−k+2
i=1 ηi(tk),cj−k+2,aj+1,tk

p→ E
³
ηi,cj−k+2,aj+1,tk

´
= 0. Hence as ncj−k+2 →∞,

∆c∆tεcj−k+2,aj+1,tk = εcj−k+2,aj+1,tk − εcj−k+2,aj ,tk−1 − εcj−k+1,aj ,tk + εcj−k+1,aj−1,tk−1
p→ 0

and thus bβaj+1 = eβaj+1 + 1
T−1

PT
k=2∆c∆tεcj−k+2,aj+1,tk

p→ eβaj+1 .
To prove (b), note that under Assumption 2,

1

T − 1
TX
k=2

εcj−k+2,aj+1,tk =
1

ncj−k+2

ncj−k+2X
i=1

1

T − 1
TX
k=2

ωi(tk),cj−k+2

+
1

ncj−k+2

ncj−k+2X
i=1

1

T − 1
TX
k=2

νcj−k+2,aj+1,tk +
1

ncj−k+2

ncj−k+2X
i=1

1

T − 1
TX
k=2

ηi(tk),cj−k+2,aj+1,tk . (51)

As T →∞, 1
T−1

PT
k=2 νcj−k+2,aj+1,tk

p→ Et
¡
νcj−k+2,aj+1,tk

¢
= 0 where Et (.) denotes an expectation

over time, and likewise 1
T−1

PT
k=2 ηi(tk),cj−k+2,aj+1,tk

p→ 0, both by the WLLN under Assumption

2. Also, as different individuals are observed each period, 1
T−1

PT
k=2 ωi(tk),cj−k+2

p→ 0 as T → ∞.

Hence from (51), 1
T−1

PT
k=2 εcj−k+2,aj+1,tk

p→ 0 as T →∞ for all j, and thus
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bβaj+1 = eβaj+1 + 1

T − 1
TX
k=2

εcj−k+2,aj+1,tk −
1

T − 1
TX
k=2

εcj−k+2,aj ,tk−1

− 1

T − 1
TX
k=2

εcj−k+1,aj ,tk +
1

T − 1
TX
k=2

εcj−k+1,aj−1,tk−1

p→ eβaj+1 + 0 .
Parts (i) and (ii) of (c) follow immediately from (a) and (b). To show (iii), note that the first and

third terms of (51) converge in probability to zero as nc1 → ∞, as per the proof of part (a). The

middle term under Assumption 2 is

1

T − 1
TX
k=2

1

ncj−k+2

ncj−k+2X
i=1

νcj−k+2,aj+1,tk =
1

T − 1
TX
k=2

νcj−k+2,aj+1,tk ,

which does not converge in probability to zero as nc1 →∞ for T fixed. However, as (nc1 , T →∞)seq,
1

T−1
PT
k=2 νcj−k+2,aj+1,tk

p→ Et
¡
νcj−k+2,aj+1,tk

¢
= 0, as per part (b), and hence one obtains that

1
T−1

PT
k=2∆c∆tεcj−k+2,aj+1,tk

p→ 0 in sequential limit as (nc1 , T →∞)seq .

To show (d), note that as different individuals are sampled each period, ωi(tk),cj−k+2 and ωi(ts),cj−k+2

are independent under Assumption 1 for all s 6= k, and so each εi(tk),cj−k+2,aj+1,tk is i.i.d.
¡
0,σ2ω + σ2η

¢
.

By the Lindeberg-Levy Central Limit Theorem,

√
nc1εcj−k+2,aj+1,tk =

r
nc1

ncj−k+2

1√
ncj−k+2

ncj−k+2X
i=1

εi(tk),cj−k+2,aj+1,tk
d→
s

1

δj−k+2
N
¡
0,σ2ω + σ2η

¢
,

and similarly
√
nc1∆c∆tεcj−k+2,aj+1,tk

d→ N
³
0,
¡
σ2ω + σ2η

¢ ³
2

δj−k+2
+ 2

δj−k+1

´´
. The convergence of

1
T−1

PT
k=2

√
nc1∆c∆tεcj−k+2,aj+1,tk follows under the independence assumptions. All age, cohort and

time effects in (1) are constant when we consider only individuals in the same cohort in a given time

period, and so taking cross-sectional variances, we have varc
¡
yi,cj−k+1,aj ,tk

¢
= varc

¡
εi,cj−k+1,aj ,tk

¢
=

σ2ω+σ
2
η. Convergence of the sample cross-sectional variance to the population cross-sectional variance

follows from the assumption of existence of fourth moments made in Assumption 1.
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Part (e) follows from (a), as ∆c∆tycj−k+2,aj+1,tk − bβaj+1 p→ 0, and hence

1

T − 2
TX
k=2

³
∆c∆tycj−k+2,aj+1,tk − bβaj+1´2 p→ 0.

9.2 Proof of Theorem 2

Proof. The proof of part (a) follows from the proof of part (a) of Theorem 1 as each εcj−k+1,aj ,tk
p→ 0

as nc1 →∞. To prove part (b), note that

1

A− 1
AX
j=2

εcj−k+1,aj ,tk =
1

A− 1
AX
j=2

1

ncj−k+1

ncj−k+1X
i=1

ωi(tk),cj−k+1

+
1

A− 1
AX
j=2

1

ncj−k+1

ncj−k+1X
i=1

νcj−k+1,aj ,tk +
1

A− 1
AX
j=2

1

ncj−k+1

ncj−k+1X
i=1

ηi(tk),cj−k+1,aj ,tk . (52)

Now the
n

1
ncj−k+1

Pncj−k+1
i=1 ωi(tk),cj−k+1

oA
j=2

are i.n.i.d. random variables with expectation zero and

finite variance under Assumption 2. Hence by the WLLN for i.n.i.d. random variables, as A→∞,
1

A−1
PA

j=2

³
1

ncj−k+1

Pncj−k+1
i=1 ωi(tk),cj−k+1

´
p→ E

³
1

ncj−k+1

Pncj−k+1
i=1 ωi(tk),cj−k+1

´
= 0. Likewise the

second and third terms of (52) are also sample means of random variables with expectation zero,

and hence converge in probability to zero as A → ∞. Thus 1
A−1

PA
j=2 εcj−k+1,aj ,tk

p→ 0 for all k,

giving the result. Part (c) follows immediately from parts (a) and (b), and from the proof of part

(c) of Theorem 1. Part (d) follows the proof of part (d) of Theorem 1.

9.3 Proof of Theorem 3

Proof. Again the proof of (a) follows from the proof of part (a) of Theorem 1 as each εcj ,ak+j−1,tk
p→ 0

as nc1 →∞. To prove part (b), write

1

Hj

min(A−j+1,T−1)X
k=max(3−j,1)

εcj ,ak+j−1,tk =
1

Hj

min(A−j+1,T−1)X
k=max(3−j,1)

1

ncj

ncjX
i=1

εi(tk),cj ,ak+j−1,tk , (53)
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and note that as A → ∞ and T → ∞, Hj → ∞. Then following the proof of part (b) of Theorem

2, one can show that the right-hand side of (53) converges in probability to zero as Hj →∞, giving

the required result. Parts (c) and (d) follow immediately from the proofs of part (c) and (d) of

Theorem 1.

9.4 Proof of Theorem 4

Proof. Theorem 1 gives that bβaj+1 p→ eβaj+1 as nc1 → ∞ for all j and thus that bB p→ B,

√
nc1

³bβaj+1 − eβaj+1´ d→ N (0, σj+1), and bσj+1 p→ σj+1. To determine the limiting covariance

matrix, we need to evaluate the off-diagonal entries of Ωa. For h 6= j, h = 2, ..., A− 1 we therefore

wish to evaluate

E
³√
nc1

³bβaj+1 − eβaj+1´√nc1 ³bβah+1 − eβah+1´´
= E

Ã
nc1

1

T − 1
TX
k=2

∆c∆tεcj−k+2,aj+1,tk
1

T − 1
TX
s=2

∆c∆tεch−s+2,ah+1,ts

!
. (54)

Recall that

∆c∆tεcj−k+2,aj+1,tk = εcj−k+2,aj+1,tk − εcj−k+2,aj ,tk−1 − εcj−k+1,aj ,tk + εcj−k+1,aj−1,tk−1 . (55)

Under the i.i.d. assumptions made in Assumption 1, it is easily seen that

E
¡
εcj−k+2,aj+1,tkεch−s+2,ah+1,ts

¢
= 0 for all (h, s) 6= (j, k) . (56)

From (55) we have that

E
¡
∆c∆tεcj−k+2,aj+1,tk∆c∆tεch−s+2,ah+1,ts

¢
= E

¡¡
εcj−k+2,aj+1,tk − εcj−k+2,aj ,tk−1 − εcj−k+1,aj ,tk + εcj−k+1,aj−1,tk−1

¢
∆c∆tεch−s+2,ah+1,ts

¢
.(57)
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Expanding out the first element of (57) and using (56) gives

E
¡
εcj−k+2,aj+1,tk∆c∆tεch−s+2,ah+1,ts

¢
= E

¡
εcj−k+2,aj+1,tk

¡
εch−s+2,ah+1,ts − εch−s+2,ah,ts−1 − εch−s+1,ah,ts + εch−s+1,ah−1,ts−1

¢¢

=



−E ¡εcj−k+2,aj+1,tkεch−s+2,ah,ts−1¢ = −(σ2ω+σ2η)ncj−k+2
if (h, s) = (j + 1, k + 1)

−E ¡εcj−k+2,aj+1,tkεch−s+1,ah,ts¢ = −(σ2ω+σ2η)ncj−k+2
if (h, s) = (j + 1, k)

E
¡
εcj−k+2,aj+1,tkεch−s+1,ah−1,ts−1

¢
=
(σ2ω+σ2η)
ncj−k+2

if (h, s) = (j + 2, k + 1)

0 otherwise

(58)

Expanding out the other elements of (57) and combining their results with (58) then gives:

E
¡
∆c∆tεcj−k+2,aj+1,tk∆c∆tεch−s+2,ah+1,ts

¢

=



(σ2ω+σ2η)
ncj−k+2

if (h, s) = (j + 2, k + 1)

− ¡σ2ω + σ2η
¢ ³

1
ncj−k+2

+ 1
ncj−k+1

´
if (h, s) = (j + 1, k + 1)

− ¡σ2ω + σ2η
¢

2
ncj−k+2

if (h, s) = (j + 1, k)

− ¡σ2ω + σ2η
¢

2
ncj−k+1

if (h, s) = (j − 1, k)

− ¡σ2ω + σ2η
¢ ³

1
ncj−k+2

+ 1
ncj−k+1

´
if (h, s) = (j − 1, k − 1)

(σ2ω+σ
2
η)

ncj−k+1
if (h, s) = (j − 2, k − 1)

0 otherwise

(59)

From (58) it follows that

E

Ã
∆c∆tεcj−k+2,aj+1,tk

TX
s=2

∆c∆tεch−s+2,ah+1,ts

!
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=



(σ2ω+σ2η)
ncj−k+2

if h = j + 2, k ≤ T − 1

− ¡σ2ω + σ2η
¢ ³

3
ncj−k+2

+ 1
ncj−k+1

´
if h = j + 1, k ≤ T − 1

− ¡σ2ω + σ2η
¢

2
ncj−k+2

if h = j + 1, k = T

− ¡σ2ω + σ2η
¢

2
ncj−k+1

if h = j − 1, k = 2

− ¡σ2ω + σ2η
¢ ³

1
ncj−k+2

+ 3
ncj−k+1

´
if h = j − 1, k ≥ 3

(σ2ω+σ
2
η)

ncj−k+1
if h = j − 2, k ≥ 3

0 otherwise

(60)

and hence that

E

Ã
TX
k=2

∆c∆tεcj−k+2,aj+1,tk

TX
s=2

∆c∆tεch−s+2,ah+1,ts

!

=



PT−1
k=2

(σ2ω+σ2η)
ncj−k+2

if h = j + 2

− ¡σ2ω + σ2η
¢ hPT−1

k=2

³
3

ncj−k+2
+ 1

ncj−k+1

´
+ 2

ncj−T+2

i
if h = j + 1

0 otherwise

(61)

Using Assumption 3 and (61), we therefore have that as nc1 →∞,

E

Ã
nc1

1

T − 1
TX
k=2

∆c∆tεcj−k+2,aj+1,tk
1

T − 1
TX
s=2

∆c∆tεch−s+2,ah+1,ts

!

p→



1
(T−1)2

PT−1
k=2

(σ2ω+σ2η)
δcj−k+2

if h = j + 2

−(σ2ω+σ2η)
(T−1)2

hPT−1
k=2

³
3

δcj−k+2
+ 1

δcj−k+1

´
+ 2

δcj−T+2

i
if h = j + 1

0 otherwise

(62)

9.5 Proof of Theorem 5

Proof. Part (a) follows from the consistency of bbaj+1 as nc1 →∞ and the fact that εcj−k+1,aj ,tk
p→ 0

as nc1 →∞. To prove (i) of part (b), note that:
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bgtk+1 =
1

A− 1
A−1X
j=1

³
∆tycj−k+1,aj+1,tk+1 −bbaj+1´

=
³
γtk+1 − γtk

´
+

1

A− 1
A−1X
j=1

∆tεcj−k+1,aj+1,tk+1 +
1

A− 1
A−1X
j=1

³
baj+1 −bbaj+1´

Convergence in probability to zero of the second term as A →∞ is shown in the proof part (b) of

Theorem 2. Also, as A→∞, baj+1 p→ bbaj+1 by part (b) of Theorem 1.and Assumption 4.Part (ii) of

(b) likewise follows from Assumption 4, Theorem 1 and the proof of Theorem 3 as H1j →∞.

9.6 Proof of Theorem 6

Proof. To prove (a), note that under the given Assumptions, εcj−k+1,aj ,tk
p→ 0 as nc1 → ∞ for T

fixed as per the proof of Theorem 1, and similarly xcj−k+1,aj ,tk
p→ xcj−k+1,aj ,tk . Hence G

p→ 0 as

nc1 → ∞ for T fixed. Also, as xcj−k+1,aj ,tk
p→ xcj−k+1,aj ,tk , F

p→ F1, a non-singular matrix. Thus

bϕ p→ ϕ as required.

For (b), note first that 1
T−1

PT
k=2∆c∆tεcj−k+1,aj ,tk

p→ 0 by the WLLN as T →∞ for nc1 fixed,

and 1
T−1

PT
k=2∆c∆txcj−k+1,aj ,tk

p→ Et
¡
∆c∆txcj−k+1,aj ,tk

¢
< ∞ by Assumption 6(b). Secondly,

write

A−1X
j=2

1

T − 1
TX
k=2

∆c∆tεcj−k+1,aj ,tk∆c∆txcj−k+1,aj ,tk =
A−1X
j=2

1

T − 1
TX
k=2

∆c∆tωcj−k+1∆c∆txcj−k+1,aj ,tk

+
A−1X
j=2

1

T − 1
TX
k=2

∆c∆tνcj−k+1,aj ,tk∆c∆txcj−k+1,aj ,tk +
A−1X
j=2

1

T − 1
TX
k=2

∆c∆tηcj−k+1,aj ,tk∆c∆txcj−k+1,aj ,tk .

(63)

The second and third terms converge in probability to zero as T → ∞ by the independence of
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νcj−k+1,aj ,tk and ηi,cj−k+1,aj ,tk from xi,cj−k+1,aj ,tk . Now write

1

T − 1
TX
k=2

∆c∆tωcj−k+1∆c∆txcj−k+1,aj ,tk

=

Ã
1

T − 1
TX
k=2

ωcj−k+1∆c∆txcj−k+1,aj ,tk −
1

T − 1
TX
k=2

ωcj−k+1∆c∆txcj−k+1,aj−1,tk−1

!

−
Ã

1

T − 1
TX
k=2

ωcj−k∆c∆txcj−k,aj−1,tk −
1

T − 1
TX
k=2

ωcj−k∆c∆txcj−k,aj−2,tk−1

!
p→ ¡
Et
¡
ωcj−k+1∆c∆txcj−k+1,aj ,tk

¢−Et ¡ωcj−k+1∆c∆txcj−k+1,aj−1,tk−1¢¢
− ¡Et ¡ωcj−k∆c∆txcj−k,aj−1,tk¢−Et ¡ωcj−k∆c∆txcj−k,aj−2,tk−1¢¢ = 0 ,

where Et
¡
ωcj−k+1∆c∆txcj−k+1,aj ,tk

¢
= Et

¡
ωcj−k+1∆c∆txcj−k+1,aj−1,tk−1

¢
< ∞, since under As-

sumption 6 (b) E
¡
xi,cj−k+1,aj ,tkωi,cj−k+1

¢
<∞ . Hence G

p→ 0 as T →∞. Also, under Assumption

6 (b), one can show that as T →∞

1

T − 1
TX
k=2

∆c∆txcj−k+1,aj ,tk∆c∆tx
0
cj−k+1,aj ,tk =

1

T − 1
TX
k=2

∆c∆txcj−k+1,aj ,tk∆c∆tx
0
cj−k+1,aj ,tk

+
1

T − 1
TX
k=2

∆c∆tζcj−k+1,aj ,tk∆c∆tζ
0
cj−k+1,aj ,tk +

1

T − 1
TX
k=2

∆c∆tξcj−k+1,aj ,tk∆c∆tξ
0
cj−k+1,aj ,tk + op (1)

p→ Et

³
∆c∆txcj−k+1,aj ,tk∆c∆tx

0
cj−k+1,aj ,tk

´
+ 4Σζ +

4

nc1
Σξ .

We therefore have that F
p→ F2, a full rank matrix as T →∞ under Assumption 6 (b), and hence

bϕ p→ ϕ.
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