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Abstract

In developing countries, traditional social obligations often press rich individ-
uals to share their income. In this paper, we posit a “model of social pressure”
in which people can sign binding financial agreements among them. These agree-
ments may help to escape social obligations. It turns out that an anonymous and
efficient agreement corresponds to one of the most developed and puzzling finan-
cial institution in developing countries: Rotating savings and credit associations
(Roscas).

1 Introduction

Rotating savings and credit associations (Roscas) are the most developed informal fi-

nancial institutions in developing countries, particularly in Africa and Asia. The basic

principle of Roscas is almost the same everywhere. A group of people gather for a series

of meetings. At each meeting, everybody contributes to a common pot. The pot is given

to one member of the group. This member is then excluded from receiving the pot in
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future meetings, while still contributing to the pot. This process is repeated until every

member receives the pot. Afterwards, the Rosca is disbanded or begin another cycle.

Roscas are very specific types of agreements. They drive a huge part of savings

in countries where formal financial institutions do not exist.1 They thus respond in

some way to the needs of the population living in these countries. Given the long-

standing and worldwide prevalence of Roscas, our presumption is that these agreements

should probably resemble to the best agreement that people can design within their

economic environment and social context. Yet, so far, such a presumption has never

been examined. Besley, Coate and Loury (1994) have shown that a random Rosca is

sometimes better than organizing a credit market. But they agree that Roscas are in

general inefficient, meaning that there exists another financial agreement that strictly

Pareto dominates Roscas. So why people do not agree on it? The contribution of this

paper is to put forward a ”model of social pressure” in which a Rosca is the best financial

agreement on which people can agree on.

The literature distinguishes in general three different types of Roscas, depending on

how the pot is allocated. The pot may be allocated randomly (random Roscas), through

a bidding process (bidding Roscas) or according to pre-determined order (deterministic

Roscas). In the latter case, while the original allocation order might have been chosen

randomly, the order of the winners is repeated throughout the cycles.

The literature has then identified two main justifications for the existence of Roscas.

First, Roscas are often presented as a substitute to insurance, particularly in developing

countries where markets for insurance do not exist. Yet, this interpretation applies

for bidding Roscas but not for random or deterministic Roscas in which the allocation

process does respond to some individual specific shocks.2 Moreover, people that group

together in a Rosca generally belong to the same village and have similar occupations

and revenues. This is not really compatible with risk-sharing activities.

Second, Roscas may facilitate the purchase of lumpy durable goods, such as a house

or the financing of a wedding. In their seminal contribution, Besley, Coate and Loury

(1993) show that, on average, Roscas allow individuals to receive the pot earlier. As

a result, individuals can buy the good sooner in their lifetime by participating to the

Rosca rather than by accumulating private savings. This interpretation applies for

1For example, Roscas drive one-half of national savings in Cameroon (Anderson and Baland, 2000)
2A Rosca is often inflexible in the sense that it is not easy for an individual to change his position. In

a survey on Kenyan (deterministic) Roscas, Gugerty (2000) pointed out that only 2% of Rosca members
did exchange place with another participant.
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random Roscas but not for deterministic Roscas whereby, at least after one full cycle,

there is no randomness in receiving the pot. Indeed, the member who receives the pot

last could do as well by privately accumulating savings, while not suffering from the lack

of flexibility in its allocation. This member is thus in general worse-off. By backwards

induction, the Rosca breaks down.

Yet, two pieces of work have recently provided additional rationale for the durable

goods explanation. The first one, Anderson and Baland (2000), relies on intra-household

conflicts in consumption decisions. Participation in a Rosca is a strategy a wife employs

to protect against husbands’ tendencies to splurge. Rosca is thus a commitment device

that will permit the household to purchase the durable good. Their model relies on the

assumption that the wife has control over the household revenue during the first period,

but not in subsequent periods.

Second , Gugerty (2000) relies on intra-personal time-inconsistency. Using a simple

illustrative example, she shows, as in Anderson and Baland (2000), that participating to

a Rosca helps individuals to commit to the purchase of the durable good. Interestingly

though, Gugerty (2000) recognized in the same paper that, in Western Kenya, Rosca

participants generally use the pot for various purposes, not necessarily for the purchase

of a single durable good. She finds that “over half of Roscas participants use their Rosca

winning for more than one purpose, and one fifth use their winning for more than two

purposes”. And, in conformity with that observation, most of the survey participants

say that they would not necessarily prefer to receive the pot sooner than later. This

cast some doubt on the durable good’s explanation.

In this paper, we take another path with respect to the existing literature. First, our

explanation does not rely on the purchase of a durable good. Second, we do not simply

show that people are better-off if they save in a Rosca rather than at home. We compare

revenues from Roscas to revenues from any other kind of financial agreements that can

be designed among a group of people. More precisely, we allow for any random transfers

performed among agents. People choose a finite set of states of natures, a probability

distribution on this set and transfer schemes performed in each state, providing that

they are budget balanced state-by-state. We then show that random and deterministic

Roscas (with a random first round) are efficient financial arrangements.

Our result relies on two assumptions. First, there exists social obligations asking

for income sharing. Rich people are pressed to spread part of their revenue within

their community. This amount can be viewed as “informal tax” that finances wealth

redistribution, social insurance or public goods. In developing countries, due to market
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failures and the lack of efficient public institutions, most of these activities are performed

informally by the community. By informal, we mean that no court can legally force in-

dividuals to pay the tax. It is therefore collectively enforced through peer-pressure so

that people derive a social gratification from fulfilling this social obligation or undergo

a social sanction from not doing so. Documented evidences of such sharing obliga-

tions in developing countries can be found in the anthropological literature (e.g. Scott,

1976, James, 1979, Parkin, 1972,) as well as in economics (e.g. Fafchamps, 1992, 1995

Platteau, 2000,).

The second assumption is that the social gratification or sanction has no ”economic

value” per se. As such, gratification or sanction can be viewed as an emotion. Individuals

would ideally prefer not to give, but at the time they face some social pressure, they feel

guilty if they do not respond to social demands from relatives. They enjoy acknowledges,

tokens of affections when they do so. Our approach for modelling such emotions is related

to present-biased preferences (Akerlof, 1991, O’Donogue and Rabin, 1999). It thus relies

on time-inconsistency, as in Gugerty (2000) or Anderson and Baland (2000). Yet, the

source of time-inconsistency is different in our model. It is not due to an intra-household

conflicts nor to an intrapersonal conflict but to social pressures. Individuals cannot resist

to day-to-day social pressure. Yet, they are willing to find a device to restrain future

over-spending in social obligations. A Rosca then provides the individual with such a

commitment technology. In Platteau’s words (page 231): “[Roscas] provide a socially

accepted alibi to protect people’s saving against all sorts of social pressures”.

2 The model of social pressure

Consider an economy populated by a large number3 of identical agents. An individual

lives for several periods indexed by t. In each period, he earns a revenue y but he is

asked to contribute an amount m to the community. The contribution is indivisible:

We assume the ”informal tax” is bounded downward.4

3By large we mean that agent’s choices are never restricted by the size of the population.
4The idea is that people have expectations about how much any individual should give to the com-

munity. Social pressure is exerted as long as the amount paid is less than the expected contribution. In
practice, a large part of these contributions are paid during social and ritual events through traditional
gifts (e.g. Parkin, 1972,). People have no choice but offer (at least) the customary gift or nothing.
For instance, in West Africa, during the traditional muslim feast called “Tabaski”, each adult male,
head of a household, is supposed to sacrifice a sheep and share the meat with relatives, neighbors and
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For any individual, giving m to the community provides him with a nonpecuniary

social gratification δ > 0. The individual gets no gratification (δ = 0) if he gives less

than m; and no extra gratification if he gives more than m. If utility of pure consumption

is denoted u(.), we get that it is optimal for the individual to spend m if and only if5

u(y −m) + δ > u(y). (1)

We assume that u(.) is increasing and concave. In words, this means that poorer people

attach relatively less value to social gratification with respect to immediate consumption.

Let y be high enough so that 1 holds.

Importantly, we assume that preferences are present-biased (Akerlof, 1991) and that

the individuals are sophisticated (O’Donogue and Rabin, 1999). Formally, this means

that, from an ex ante point of view, δ has no value. Hence, it will never be optimal to

spend money in period t since

u(y −m) < u(y). (2)

However the individual anticipates that, when arriving in period t, inequality 1 will

apply and it will turn out to be optimal to spend money m. This is the standard time-

inconsistency process. In other words, the individual cannot resist to day-to-day social

pressure. Yet, he knows it and want to able to resist to it.

Note that there exists a unique revenue y that makes an agent indifferent between

fulfilling his social obligation or not:

u(y −m) + δ = u(y). (3)

Clearly, y exists and is unique because the marginal gain of renouncing to δ, u(y) −
u(y −m), is decreasing with y. To summarize, for any y ∈ R+, one can define an agent

ex ante utility by:

v(y) =

{
u(y −m) if y > y

u(y) if y ≤ y
. (4)

This function is drawn in thick line in Figure 1 below.

poor members of the community. The individual derives social gratification from killing the “bigger
sheep” and no gratification form offering half or a quarter of a sheep (personal observation). Another
explanation relies on asymmetrical information. Progressive taxation is not feasible when information
on individual’s wealth is imperfect.

5Notice that δ can also be interpreted as a social sanction from not fulfilling traditional solidarity
obligations. In this case, it appears as negative in the right-hand side of the inequality.
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Figure 1: Utility levels
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Notice that there is a downward jump in the ex ante utility function, thereby gen-

erating a non-concavity. This implies that people could be better off by randomizing

their revenue like in a Rosca. Since agents are risk-averse, randomizing has a cost. Yet,

we will see that this cost is outweighed by the benefice of reducing social obligations.

3 A static analysis

As a first step, we restrict our attention to a static framework. Suppose that all individ-

uals live for one period and face social pressure as described in the previous section. Yet

at the beginning of the period (say at date 0) they may sign financial contracts. When

the contract is carried out, each agent performs transfers as specified in the contract and

then respond or not to the social contribution m, depending on his remaining wealth

after transfers.

Before pursuing the analyze, we need to introduce some definitions. First, let us

formally define what we call ”financial agreement” (FA). In short, a financial agreement

is a contract among a group of agents assigning random payments among them. It is
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assumed binding: People cannot default (or at infinite cost).6 The random procedure

and payment structures are freely chosen by agents so that no restrictions are imposed

on the contract space. Formally, a FA is defined as follow.

Definition 1 A financial agreement C = (N,K, p, T ) is defined by:

• A set of agents N ⊂ N+.

• A set of states of nature K = {1, ..., k}.

• A probability measure p on K where p(l) denotes the probability of state l for any

l ∈ K.

• A set of transfers T = {tli}l∈K,i∈N where tli is the transfer assigned to agent i in

state l.

• Transfers are budget balanced in each state of nature:
∑

i∈N tli ≤ 0 for every l ∈ K.

In words, a financial agreement defines a group of members N who performs transfers

among them. T is the set of transfers. Each element tli ∈ T denotes the transfer

received by individual i in state l. The state of nature l occurs with probability p(l).

The transfer scheme {tli}i∈N performed in every state l must be budget balanced in the

precise sense that the money distributed within the group N must be enterally financed

by its members.

As a member of a FA, an individual cares only on how much he has to pay or

to receive and how often. Therefore, his expected payoff can be expressed in term of

“lotteries” defined by a transfer scheme Ti = {tli}l∈K and a probability measure p on a

set of states of nature K. A FA C can be viewed as a collection of “budget balanced”

lotteries (Ti, p, K) for every i ∈ N with common probability measure p. Each lottery

gives to an agent an expected payoff

U(Ti, p) =
∑

l∈K

p(l)v(y + tli). (5)

We impose two criteria on FAs: efficiency and anonymity. Both concepts are now

formally defined.

6Although we are convinced that enforcement problems are important, we do not address this issue
in this paper.
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Definition 2 A financial agreement C is efficient or (Pareto) optimal if and only if no

other financial agreement C ′ is such that:

• U(T ′
i , p

′) ≥ U(Ti, p) for every i ∈ N .

• ∃j ∈ N such that U(T ′
j , p

′) > U(Tj, p).

A FA is efficient if no other FA can make at one member better off without reducing

the other member’s payoff. If such a C ′ exists, we will say that C ′ (Pareto) dominates

C. This is the standard definition of efficiency.

Definition 3 A financial agreement C is anonymous if and only if its lotteries are

equivalent. Two lotteries (Ti, p) and (Tj, p) are equivalent if and only if for any l ∈ K,

∃h ∈ K such that tli = thj and p(l) = p(h).

In other words, two lotteries are equivalents when for any transfer in Ti, the same transfer

in Tj occurs with same probability. To be anonymous, the FA must assign equivalent

lotteries to its members.

We now proceed in several steps to characterize the anonymous and efficient FAs

labelled C∗ = (N∗, K∗, p∗, T ∗). All proofs are relegated to the Appendix.

Lemma 1 A financial agreement that assigns randomly n transfers among n persons

with equal probabilities weakly dominates any other anonymous FA.

Lemma 1 allows us to restrict our attention to FAs that assign randomly n transfers

among n persons with equal probabilities. In our framework, this set of FAs is such that

k = n!, p(l) = 1
n!

for every l ∈ K, and |T | = n. The probability that agent j receives ti

is (n−1)!
n!

= 1
n
. Individual transfers schemes are equals: Ti = Tj = T for every i, j ∈ N .

This FA yields a payoff 1
n

∑
i∈N v(y + tli) to any member. A draw order the n transfers

T = {ti}i∈N , each ordering occurs with same probability 1
n .

So far, we have identify the set of states of nature and the probability distribution.

We need now to find out the optimal set of agents N∗, or equivalently, the optimal size

of the group n∗ (remember that people are identical); as well as the set of n∗ transfers

T ∗ = {t∗i }i∈N∗ = T ∗.

Define t = y − y as the minimum transfer that makes an agent resist to social

pressure. Let us partition any arbitrary set of transfers T = {ti}i∈N into two subsets

T− = {ti ∈ T |ti ≤ −t} and T+ = {ti ∈ T |ti > −t}. We now identify three intuitive

properties on optimal transfers scheme T ∗.
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Lemma 2 u(y + t∗i ) < u(y −m + t∗j) for every t∗i ∈ T ∗
− and t∗j ∈ T ∗

+.

Lemma 2 asserts that the optimal FA assigns a higher payoff to people who give m.

If it is not the case, all individuals would be better off if they are asked to give an amount

lower than t̄ while the money collected is throw down the drain. Obviously, it is optimal

to find someone to give the money, providing that he gets an higher payoff. Notice that

Lemma 2 implies that the FA does not achieve perfect consumption smoothing.

Lemma 3 If t∗i ∈ T ∗
− then t∗i = −t̄.

Lemma 3 tells us that if an agent has to give money to escape social pressure, he

will give the minimum. Any increase of the transfer to be given reduces consumption

smoothing.

Lemma 4 If t∗i ∈ T ∗
+ and t∗j ∈ T ∗

+, then t∗i = t∗j .

Lemma 4 is the image of Lemma 3 in the subset T ∗
+. It asserts that, in order to

smooth consumption, all transfers higher than t̄ must be equal. Put differently, all

agents who cannot escape social obligation receive the same amount.

Combining Lemmata 3 and 4, we conclude that the FA asks l persons to give t

whereas the remaining n − l agents share equally the money collected. Now, we need

to find out the optimal size of the group n∗ and the optimal number of contributors.7

Denoting µ = l
n

the fraction of contributors, the second period expected payoff of any

member of the FA becomes:

U(T, p) = µu(y − t̄) + (1− µ)u(y −m +
µ

1− µ
t̄). (6)

The optimal fraction of contributors µ∗ maximizes 6. It satisfies the following first order

condition:8

u(y −m +
µ∗

1− µ∗
t)− u(y − t̄) =

t

1− µ∗
u′(y −m +

µ∗

1− µ∗
t). (7)

7Clearly, we have l∗ > 0 and n∗− l∗ > 0. Otherwise, first l∗ = 0 means that nobody give money and
therefore no money is received so there is no FA agreement which contradicts that people could benefit
from a FA. Second, n∗ − l∗ = 0 means that everybody give money and nobody receive the amount
collected. Agents are better off if the group is extended up to a size n such that n > t

2t−m and the

money collected is given to one agent.
8The second order condition is − 2t

(1−µ∗)2 u′(y −m + µ∗

1−µ∗ t) + t2

(1−µ∗)3 u′′(y −m + µ∗

1−µ∗ t) < 0.
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With more contributors, less money is lost through sharing obligations (less people

give m) but the size of the “pot” increases to the prejudice of consumption smoothing.

Hence, the optimal proportion of contributors solve a trade-off between minimizing the

dead-weight loss due to sharing obligations and smoothing consumption. If t is close to

0, then µ∗ is close to 1: saving on sharing obligations is worthwhile. As t increases, it

becomes more costly to escape sharing obligation in term of income smoothing. Less

people are asked to give, or more people get the pot, to minimize the utility gap. We

have established the following result.

Theorem 1 The efficient financial agreement with equal expected payoff i) asks a pro-

portion µ∗ of persons to contribute a fix amount t ii) the money collected is shared equally

among the remaining persons, iii) each agent face same probability µ∗ to contribute and

1− µ∗ to receive the pot collected.

Theorem 1’s FAs have intrinsic features common with Roscas: inflexible contribution

equal for all, same probability to give or receive. Indeed, one theorem 1’s FAs is precisely

the one-period Rosca of size n∗ = 1
1− µ∗ and contribution t. Of course, the size n∗ is

generally not an integer but it can be argued that a one-period Rosca approximates quite

well the welfare achieved by a Theorem 1 ’s FA. And it is quite simple to implement

since it needs only to draw the winner of the pot.

A graphic analysis can be useful to understand the intuition leading to theorem 1.

Any arbitrary lottery (T, p) part of a FA can be depicted in Figure 1. The outcome

of any draw is an ex post revenue y + tl which translates into ex ante utility v(y + tl).

Graphically, it is a point on v. The set of expected utilities that can be achieved is the

convex hull of v(y + tl) for every tl ∈ T . It can be represented by drawing lines linking

points (y + tl, v(y + tl)) for every tl ∈ T . A probability measure p defines an unique

point in this set. Or, put differently, any point in this set can be achieved with the right

probability measure.

The lottery defined in Theorem 1 randomizes between transfers −t and
µ∗t

1− µ∗ . We

denote the later expression t̄. This lottery yields respective ex post revenues y and

ȳ = y + t̄, where ȳ is formally defined by the first order condition 7 re-expressed as:

u(ȳ −m)− u(y)

ȳ − y
= u′(ȳ −m). (8)

These two outcomes are represented by points A and B in Figure 2. 9

9Notice that equation 8 states that at point B with coordinates (ȳ, v(ȳ)), the line starting from A

with coordinates (ȳ, v(ȳ)) is tangent to the utility function.
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This lottery yields an expected utility µu(y)+(1−µ)u(ȳ−m) located along the line

AB. Clearly, it is welfare improving for any individual whose revenue y lies between y

and ȳ. But it also dominates any other lottery which, indeed, would yield an expected

payoff strictly below the line AB. In particular, adding any other transfers to transfers

t and t̄ yields an expected payoff strictly below AB. This remains true for any transfer

other than t or t̄.

In Figure 2, the upper envelope of the graph represents an upper bound on agent’s

expected payoff that can be achieved with lotteries. It implies those who have revenue

below y and above ȳ cannot improve their welfare with lotteries. Now, these lotteries

must be feasible within an anonymous FA. This imposes restrictions on the probability

distribution and the size of the FA. First, anonymity forces agents to face identical

probability distribution µ. This is satisfied if, in each draw, a proportion of members

µ contribute. Second, transfers must be budget balanced state by state. Hence, the

proportion of contributors must µ∗ such that µ∗t = (1− µ∗)t̄.

Graphically, anonymity and budget constraints force the expected utility to be at

most O along the line AB is Figure 2. Some people could get an expected utility on
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the right-hand side of O by winning more often t̄ than others. However, this violates

anonymity. The expected utility level in O can be achieved with a Rosca of size n∗

defined by t̄ = (n∗ − 1)t. It corresponds to an amount:

U(T ∗, p∗) =
n∗ − 1

n∗
u(y − t) +

1

n∗
u(y + (1− n∗)t̄−m)}. (9)

4 Extension to multi-periods

The objective of this section is to extend previous results to a multi-periodic framework.

Time is thus divided in several periods. Every individual values time according to a

discount factor β. Yet, as before, at date 0, individuals can design and sign binding

financial agreements.

First, observe that a one-period Rosca can be extended easily to a multi-periodic

framework. This can be done by simply repeating the random procedure identically

in each period, without taking into account the results of previous draws. This FA is

obviously still anonymous and efficient. But there obviously exist various multi-periods

extensions of the static solution. The point is to show that a random Rosca and a

deterministic Rosca (with random initial ordering) are two of them.

Obviously, these two FA are anonymous. Now, in a Rosca, winners are excluded

from the draw in subsequent periods during a cycle. So, each cycle, each agent is sure

to get the pot. But when he joins the Rosca (at date 0) he does not know when he will

have it.10 There is a probability 1
n∗ that he will have the pot at date h for each date of

the cycle. In this case, his payoff will be v(y + (n∗− 1)t) = u(y−m + (n∗− 1)t) at date

h and u(y− t) at the other dates t = 1, ..., n∗, t 6= h. Hence, the payoff at date 0 for the

first cycle of any member of the Rosca is,

n∗∑

h=1

1

n∗
[βhu(y −m + (n∗ − 1)t) +

∑

t 6=h

βtu(y − t)]. (10)

This payoff simplifies to

n∗∑
t=1

βt[
1

n∗
u(y −m + (n∗ − 1)t) +

n∗ − 1

n∗
u(y − t)]. (11)

Since, viewed at date 0, the expected outcome of all cycles are identical, the extension

to an infinity of periods is straightforward. The payoff at date 0 of any member of the

10This matters because people have discounted preferences on time.
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Rosca of an infinity of periods is equal to

∞∑
t=1

βt{n∗ − 1

n∗
u(y − t) +

1

n∗
u(y −m + (n∗ − 1)t)}. (12)

The random Rosca and deterministic Rosca with random initial ordering reproduces the

per-period payoff of theorem 1’s one-round Rosca (the term in brackets of 12 is equal

to 9) for an infinity of periods. Hence, these two type of Rosca are efficient on top of

being anonymous. This leads to our main result.

Theorem 2 Random Roscas and deterministic Roscas with random initial ordering are

anonymous and efficient financial agreements.

Theorem 2 establishes that a Rosca is one of the best anonymous agreement that a

group of agents can sign together to resist to social pressure for sharing obligations.

It rises a question: Why random Roscas and deterministic Roscas with random initial

ordering are preferred to, say, a straight multi-periods extension of Section 3’s one-

period Rosca? The main difference is that with Roscas, winners are excluded so that

members are sure to get the pot during each round.11 In this sense, these FAs appear

somewhat less risky, even though this aspect is not reflected in the expected utility

framework. Furthermore, without excluding winners, wealth inequality after a draw can

be potentially higher. Put differently, Roscas minimizes wealth inequality of each draw,

which is a nice fairness property.

5 Discussion

We now discuss the robustness of our result to alternative assumptions. First, we ask

to what respect anonymity can be relaxed or replaced by another restriction on FA.

Our result holds (in particular Lemma 1) as long as people member of a FA have same

expected utility (when the benefit from contracting is shared equally among members of

the FA). As a result, other normative principles (such as no cross-subsidy, no inequality

or no envy) would certainly lead to the result as well. Moreover, this could be sustained

by a more positive principle: Stability. Suppose indeed that one member of a FA gets

less than 1
n

of the sum of expected utilities. He or she could simply refuse the agreement

11This argument is consistent with in Gugerty’s finding that 25% of people reported that the main
reason to for joining a Roasca is to make sure that each member had a certain item.
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and sign another FA (with equal divide of the surplus) with others agents. Hence, a FA

assigning different expected payoff to identical persons would not be stable.

Second, we have assumed that people have same revenue. Our result still holds in an

economy is populated by people with heterogeneous revenues. It is so because anonymity

forces FAs to include agents with same revenue. Suppose it is not true. Suppose that

two members of a FA have different revenues. They must perform different transfers to

reach ex post revenues y and ȳ. Therefore FA is not anonymous. Hence, efficient and

anonymous FAs contain agents with equal revenue. Notice that this result is consistent

the empirical evidence that people’s revenues are homogeneous within Roscas (see Handa

and Kirton 1999).

6 Concluding remark

In this paper, we have motivated the practice of Roscas, one of the most popular informal

financial institutions around the world. We argue that a Rosca is the best anonymous

agreement that a group of agents can sign to resist to social pressure for sharing obli-

gations.

Notice that our motivation does not rely on the purchase of a lumpy durable good

as Besley, Coate and Loury’s seminal papers. It therefore consistent with Gugerty’s

empirical evidence that the pot is sometimes spent on other purchases, such as clothing,

food or social events. Beyond the purchase of indivisible good, our result is robust to any

use of the pot, particularly social related uses such as baptisms, weddings and funerals.

Nevertheless, in our model, it is easy to see that people would benefit even more from a

Rosca if the financial agreement is explicitly devoted to the purchase of this good (see

Gugerty 2000 for empirical evidences of such Roscas). If the agreement is binding, the

good is purchased. Then it can hardly de divided among among his relative (or at the

cost of selling it) so that the person can resist to social pressure even when winning the

pot.
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A Proof of Lemma 1

Consider any arbitrary anonymous FA C. Since individual are identical, anonymity implies that C yields
same payoff to any individual i, j ∈ N : U(Ti, p) = U(Tj , p) The expected payoff of any members i is
therefore 1

n the sum of expected payoffs:

U(Ti, p) =
1
n

∑

l∈K

p(l)
∑

i∈N

u(C(tli)). (13)

We show that C is weakly dominated by a FA Ch that assigns randomly with equal probability 1
n the set

of transfers {thi } that maximizes the sum of utilities (i.e. h is defined h = Argmaxl∈K

∑
i∈N u(C(tli))).

This FA yields to any agent i a payoff 1
n

∑
i∈N u(C(thi )). By definition of h, we have,

1
n

∑

i∈N

v(y + thi ) ≥ 1
n

∑

i∈N

v(y + tli), (14)

for any i ∈ K. Multiplying 14 by p(l) for every l ∈ K, summing up for every l ∈ K, and combining
with 13 we obtain:

1
n

∑

i∈N

u(C(thi )) ≥ U(Tj , p), (15)

for every arbitrary agent j ∈ N . Since the left-hand side of 15 is the payoff of any individual under FA
Ch, Equation 15 states that Ch weakly dominates C.

B Proof of Lemma 2

Suppose that u(y + t∗i ) > u(y −m + t∗j ), then the agents are better off if t∗j is set to t∗i while the other
transfers remain unchanged, which contradicts that T ∗ is optimal. Therefore u(y + t∗i ) ≥ u(y−m + t∗j )
for every t∗i ∈ T ∗− and t∗j ∈ T ∗+. Suppose now that u(y + t∗i ) = u(y −m + t∗j ). First, suppose that T ∗+
contains another element say t∗k. We know that u(y−m+ t∗k) ≥ u(y + t∗i ). Thus T ∗ is dominated by T ′

such that t′j = t∗i , t′k = t∗k + t∗j − t∗i and t′l = t∗l for every l 6= j, k. Second, suppose now to the contrary
that T ∗+ contains only j. Then each agent in the group is better off if the group includes one more
person with a FA T ′ such that t′l = t∗i for every l = 1, ..., n and t′n+1 = −∑

i∈N t∗i . This contradicts
that n∗ is optimal.

C Proof of Lemma 3

Suppose that this is not true. Suppose that ∃t∗l < −t̄ and then consider two cases. First, suppose that
T ∗+ is empty. Then individuals are better off if t∗l is increased up to −t̄ while the other transfers remain
unchanged. Second, suppose that T ∗+ is not empty and contains, say tk. Then ∃ε > 0 sufficiently small
such that t∗k − ε ∈ T ∗+ and t∗l + ε ∈ T ∗−. It is easy to show that the FA T ′ defined as t′l = t∗l + ε,
t′k = t∗k − ε, and t′i = t∗i for every i 6= l, k dominates T ∗. Indeed, we have,

E[U(T ′)]− E[U(T ∗)] =
1
n
{u(y + t∗l + ε)− u(y + t∗l ) + u(y −m + t∗k − ε)− u(y −m + t∗k)}.

15



Since u is strictly concave, then,

u(y + t∗l + ε)− u(y + t∗l ) > u′(y + t∗l + ε)ε,

and,
u(y −m + t∗k)− u(y −m + t∗k − ε) < u′(y −m + t∗k − ε)ε.

The last three equations imply:

E[U(T ′)]− E[U(T ∗)] >
1
n
{u′(y + t∗l + ε)− u′(y −m + t∗k − ε)}ε.

Since u(y + t∗l + ε) < u(y − t̄) < u(y −m + t∗k − ε) by assumption and due to Lemma 2, the left-hand
side is strictly positive.

D Proof of Lemma 4

Suppose this is not true. Then T ∗ is dominated by T ′ defined by t′i = t′j = 1
2 (t∗i + tj), t′l = t∗l for every

l 6= j, i.

16
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