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Abstract

I build a quantitative model of economic growth that can be used to evaluate the impact of
environmental policy interventions on final-use energy consumption, an important driver
of carbon emissions. In the model, energy demand is driven by endogenous and directed
technical change (DTC). Energy supply is subject to increasing extraction costs. Unlike
existing DTC models, I consider the case where multiple technological characteristics are
embodied in each capital good, a formulation conducive to studying final-use energy. The
model is consistent with aggregate evidence on energy use, efficiency, and prices in the
United States. I examine the impact of new energy taxes and compare the results to the
standard Cobb-Douglas approach used in the environmental macroeconomics literature,
which is not consistent with data. When examining a realistic and identical path of
energy taxes in both models, the DTC model predicts 22% greater cumulative energy use
over the next century. I also use the model to study the macroeconomic consequences
of R&D subsidies for new energy efficient technologies. I find large rebound effects that
undo short-term reductions in energy use.
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1 Introduction

Discussions of climate change mitigation often focus on substitution between clean and dirty sources

of energy. Carbon accounting, however, shows that improvements in energy efficiency have been the

primary driver of long-run reductions in the carbon intensity of output (e.g., Raupach et al., 2007;

Nordhaus, 2013). In this paper, I further demonstrate that increases in energy efficiency are driven

by improvements in final-use energy efficiency. In other words, reductions in the carbon-intensity

of output tend to occur when capital goods and consumer durables require less energy to run, not

when an economy uses more renewable energy sources or gets better at turning primary energy

(e.g., coal) in to final-use energy (e.g., electricity).

Despite the importance of final-use energy efficiency in determining long-run trends in carbon

emissions, this margin has received relatively little attention in the environmental macroeconomics

literature. Studies with directed technical change and climate change focus on clean versus dirty

sources of energy and do not consider energy efficiency as a separate source of technological im-

provement (e.g., Acemoglu et al., 2012, 2016). Studies with exogenous technology, other the other

hand, frequently assume that final-use energy is combined with capital and labor in a Cobb-Douglas

fashion (e.g., Nordhaus and Boyer, 2000; Golosov et al., 2014), even though this is at odds with

well known data patterns (Atkeson and Kehoe, 1999; Hassler et al., 2012, 2016b).

This paper constructs the first quantitative macroeconomic model focusing on final-use energy.

I show that a simple and tractable growth model is consistent with evidence on aggregate energy

use, efficiency, and prices in the United States, as well as the standard Kaldor (1961) facts. I then

calibrate the model to macroeconomic data from the United States and data on energy extraction

costs. I use the model to investigate the impact of environmental policy interventions on final-use

energy consumption.

The demand side of the model highlights the role of endogenous and directed technical change

(Hassler et al., 2012, 2016b). Existing evidence suggests that there is a near-zero short-run elasticity

of substitution between energy and non-energy inputs, but a unitary long-run elasticity. The model

captures this fact by differentiating between ex post substitution – which captures substitution when

technology is fixed – and ex ante substitution, which occurs through the choice of technology (e.g.,

Jones, 2005; Caselli et al., 2006; León-Ledesma and Satchi, 2018). For a given set of technologies,

energy and non-energy inputs must be combined in fixed proportions. Capital good producers,

however, respond to increases in the relative price of energy by lowering the energy input ratio

through directed research and development activity. Thus, the long-run elasticity of substitution

is higher than the short-run elasticity.

I develop a new underlying model of directed technical change. The standard Acemoglu (1998,

2002) approach focuses on the role of innovation in different sectors. To focus on final-use energy

efficiency – rather than the efficiency of the energy sector – I consider the case where two types of

technology are embodied in each capital good. One type captures the ability of the capital good

to produce output. The other captures the energy efficiency of final good production.

Since the model focuses on the role of final-use energy, I consider a simple representation of
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primary energy supply. There is a single aggregate energy composite that is available in infinite

supply, but is subject to increasing extraction costs. Most directed technical change models of

energy use consider the case where the finite supply of energy resources drives long-run trends

in prices (Hassler et al., 2012, 2016b; André and Smulders, 2014).1 I show, however, that this

Hotelling (1931) approach is at odds with aggregate data, which demonstrate that energy use is

increasing on the balanced growth path. The increasing extraction cost model is consistent with

data and suggests that energy consumption growth will continue at current rates in the absence of

policy intervention or an environmental disaster.

The primary quantitative analysis in this paper studies the case of energy taxes and compares

the new model to the standard Cobb-Douglas approach with exogenous technology (e.g., Nordhaus

and Boyer, 2000; Golosov et al., 2014). Existing studies argue that the Cobb-Douglas model is

an appropriate stand-in for a model with endogenous and directed technical change, because both

approaches feature unit-elastic long-run substitution between energy and non-energy inputs (e.g.,

Golosov et al., 2014; Hassler et al., 2016c, 2017; Barrage, forthcoming). When explicitly comparing

the two models, however, I find that they yield significantly different predictions about the impact

of environmental policy.

The rationale for the conventional wisdom is straightforward: the study of climate change is

inherently concerned with long-run outcomes. The Cobb-Douglas and directed technical change

models have identical long-run predictions in the absence of policy. Thus, they are likely to yield

similar long-run predictions in a world with policy. I show, however, that this reasoning does

not hold up to quantitative scrutiny. Climate change is a function of the stock of carbon in the

atmosphere, rather than the flow of emissions. Since the directed technical change model accurately

captures the low short-run elasticity of substitution observed in the data, it predicts that energy

efficiency will react slowly to new energy taxes. By contrast, the Cobb-Douglas approach predicts

that reactions will occur immediately, because it is relatively easy to substitute between energy and

non-energy inputs. In other words, the directed technical change model features slower transitions.

As a result, the two models yield different predictions for medium-term and cumulative energy use.

The easiest way to compare the quantitative predictions of the two models is to examine their

predicted reactions to the same path of future energy taxes. I simulate taxes in the Cobb-Douglas

model that are needed to reduce energy use by 15% between 2005 and 2055.2 With the same path

of taxes, the directed technical change model misses the energy use target by over 20 percentage

points. Thus, the slow transition path implies that policy designed with the Cobb-Douglas model

is unlikely to achieve intended targets for medium-run flows of emissions. The directed technical

change model also predicts 22% greater cumulative energy use over the next century. Given that

1This literature is focused on the economic consequences of exhaustible resources, rather than climate change and
environmental policy.

2This is consistent with goals laid out in the Paris Agreement, which suggests that the United States adopt
policies consistent with a 80% reduction in carbon emissions by 2050 (Heal, 2017; Williams et al., 2014). The goals
are outlined in the Intended Nationally Determined Contribution (INDC) submitted by the United States to the
United Nations Framework Convention on Climate Change (UNFCC), which is available at: https://www4.unfccc.

int/sites/submissions/indc/Submission%20Pages/submissions.aspx.
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the new model better explains past patterns of energy use, these results provide evidence that

existing analyses are too optimistic about the impacts of climate change mitigation policy, at least

when considering the important margin of final-use energy efficiency.

A second analysis investigates the macroeconomic consequences of research subsidies and man-

dates for energy efficient technologies. These policies are commonly used in attempts mitigate cli-

mate change and achieve energy security (Gillingham et al., 2009; Allcott and Greenstone, 2012).

Despite their popularity, these policies may be ineffective due to rebound in energy use. Rebound oc-

curs when economic behavior lessens the reduction in energy use following efficiency improvements.

A long literature attempts to indirectly evaluate the effectiveness of such policies by estimating the

size of rebound effects, usually in partial equilibrium or static settings (Gillingham et al., 2016).

The directed technical change model, however, makes it possible to directly analyze the broader

motivating question: can policies aimed at improving energy efficiency achieve long-term reduc-

tions in energy use, even if they do not increase energy prices? I start by considering the standard

rebound exercise of a one-off improvement in energy efficiency. Consistent with existing evidence,

such shocks lead to short-run reductions in energy use (e.g., Davis, 2017), but they also lower the

incentive for future investment in energy efficient technology. As a result, the interventions lead to

temporary increases in medium-term energy use relative to world without policy, an extreme form

of rebound known as ‘backfire.’ Eventually, the short-term reductions and medium-term backfire

offset, leaving cumulative energy use unchanged. Permanent policy interventions can overcome

rebound effects to achieve long-run reductions in energy use relative to laissez faire, but cannot

achieve absolute decreases in energy use.

Related Literature. This paper contributes to several literatures. The first is carbon ac-

counting. A literature focusing on the Kaya identity demonstrates that energy efficiency, rather

than the carbon intensity of energy, has driven reductions in the carbon intensity of output in the

United States and around the world (Raupach et al., 2007; Nordhaus, 2013; Peters et al., 2017).

I take this finding one step further and show that these reductions in energy use are driven by

final-use energy efficiency.

Second, this paper contributes to the quantitative macroeconomic literature on climate change

by constructing a growth model focusing on final-use energy. Studies on directed technical change

and climate change focus on clean versus dirty sources of primary energy and do not consider energy

efficiency as a separate source of technological improvement (e.g., Acemoglu et al., 2012, 2016; Fried,

2018). Meanwhile, the literature on endogenous, but not directed, energy efficiency improvements

focuses on the efficiency of the energy sector (e.g., Popp, 2004; Bosetti et al., 2006). While both

of these margins are important, the data strongly suggest that the overlooked margin of final-use

energy efficiency is an important long-run driver of carbon emissions. Studies with exogenous

technology frequently assume that final-use energy is combined with capital and labor in a Cobb-

Douglas fashion (e.g., Nordhaus and Boyer, 2000; Golosov et al., 2014; Barrage, forthcoming), but

this is at odds with existing data (Atkeson and Kehoe, 1999; Hassler et al., 2012, 2016b). As
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noted above, I show that this modeling difference has important consequences for understanding

the impacts of climate change mitigation policy.

Third, this paper is related to the literature on directed technical change and energy use,

which focuses on questions of long-run sustainability (e.g., Di Maria and Valente, 2008; André and

Smulders, 2014). The most closely related paper is that of Hassler et al. (2012, 2016b), who show

that a model of directed technical change is consistent with data on energy demand from the United

States. They use this observation to examine how a social planner should manage a finite resource

and generate predictions for future consumption growth. I build on their findings in several ways.

First, I develop a decentralized model that can be used to investigate the impacts of environmental

policy. While Hassler et al. (2012, 2016b) do not analyze the impacts of policy, their findings have

been used to support the use of the Cobb-Douglas assumption in climate change economics (e.g.,

Golosov et al., 2014; Hassler et al., 2016c, 2017; Barrage, forthcoming). By explicitly analyzing

the impact of policy in both models, I show the opposite result: constraining the model to match

short-run data leads to different long-run reactions to policy. I also build on the work of Hassler

et al. (2012, 2016b) by considering an alternative model of primary energy supply. In particular, I

consider the case of increasing extraction costs, rather than finite energy supplies. I show that (i)

unlike the Hotelling (1931) model, the increasing cost formulation is consistent with aggregate data

and (ii) the increasing cost formulation leads to different predictions about growth in consumption

and energy use in the absence of climate change mitigation policy.

Finally, this paper contributes to the broader literature on the modeling of directed technical

change. Employing the directed technical change model of Acemoglu (1998, 2002) in the context

of energy efficiency requires focusing on technological improvements in the energy sector (e.g.,

Smulders and De Nooij, 2003; André and Smulders, 2014). In order to focus on final-use energy

efficiency, therefore, I construct a new model where both types of technology are embodied in the

capital good. This allows for labor to move between production and research even as population

grows, which is important for the current context because (i) growing population is an important

driver of energy use and (ii) environmental policy may increase the incentive for investment in

energy efficient technologies. Microeconomic evidence that changes in energy prices affects the

direction of R&D is presented by Newell et al. (1999), Popp (2002), Newell and Stavins (2003), and

Aghion et al. (2016), among others.

Roadmap. Section 2 discusses the empirical motivation underlying the theory. The model

is presented in Section 3 and the calibration in Section 4. Section 5 reports the results of the

quantitative analyses, and Section 6 concludes.

2 Empirical Motivation

In this section, I discuss the stylized facts that motivate the focus and modeling decisions in this

paper. Section 2.1 presents evidence on the importance of final-use energy efficiency in determining
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Figure 1: Panel (a) decomposes the decline in the carbon intensity of output using the identity CO2
Y

= CO2
Ep
· Ep

Ef
· Ef

Y
,

where CO2 is yearly carbon emissions, Y is GDP, Ep is primary energy, and Ef is final-use energy. The results

demonstrate that the fall in the carbon intensity of output, CO2
Y

, has been driven by decreases in final-use energy

intensity of output,
Ef

Y
, rather than the use of cleaner energy sources, CO2

Ep
, or a more efficient energy transformation

sector,
Ep

Ef
. Panel (b) plots the real price of fossil fuel energy and the real cost of generating electricity from solar

energy over this period.

long-run trends in carbon emissions in the United States. Section 2.2 presents evidence on the

demand for energy use, which is well captured by a model of directed technical change. Finally,

section 2.3 presents evidence on the supply of primary energy, which is consistent with a model of

increasing extraction costs.

2.1 The Importance of Final-Use Energy

In this section, I demonstrate that final-use energy efficiency has played a crucial role in reducing

the carbon-intensity of output in the United States. To analyze the determinants of the carbon

intensity of output, I consider the following decomposition:

CO2

Y
=
CO2

Ep
· Ep
Ef
·
Ef
Y
, (1)

where CO2 is yearly carbon emissions, Y is gross domestic product, Ep is primary energy use

(e.g., coal, oil), and Ef is final-use energy consumption (e.g., electricity, gasoline). The carbon

intensity of primary energy, CO2
Ep

, captures substitution between clean and dirty sources of energy

(e.g., coal versus solar). The efficiency of the energy sector, which transforms primary energy into

final-use energy, is captured by
Ep
Ef

. For example, the ratio decreases when power plants become

more efficient at transforming coal into electricity. The final-use energy intensity of output,
Ef
Y ,

measures the quantity of final-use energy used per unit of output. For example, the ratio decreases

when manufacturing firms use less electricity to produce the same quantity of goods.

Panel (a) of figure 1 plots each component from equation (1) from 1971-2014. Data are nor-
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malized to 1971 values.3 The carbon intensity of output fell over 60% during this time period, and

this decline is matched almost exactly by the decline in the final-use energy intensity of output.

The carbon intensity of primary energy, CO2
Ep

, declined approximately 15% over this period. While

this is a significant improvement for environmental outcomes, it is small compared to the overall

improvements in the carbon intensity of output. Finally, the efficiency of the energy transformation

sector, as measured by the inverse of
Ep
Ef

, actually declined roughly 15% over this period.4

To the best of my knowledge, this is the first paper to perform a carbon accounting exercise

using equation (1). Existing studies often focus on the Kaya Identity, which only considers the

role of primary energy. These studies show that aggregate energy efficiency is the main driver of

long-run trends in carbon emissions (e.g., Raupach et al., 2007; Peters et al., 2017). This is the

first study to demonstrate the relative importance of final-use energy efficiency, rather than the

efficiency of the energy sector.

The carbon accounting evidence strongly suggest that final-use energy efficiency cannot be

ignored when thinking about the determinants of carbon emissions. Without price data, however,

it is difficult to know exactly how well existing trends capture the impact of environmental policy

interventions that raise the price of carbon. A tax on carbon has two main effects. First, it will

raise the price of fossil fuel-based primary energy sources relative to renewable sources of primary

energy. Second, it will raise the price of final-use energy relative to non-energy inputs in production.

Panel (b) of figure 1 demonstrates that the average real price of final-energy derived from fossil

fuels increased over this period. Unfortunately, a broad measure of the price of renewables is not

currently available over this period or level of aggregation. Existing evidence, however, strongly

suggests that the real price of renewable energy has been declining (e.g., Nemet, 2006; Covert et al.,

2016; Gillingham and Stock, 2018). To highlight this point, panel (b) also plots an estimate of the

real cost of generating electricity from solar energy over this period.5 Improvements in final-use

energy efficiency were the dominant source of reductions in the carbon-intensity of output, even

during a time period when the price of renewable energy decreased relative to fossil fuels. This

result suggests that the margin of final-use energy efficiency will be important in understanding

the impact of carbon taxes.

Motivated by these findings, this paper focuses on final-use energy efficiency and its role in

climate change mitigation. As explained above, this channel has not received much attention in

the existing macroeconomic literature focusing on climate change (e.g., Acemoglu et al., 2012,

2016; Fried, 2018) or energy use (e.g., Smulders and De Nooij, 2003; André and Smulders, 2014).

The quantitative analyses in this paper focus on energy use reductions that are necessary to meet

environmental policy goals even in the presence of large-scale substitution toward clean sources of

3Appendix Section A describes the data and provides links to the original sources.
4This result is driven by differences in the efficiency of transformation across different sources of primary energy,

rather than technological regress.
5The data are originally from Nemet (2006) and were accessed via the Performance Curve Database from the

Sante Fe Institute Nagy et al. (2013). These data are for illustrative purposes and will not be used the quantitative
analysis.
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Figure 2: This figure shows the energy expenditure share (Eshare), the final-use energy intensity of output (E/Y ),

and the average real energy price (pE) in the United States from 1971-2014. These objects are related through the

following identity: Eshare = pE · EY . Panel (a) presents data normalized to 1971 values (markers) and 5-year moving

averages (lines). Panel (b) presents detrended values for E/Y and pE , along with the expenditure share. Trends are

estimated via OLS, assuming a constant growth rate over the period. Data are taken from the Energy Information

Administration (EIA) and the Bureau of Economic Analysis (BEA).

primary energy.6

2.2 Energy Demand

The model presented in this paper can recreate key stylized facts regarding energy use, prices,

efficiency and expenditure observed in U.S. data, suggesting that it is a useful framework to think

about the impacts of policy on final-use energy. Figure 2 summarizes evidence on the demand for

energy. It shows the expenditure share of energy (Eshare), the energy intensity of output (E/Y ),

and the average real energy price (pE) in the United States from 1971-2014. These objects are

related through the following identity:

Eshare = pE ·
E

Y
. (2)

Panel (a) plots annual values, along with five-year moving averages, to highlight medium- and long-

run trends. Panel (b) plots detrended annual values for E/Y and pE against Eshare to highlight

short-run fluctuations.

The data indicate that the expenditure share, but not the energy intensity of output, reacts to

short-term price fluctuations, suggesting that it is difficult to substitute between energy and non-

energy inputs in the short run. Hassler et al. (2012, 2016b) provide a formal maximum likelihood

6Ideally, it would be possible to estimate the elasticity of substitution between different sources of primary
energy, as well as the elasticity between energy and non-energy inputs in production. This would allow for a simple
decomposition of these channels in a unified structural model. In this paper, I study substitution between energy and
non-energy inputs, which is dynamic. Unfortunately, there is no consensus on the elasticity of substitution between
clean and dirty sources of primary energy, largely because aggregate price data do not exist. See section 5.1 for
further discussion.
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estimate of the short-run elasticity of substitution between energy and non-energy inputs and find

a value very close to zero. As seen in both figures, the expenditure share can deviate from its long-

run average (8.4%) by a substantial amount and for a significant period of time. Despite increasing

prices, however, there is no long-run trend in the energy expenditure share of output.7

Hassler et al. (2012, 2016b) show that a directed technical change (DTC) model can recreate

these facts. With fixed technology, the elasticity of substitution between energy and non-energy

inputs is essentially zero. Over longer time horizons, agents in the economy respond to higher energy

prices by investing in energy efficiency, driving down energy use. As a result, the expenditure share

is constant on the balanced growth path, despite increasing prices and a low short-run elasticity of

substitution.8,9

I build on their work by constructing a decentralized model that can be used to examine the

impacts of policy. Motivated by the evidence presented in figure 1, the model focuses on the demand

for final-use energy coming from final good production, rather than the demand for primary energy

coming from the energy sector. To capture this important margin, the new model departs from the

DTC approach of Acemoglu (1998, 2002) and considers the case where multiple types of productivity

– including energy efficiency – are embodied in each capital good. When combined with Leontief

production in the short-run, this yields a tractable model that can be used to study the impact of

environmental policy on final-use energy consumption.10

In macroeconomic studies of climate change, it is common to assume that energy and non-

energy inputs are combined in a Cobb-Douglas (CD) fashion, even though this is at odds with the

short- and medium-run data provided in figure 2 (e.g., Nordhaus and Boyer, 2000; Golosov et al.,

2014; Barrage, forthcoming). While Hassler et al. (2012, 2016b) do not investigate the impacts of

policy, their work has been used to motivate the CD assumption, because the two models have

the same long-run elasticity of substitution (e.g., Golosov et al., 2014; Hassler et al., 2016c, 2017;

Barrage, forthcoming).

Using the decentralized model developed in this paper, I compare the two approaches and show

that they lead to significantly different quantitative predictions about the impacts of policy. The

difference can be seen through equation (2). New taxes effectively increase the price of energy. The

CD model assumes that energy intensity must immediately fall by enough to leave the expenditure

7Focusing on primary energy, Hassler et al. (2012, 2016b) show that this is true over a longer time horizon.
8See also, Hart (2013) and André and Smulders (2014). For related results focusing on the elasticity of substitution

between capital and labor, see Jones (2005), Caselli et al. (2006), and León-Ledesma and Satchi (2018), among others.
9Not all improvements in aggregate energy efficiency need to be driven by technical change. In particular,

sectoral reallocation could potentially explain changes in agggregate energy use. Decomposition exercises suggest that
improvements in intra-sectoral efficiency, rather than reallocation, have been the key driver of falling energy intensity
over this period (Sue Wing, 2008; Metcalf, 2008). They also suggest that, prior to 1970, sectoral reallocation was the
primary driver of falling energy intensity. The calibration will focus on the post-1970 period. Existing work suggests
that there was a significant regime shift in both energy prices and energy efficiency improvements after this period
(e.g., Hassler et al., 2012, 2016b; Baumeister and Kilian, 2016; Fried, 2018). See Hart (2018) for a model focusing on
earlier periods where energy efficiency was driven by sectoral reallocation.

10The Acemoglu (2002) approach focuses on innovation in different sectors, rather than the efficiency with which
different inputs are combined. This has been a fruitful way to examine, for example, directed technical change in
clean versus dirty energy sectors (Acemoglu et al., 2012, 2016; Fried, 2018), but it cannot speak to final-use energy,
which is inherently concerned with the ratio with which energy in combined with other inputs.
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share unchanged. Both the data and the new DTC model, however, suggest that energy intensity

will be unchanged in the very short-run and the expenditure share will spike. Then, energy efficiency

will improve over time and the expenditure share will converge back to its long-run level. The

difference in transition paths implies that the two models will have different predictions for both

cumulative and medium-term energy use, even in cases where they have identical predictions for

energy use at some point in the future.

2.3 Energy Supply

Since this paper is focused on the role of final-use energy, I consider a simple representation of the

supply of primary energy. As discussed above, a trendless energy expenditure share, increasing

energy prices, and falling energy intensity of output are all consistent with the balanced growth

path of a DTC model. To differentiate between possible causes of the rising prices, I now turn to

trends in energy use.11

Studies with aggregate energy use almost always use one of two underlying models of energy

supply to explain long-run trends in prices, optimal depletion of finite resources (e.g., Hotelling,

1931; Dasgupta and Heal, 1974) or increasing extraction costs (e.g., Pindyck, 1978; Slade, 1982).

Existing work on directed technical change and the environment focuses on the former (Di Maria

and Valente, 2008; Hassler et al., 2012, 2016b; André and Smulders, 2014). Of the two approaches,

however, only the increasing extraction cost model is consistent with aggregate evidence from the

United States. If rising prices are driven by forward looking behavior and finite supplies, then

energy use must decrease on the balanced growth path, which is when the energy expenditure

share is constant. Figure 3, however, shows that energy use has been increasing over the period of

study. Thus, the aggregate data are inconsistent with a model where increasing prices are driven

by scarcity rents.

Panel (b) of figure 3 provides direct evidence for the existence of increasing extraction costs. It

shows estimates fossil fuel extraction costs and availability from McGlade and Ekins (2015). The

estimates were developed for the TIMES Integrated Assessment Model in University College London

(“TIAM-UCL”), which has a detailed representation of energy supply. The figure aggregates across

the three sources of fossil fuels – oil, natural gas, and coal – and converts primary energy availability

into final-use energy availability using average transformation rates.12

Based on the evidence presented in figure 3, I consider the case of increasing extraction costs,

which allows for increasing energy use on the balanced growth path. As discussed in Sections 3

and 4, the convexity in the supply curve for energy is not sufficient to explain rising energy prices

relative to other goods. I attribute the remaining increase in relative prices to slower technological

11As demonstrated in figure 2, the price of energy in the United States had an upward trend from 1971-2016.
Once again, this is a good match for post-1970 data, but not for U.S. data in the preceding two decades, where
energy prices actually declined. Consistent with the predictions of the model, decomposition exercises suggest that
intra-sectoral energy efficiency declined during this period of falling prices (Sue Wing, 2008). In this paper, I focus
on the case where prices increase in the long run.

12See appendix sections A and B.6 for more detail.
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Figure 3: Panel (a) demonstrates that aggregate energy use has been increasing in the United States over the

period 1971-2014, even as the energy expenditure share was constant (see figure 2). ktoe is kilotons of oil equivalent,

a measure of energy content. Panel (b) presents estimates of the availability and extraction cost of fossil fuel resources.

Original estimates are from McGlade and Ekins (2015). Quantities are measured as zettajoules (ZJ) of final-use energy

that can be extracted from available primary energy resources. Transformations from primary to final-use energy

availability were performed using information from Rogner et al. (2012), the EIA, and the IEA.

progress in the energy extraction sector.

The underlying model of energy costs will help determine the equilibrium impacts of envi-

ronmental policy. When policy decreases energy use, extraction prices decrease as well, partially

offsetting the environmental benefits of the original intervention. The strength of this feedback

depends on the nature of supply. Also, the fact that energy use will increase in the absence of

policy implies that larger interventions are needed to hit specific environmental policy goals, when

compared to a world where energy use would decrease even without targeted policy.

3 Model

3.1 Structure

3.1.1 Final Good Production

The model extends the standard endogenous growth production function to account for energy

use. Final good production is perfectly competitive. To match the low short-run elasticity of

substitution between energy and non-energy inputs, I will consider a Leontief structure

Qt =

∫ 1

0
min

[
(AN,t(i)Xt(i))

α L1−α
t , AE,t(i)Et(i)

]
di, (3)

s.t. AE,t(i)Et(i) ≤ AN,t(i)Xt(i)
αL1−α

t ∀i, (4)

where Qt is gross output at time t, AN,t(i) is the the quality of capital good i, Xt(i) is the quantity

of capital good i, Lt is the aggregate (and inelastic) labor supply, AE,t(i) is the energy efficiency
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of capital good i, and Et(i) is the amount of energy devoted to operating capital good i. Several

components of the production function warrant further discussion. As in the standard endogenous

growth production function, output is generated by a Cobb-Douglas combination of aggregate labor,

Lt, and a series of production processes, each of which uses a different capital good, indexed by

i. Unlike the endogenous growth literature, each production process also requires energy to run.

Thus, the usual capital-labor composite measures the potential output that can be created using

each production process, and the actual level of output depends on the amount of energy devoted to

each process, Et(i). The notion of potential output is captured by constraint (4). Each capital good

i has two distinct technological characteristics. The quality of the capital good, AN,t(i), improves

its ability to produce output. The energy efficiency of the capital good, AE,t(i), lowers the amount

of energy needed to operate the production process at full potential.13

3.1.2 Energy Sector

Energy supply is subject to increasing extraction costs (see, e.g., Heal, 1976; Pindyck, 1978; Lin

and Wagner, 2007). Extraction costs are paid in final goods, and energy is provided by a perfectly

competitive sector with open access.14 The increasing extraction cost incorporates two main forces

that govern long-run energy availability. First, it captures the increase in cost needed to extract

conventional energy resources from harder-to-access areas.15 Second, it captures the increase in

cost that may occur when a particular energy source is exhausted, necessitating a switch to a type

of energy that is more difficult to extract.

The fact that production is open-access implies that Hotelling (1931) rents play no role in

determining prices. In other words, agents do not behave as if energy resources are finite. As

discussed in Section 2.3, this is necessary to match data on long-run energy use. When examining

the implications of the model, I also assume that the underlying energy supply limits are never

reached. This is consistent with existing models and geological evidence. In particular, the infinite

supply of energy and increasing extraction costs capture the existence of ‘unconventional’ energy

sources, which have high extraction costs but are available in vast quantities (Rogner, 1997; Rogner

et al., 2012).16 As in Golosov et al. (2014), the treatment of energy sources as infinite in potential

13Consistent with the econometric literature on energy use, energy requirements depend both on the amount of
capital and the amount of labor being used in the production process (Van der Werf, 2008; Hassler et al., 2012,
2016b). Consistent with both the econometric and DTC literatures, improvements in non-energy technology, AN (i),
raise energy requirements (e.g., Smulders and De Nooij, 2003; Van der Werf, 2008; Hassler et al., 2012, 2016b; Fried,
2018). This framework is isomorphic to one in which AN (i) is the relative price of investment goods.

14Since energy extraction is not forward looking, the competitive equilibrium will not be pareto optimal.
15For example, recent research suggests that most new oil production comes from the exploitation of new geographic

areas, rather than improved technology applied to existing sources of energy (Hamilton, 2012).
16For example, Rogner et al. (2012) estimate a resource base of 4,900 – 13,700 exajoules (EJ) for conventional oil,

compared with annual production of 416 EJ across all energy sources. Thus, constraints on availability of conventional
oil sources may be binding. The ability to exhaust fossil fuel energy sources, however, appears much less likely when
considering other options. The resource base for unconventional sources of oil is estimated to be an additional 3,750
– 20,400 EJ. Meanwhile, the resource base for coal and natural gas (conventional and unconventional) are 17,300–
435,000 EJ and 25,100 – 130,800 EJ, respectively. These estimates rely on projections regarding which resources
will be profitable to extract from the environment. When considering the full range of energy sources that could
become profitable to extract as resource prices tend towards infinity, the numbers grow even larger. In particular,
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supply also incorporates the abundance of coal, which is predicted to be the major driver of climate

change (van der Ploeg and Withagen, 2012; Hassler et al., 2016a).17 Together, the vast quantities

of coal and ‘unconventional’ energy sources imply that using too much fossil energy, rather than

exhausting supply, is the relevant environmental concern (Covert et al., 2016).

The marginal cost of extraction, which will also be equal to the price, is given by

pE,t = AV,tĒ
ψ
t−1, (5)

where Ēt−1 is cumulative energy ever extracted at the start of period t, and AV,t captures differential

state of technology between the energy extraction and final good sectors.

As discussed in Section 2, the price of energy relative to output has been increasing since the

early 1970s. This can occur for two reasons. First, AV,t could increase over time, implying the

technological progress in the extraction sector is slower than technological progress in the final

goods sector. Second, ψ > 0 implies that the cost of energy extraction increases over time, even

when there is no differential technological progress. There is ample evidence that extraction costs

increase with fixed technology (e.g., McGlade and Ekins, 2015; Rogner et al., 2012). For simplicity,

I assume that differential technological progress is given by the exogenous process

AV,t = (1− gV )AV,t−1, (6)

and focus on endogenous and directed technical change in energy demand. If gV > 0, then tech-

nological progress is faster in the extraction sector (i.e., the rate at which capital and labor can

be used to extract energy improves faster than the rate at which capital and labor can be used to

produce final goods).

The law of motion for the stock of extracted energy is given by

Ēt = Et + Ēt−1, (7)

where Ēt is cumulative energy used at the end of period t and Et is flow energy use during period

t. The fact that extraction costs are constant within each period is a useful simplification. As

motivation, it is intuitive to consider the case where energy producers exploit new sources of energy

in each period and the difficulty of extraction is constant within each source.18,19

such ‘additional occurrences’ are estimated to be larger than 1 million EJ for natural gas and 2.6 million EJ for
uranium.

17Technically, Golosov et al. (2014) specify a finite amount of coal, but assume it is not fully depleted. Thus, it
has no scarcity rent, although it does have an extraction cost. Oil, by contrast, is assumed to have no extraction
cost, but does have a positive scarcity rent. Hart and Spiro (2011) survey the empirical literature and find little
evidence that scarcity rents are a significant component of energy costs. They suggest that policy exercises focusing
on scarcity rents will give misleading results.

18This is consistent, for example, with recent evidence from the oil industry, where drilling, but not within-well
production, responds to changes in prices (Anderson et al., 2014).

19A primary goal of this paper is to compare the results of the new DTC model to the standard CD approach
used in integrated assessment models (IAMs) (e.g., Nordhaus and Boyer, 2000; Golosov et al., 2014). Since IAMs
examine worldwide outcomes, it is crucial to consider the equilibrium effect of policy on energy prices. Hence, the
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3.1.3 Final Output

Final output is given by gross production less total energy extraction costs, which are equal to

energy expenditures by the final good producer. As long as equation (4) holds with equality,20 final

output is given by

Yt = L1−α
t

∫ 1

0

[
1−

pE,t
AE,t(i)

]
(AN,t(i)Xt(i))

α di. (8)

This formulation further illuminates the continuity between the production function used here and

the standard approach in endogenous growth models. Output has the classic Cobb-Douglas form

with aggregate labor interacting with a continuum of capital goods. The model developed in this

paper extends the standard endogenous growth set-up model by considering a broader notion of

aggregate productivity,
[
1− pE,t

AE,t(i)

]
· (AN,t(i))α. Productivity is determined two different types

of embodied technology, as well as energy extraction costs. The functional form is driven by the

fact that underlying production function is Leontief. I show that this updated formulation leads

to a tractable growth model. Moreover, in the long-run, the updated technology index grows at a

constant rate, and the model can explain all of the usual balanced growth facts.

Final output can either be consumed or saved for next period. In the empirical application,

each period will be ten years. Following existing literature, I assume complete depreciation during

production (Golosov et al., 2014). Market clearing for the final good implies

Yt = Ct +Kt+1 = Ltwt + rtKt + Πt + pRt + Tt, (9)

where Kt is aggregate capital, Πt is total profits, Tt is net tax revenue, and pRt is total payments

to R&D inputs (discussed in the next section). I assume that the government balances the budget

using lump-sum taxes or transfers.

3.1.4 Capital Goods and Research

Each type of capital good is produced by a single profit-maximizing monopolist in each period.

This monopolist also undertakes in-house R&D activities to improve the embodied technological

comparison between models is most accurate when considering endogenous prices. At the same time, I also use the
model to investigate the effect of policies pursued in the United States. In this case, endogenous energy prices can be
motivated in two ways. First, it is possible to think of the United States as a closed economy, which is a good match
for some, but not all, sources of primary energy. Alternatively, one can imagine the policies being applied worldwide
with the United States making up a constant fraction of total energy. To ensure that the results of the paper are not
driven by this assumption, I also consider the opposite case of exogenous energy prices, which implicitly treats the
United States as a small open economy taking unilateral policy actions. In this case, energy prices will increase at a
constant exogenous rate.

20To ensure that equation (4) holds with equality, it is sufficient, but not necessary, to assume that capital fully
depreciates after each period. If capital fully depreciates, then forward looking consumers will never over invest in
capital and drive its return to zero.
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characteristics, AN,t(i) and AE,t(i). The R&D production function is given by

AJ,t(i) =
[
1 + ηJRJ,t(i)

1−λ
]
AJ,t−1, J = N,E, (10)

where RJ,t(i) is R&D inputs assigned to characteristic J by firm i in period t, and AJ,t−1 ≡
max{AJ,t−1(i)}. I also define RJ,t ≡

∫ 1
0 RJ,t(i)di. R&D builds on aggregate knowledge, AJ,t−1,

and within-period research allocations, RJ,t(i). There are decreasing returns to R&D within a

period. When the period ends, patents expire and all technology becomes available to all firms.

Monopolists make decisions to maximize single period profits.21

There are a unit mass of R&D inputs, yielding

RN,t +RE,t = 1 ∀t. (11)

Thus, RJ,t can be interpreted as the total share of research inputs used to improve technology

of type J . The fixed set of research inputs is a stand in for two offsetting forces, an increase in

aggregate research inputs and an increase in the cost of generating a given aggregate growth rate

(Jones, 1995, 2002; Bloom et al., 2016). This approach is consistent with both existing literature

on DTC and the environment (Acemoglu et al., 2012; Fried, 2018; Hassler et al., 2019) and the

social planner model of Hassler et al. (2012, 2016b).22,23

I assume that the investment price is fixed at unity. Thus, market clearing implies that∫ 1

0
Xt(i)di = Kt, (12)

where Kt is aggregate capital.

21This can be motivated in several ways. Most directly, the identity of the firm producing capital good i could
change after each period. Alternatively, it could be the case that firms are infinitely lived but myopic, which seems
reasonable considering the ten year period length. The set-up presented here is isomorphic to one where firms are
infinitely lived and the aggregate technology, AJ,t−1, is given by the average of the previous period’s technology as in
Fried (2018). This would open up the possibility of technological regress at the firm level, though it would not occur
in equilibrium.

22Often, models of directed technical change refer to the fixed set of research inputs as scientists (e.g., Acemoglu,
2003; Acemoglu et al., 2012; Fried, 2018). This would be applicable here, though generating the standard Euler
equation would require the representative household to ignore scientist welfare (in the environmental literature,
directed technical change and capital accumulation are generally not included simultaneously). This would be a
close approximation to a more inclusive utility function as long as scientists made up a small portion of the overall
population. For simplicity, I refer to research inputs, which could be scientists, research labs, etc.

23An extension of the model presented in Appendix Section B.8 incorporates aspects of second-wave endogenous
growth theory (e.g., Peretto, 1998; Young, 1998; Howitt, 1999) to eliminate the scale effects present in most directed
technical change models (e.g., Acemoglu, 2002, 2003; Hassler et al., 2012, 2016b). As a result, the extended model
has a BGP with a growing set of R&D inputs, as well as free mobility of workers between production and R&D and
free entry of new capital good producers. Following the existing quantitative literature on the macroeconomics of
climate change (Acemoglu et al., 2016; Fried, 2018), the analyses conducted in this paper have a fixed set of R&D
inputs. The extended model demonstrates that the core intuition of the baseline model holds in a richer setting.
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3.1.5 Consumer Problem

The consumer side of the problem is standard. In particular, the representative household chooses

a path of consumption such that

{Ct}∞t=0 = argmax
∞∑
t=0

βtLt
c̃1−σ
t

1− σ
, (13)

where c̃t = Ct/Lt. Population growth is given exogenously by

Lt+1 = (1 + n)Lt. (14)

I am interested in the decentralized equilibrium. Thus, I consider the case where the representative

household takes prices and technology as given.

3.2 Analysis

As demonstrated in Appendix Section B.1, the first order conditions for the final good producer

yield the following inverse demand functions:

pX,t(i) = αAN,t(i)
α

[
1−

τtpE,t
AE,t(i)

]
L1−α
t Xt(i)

α−1, (15)

wt = (1− α)

∫ 1

0

[
1−

τtpE,t
AE,t(i)

]
L−αt (AN,t(i)Xt(i))

α di, (16)

where τt ≥ 1 is a value-added tax on energy. The intuition for the result is straightforward. The

final good producer demands capital goods until marginal revenue is equal to marginal cost. Unlike

the usual endogenous growth model, marginal revenue is equal to marginal product minus the cost

of energy needed to operate capital goods. Consider the case where the final good producer is

already operating at a point where (AN,t(i)Xt(i))
α L1−α

t = AE,t(i)Et(i). If the final good producer

purchases more capital, it receives no increase in output unless there is a corresponding increase in

energy purchased. The final good producer realizes this when making optimal decisions and adjusts

demand for capital accordingly. This iso-elastic form for inverse demand maintains the tractability

of the model.

Monopolist providers of capital goods must decide on optimal production levels and optimal

research allocations. See Appendix Section B.2 for a formal derivation of monopolist behavior.

Given the iso-elastic inverse demand function, monopolists set price equal to a constant markup

over unit costs. Since capital goods must be rented from consumers, the unit cost is given by

τKt rt, where rt is the rental rate and τKt is a subsidy for capital purchases. For all subsequent

analyses, I assume that τKt = α ∀t, which undoes the monopoly distortion generated by embodied

technological progress. This facilitates comparison between the new DTC model and existing work,
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which generally assume perfect competition. Thus, monopolist optimization yields

pX,t(i) = rt, (17)

Xt(i) = α
1

1−α r
−1
1−α
t AN,t(i)

α
1−αLt

[
1−

τtpE,t
AE,t(i)

] 1
1−α

, (18)

π̄X,t(i) = (
1

α
− 1)α

2
1−α r

−α
1−α
t AN,t(i)

α
1−αLt

[
1−

τtpE,t
AE,t(i)

] 1
1−α

, (19)

where π̄X,t(i) is production profits (i.e., profits excluding research costs) of the monopolist.

To understand research dynamics, it is helpful to look at the relative prices for research inputs,

(1− ηSt )pRE,t(i)

pRN,t(i)
=

τtpE,tAN,t(i)

αAE,t(i)2
[
1− τtpE,t

AE,t(i)

] ηERE,t(i)−λAE,t−1

ηNRN,t(i)−λAN,t−1
, (20)

where pRJ,t(i) is the rent paid to research inputs used by firm i to improve technological characteristic

J at time t and ηSt ∈ [0, 1) is a subsidy for energy efficient research. There are several forces affecting

the returns to R&D investment. First, increases in the tax-inclusive price of energy increase the

relative return to investing in energy efficiency. Second, the return to investing in a particular type

of R&D is increasing in its efficiency. Research efficiency, in turn, depends on inherent productivity,

ηJ , accumulated knowledge, AJ,t−1, and the degree of decreasing returns, RJ,t(i)
−λ. Third, since

energy and non-energy inputs are complements in production, increases in AN,t(i) raise the return

to investing in AE,t(i) and vice versa. These effects, however, are asymmetric. The asymmetry

occurs because energy efficiency, AE,t(i), has a negative and convex effect on the cost of energy

per unit of final output,
τtpE,t
AE,t(i)

. Finally, the return to investing in the quality of capital goods is

increasing in elasticity of output with respect to technology, α.

In the usual DTC model, this analysis would demonstrate the role of market size effects and

price effects in research incentives (Acemoglu, 1998, 2002). As demonstrated in equation (20),

however, aggregate inputs do not affect R&D decisions in this model. In other words, market size

effects play no role in this model. This is due to the short-run complementarity between energy

and non-energy inputs. Moreover, the price effects in this model differ from those in the usual DTC

model. Since the price of the final good is the numeraire,
τtpE,t
AE,t(i)

is the cost of energy per unit of

final good production, and 1 − τtpE,t
AE,t(i)

is the cost of non-energy inputs in final good production.

Thus, the relative input prices do affect research allocations, but the relative price is completely

determined by the cost of energy extraction. Moreover, as explained above, the relative price of

energy – along with lagged technology levels – enter asymmetrically, unlike in the seminal model.

These theoretical differences highlight the importance of considering the case where improvements

in energy efficiency are driven by final-use energy, rather than using the more common approach

where innovation occurs in different sectors.

To understand the intuition of the model, it is helpful to consider the laissez-faire case (τt =

1, ηSt = 0). Then, noting that the price of research inputs must be the same for each technology,
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equation (20) can be re-written as:

1 + gE,t(i)

1 + gN,t(i)
=
θE,t(i)

α

ηERE,t(i)
−λ

ηNRN,t(i)−λ
, (21)

where θE,t(i) =

pE,t
AE,t(i)

1−
pE,t

AE,t(i)

. This equation has a natural interpretation. Monopolists must trade off

the relative benefits and costs of investing in the two types of technology. The ratio
θE,t(i)
α is a

summary measure of the relative return to investment in energy efficiency. As discussed below,

θE,t(i) measures the energy expenditure share, which captures the benefit of energy efficiency

improvements. Meanwhile, α gives the fraction of increased final output that will be paid to

capital good producers. The remaining terms on the right-hand side capture the inverse of relative

costs – i.e. research efficiencies – of investing in the two types of technology, which are determined

by inherent productivity and the degree of decreasing returns.

Given that all firms use common technology at the start of the period, they make identical

R&D decisions and end the period with identical technology. Moreover, there is a unit mass of

monopolists. Thus, RJ,t(i) = RJ,t ∀i, J, t. The optimal research allocations are given by the implicit

solution to (22) and (23),

RE,t =

√
τtpE,t
AE,t−1

√
1

α(1−ηSt )

[
ηER

−λ
E,t

ηN (1−RE,t)−λ
+ ηER

−λ
E,t − ηER

1−λ
E,t

]
+ (1 + ηER

1−λ
E )− 1

ηER
−λ
E,t

, (22)

RN,t = 1−RE,t. (23)

To analyze the determinants of research activity, it is instructive to consider multiplying both sides

of (22) by ηER
−λ
E,t so that the growth rate of energy efficiency technology is given as a function

of the other parameters. Since ηSt ∈ [0, 1), the left-hand side is strictly increasing in RE,t in this

formulation and the right-hand side is strictly decreasing in RE,t. Thus, RE,t = Γ(
τtpE,t
AE,t−1

), for some

function Γ(·).
Two implications can be immediately read from equations (22) and (23). First, on a balanced

growth path,
τtpE,t
AE,t−1

must be constant. As discussed in Section 3.1.3, this implies that the relevant

technology index in the economy will grow at a constant rate and that the model will have a

balanced growth path that resembles the standard neoclassical growth model. Second, the model

is relatively easy to investigate computationally, because conditional on the price of energy, it is

possible to solve for the full sequence of technology parameters independently of capital, the other

state variable.

Utility maximization yields (
c̃t
c̃t+1

)−σ
= βrt+1. (24)
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Noting that all monopolists make the same decisions and that there is a unit mass of monopolists,

the real interest rate is given by

rt = αAαN,t

[
1−

τtpE,t
AE,t

]
L1−α
t Kα−1

t , (25)

where the market clearing condition from equation (12) has been applied.

3.3 Equilibrium

Definition 1. A competitive equilibrium is a sequence of prices, {wt, pX,t, rt, pRt , pE,t}∞t=0, alloca-

tions, {Ct,Kt, Lt, Et, RN,t, RE,t}∞t=0, technology levels, {AN,t, AE,t}∞t=0, and environmental policies,

{τt, ηSt }∞t=0, such that each of the following conditions holds ∀t:

• The economy obeys market clearing conditions for final goods, (9), and capital goods, (12).

• Optimal research allocations solve (22) and (23).

• The dynamics for technology follow (6) and (20), noting that all monopolists make identical

decisions.

• Consumer behavior follows the Euler equation, (24).

• Factor prices are given by (5), (16), (17), and (25), noting that all monopolists make identical

decisions and that the market for capital goods clears.

• The economy obeys laws of motion for total extracted energy, (7), and population, (14).

• Initial Conditions AJ,−1 for J = E,N, V , K0, L0, and Ē−1 are given.

3.4 Balanced Growth under Laissez Faire

In this section, I examine long-run outcomes in the absence of environmental policy.

Definition 2. A laissez-faire equilibrium is a competitive equilibrium without environmental pol-

icy, i.e., τt = 1 and ηSt = 0 ∀t.

Definition 3. A balanced growth path (BGP) is a path along which equilibrium quantities and

technology levels {Yt,Kt, Ct, AE,t, AN,t} grow at constant rates ∀t ≥ s ≥ 0.

I use asterisks (∗) to denote BGP values. On a BGP, research allocations must remain fixed.

Consider the laissez-faire case. From equations (22) and (23), it is immediate that
pE,t

AE,t−1
is constant.

Intuitively, this occurs because of the non-linear relationship between energy efficiency, AE,t, and

the cost of energy per unit of output,
pE,t
AE,t

. When energy prices increase, monopolists have greater

incentive to invest in energy efficient technology, but this incentive dissipates as energy technology

improves and the cost of energy per unit of falls. As a result, energy prices and energy efficient

technology grow at the same constant rate, g∗P = g∗E , on the BGP.

18



Definition 4. The energy share of expenditure, denoted by θE,t, is the sum of resources paid to

energy producers and energy taxes as a fraction of final output, i.e., θE,t ≡
τtpE,tEt

Yt
.

Given that energy prices and energy efficiency grow at the same rate on the BGP, it is straight-

forward to show that the energy share of expenditure is constant on the BGP,

θE,t =
pE,t/AE,t

1− pE,t/AE,t
, (26)

which must be constant given that
pE,t

AE,t−1
is fixed and the growth rate of energy efficient technology

is constant.24 Thus, despite the Leontief nature of production, the model still delivers a constant

long-run energy expenditure share. As demonstrated in Section 2, this is consistent with aggregate

data from the United States. Importantly, the expenditure share is only constant on the BGP. It

will not be constant on the transition path following the implementation of environmental policy.

The fact that energy technology and the price of energy grow at the same rate yields the first

of two key BGP relationships. In particular,

(1− gV )(1 + g∗
M

)ψ = (1 + g∗E), (BGP-RD)

where g∗
M

is the growth rate cumulative energy use. This equation summarizes the conditions for

a BGP on the research side of the economy.

I now move to analyzing the remainder of the economy.

Definition 5. Total factor productivity is defined as in the standard neoclassical growth model,

i.e., TFPt ≡ Yt
Kα
t L

1−α
t

.

It is immediate that

TFPt = AαN,t

[
1−

pE,t
AE,t

]
. (27)

Since
pE,t
AE,t

is constant on the BGP in the absence of policy, TFP grows at rate (1 +g∗N )α−1, which

is also constant. Since the consumer problem and capital accumulation equation are standard, the

model now reduces to the standard neoclassical growth model, implying that the DTC model will

have the usual BGP properties. In particular, both final output and the capital stock will grow at

rate g∗Y = (1 + g∗N )
α

1−α (1 + n)− 1. From equation (3), therefore,

1 + g∗M =
(1 + g∗N )

α
1−α

1 + g∗E
(1 + n), (BGP-QE)

where g∗M is the growth rate of per period energy use. This is the key equation describing the

output side of the economy. For the remainder of the paper, I assume that

ηE > n. (A1)

24See Hart (2013) for a general discussion of the relationship between factor shares and directed technical change.
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This rules of the case where energy use grows even when all R&D effort is devoted to energy

efficiency.

To characterize the BGP, I compare equations (BGP-RD) and (BGP-QE). The growth rate of

the cumulative stock of energy depends on the growth rate of flow energy use. If g∗M ≤ 0, g∗
M

= 0.

Otherwise, g∗
M

= g∗M > 0. To be consistent with data from the United States, I assume that

(1− gV ) ≥

1 + ηN

(
1 +

[
gV
ηE

] 1
1−λ
)1−λ α

1−α

(1 + n). (A2)

which implies that g∗M > 0 in the absence of environmental policy. Combined with assumption

(A1), this also implies that g∗N > 0, which is again consistent with data. Energy prices have been

increasing over the last four and half decades. So, I assume that[
(1 + ηN )

α
1−α (1 + n)

]ψ
> (1− gV )−1, (A3)

which implies that it is possible for energy prices to increase in the long run. More specifically,

if there is no investment in energy efficiency, energy prices will increase over time. Given that

pE/AE,t is constant, this also implies that g∗E > 0.

If g∗M = g∗
M
> 0, as guaranteed by assumption (A2), then equations (BGP-RD) and (BGP-QE)

determine the relative growth rates of technology on the unique BGP. Adding in market clearing for

R&D inputs, equation (11), yields the optimal research allocations, and applying the law of motion

for technology, equation (10), gives the technology and energy use growth rates. The technology

growth rates are then sufficient to characterize the output-side of the BGP.

Proposition 1 summarizes and extends the results from this section. In particular, it uses the

relationship between equations (BGP-RD) and (BGP-QE) to explicitly characterize the balanced

growth path.

Proposition 1. Let assumptions (A1) – (A3) hold. In a laissez-faire equilibrium, there exists an

unique BGP on which each of the following holds true:

1. The research allocations are implicitly given by

R∗E =


[
(1+ηN (1−R∗

E)1−λ)
α

1−α (1+n)(1−gV )
1
ψ

] ψ
1+ψ
−1

ηE


1

1−λ

and R∗N = 1−R∗E.

2. Technological growth rates are given by g∗E = ηE(R∗E)1−λ and g∗N = ηN (1 − R∗E)1−λ. The

relationship between growth rates can be expressed as:

(1 + g∗E)
ψ+1
ψ = (1 + g∗N )

α
1−α (1 + n)(1− gV )

1
ψ .

3. Output per worker and consumption per worker grow at a constant rate, g∗R = (1+g∗N )
α

1−α −1.

4. Total output and the capital stock grow at a constant rate, g∗Y = (1 + g∗R)(1 + n) − 1, which

implies that the capital-output ratio is fixed.
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5. The real interest rate, rt, is constant.

6. Per period energy use grows at rate g∗M =
1+g∗R
1+g∗E

(1 + n)− 1 > 0.

7. The expenditure shares of energy, capital, labor, and R&D inputs are constant.

Proof. The intuition is provided in the text, and a formal proof is provided in Appendix Section

B.4.

3.5 Balanced Growth with Environmental Policy

In this section, I consider long-run outcomes in the presence of environmental policy.

Definition 6. An equilibrium with environmental policy is a competitive equilibrium where τt =

τ0(1 + gτ )t and ηSt = ηS, where gτ > 0 and ηs, τ0 ≥ 0 ∀t.25

In a world with increasing energy taxes, equations (22) and (23) now imply that the growth

rate of energy efficiency is equal to the product of growth in the energy price and the growth of

the taxes. Thus, balanced growth on the research side of the economy requires

(1 + gτ )(1− gV )(1 + g∗
M

)ψ = (1 + g∗E), (BGP-RD′)

which is equivalent to the laissez-faire condition if gτ = 0. This also implies that, on a BGP,

limt→∞
pE,t
AE,t

= 0. Thus, limt→∞[Qt − Yt] = 0 and limt→∞ θE,t =
τtpE,t
AE,t

, which is constant. The

following condition ensures that energy efficiency can grow fast enough to keep up with changes in

tax-inclusive energy prices:

ηE > (1− gV )(1 + gτ )− 1 > 0. (A4)

In the limit, the model again reduces to that of the standard neoclassical growth model. As a

result, the BGP condition for the output side of the economy is unchanged,

1 + g∗M =
(1 + g∗N )

α
1−α

1 + g∗E
(1 + n). (BGP-QE′)

If g∗M = g∗
M
> 0, then it is possible to characterize the BGP using the same steps as in Section

3.4. Noting the similarity between (BGP-RD′) and (BGP-QE′) on one hand and (BGP-RD) and

(BGP-QE) on the other, it is immediate that the growth rate of technological progress is unaffected

by the level of taxes or the research subsidy.

As demonstrated in equation (BGP-RD′), the existence of increasing energy taxes weakens the

link between the cost of energy extraction, pE,t, and energy efficient research. If energy taxes grow

fast enough, energy use may not increase on the BGP. In this case, the research allocations can

25I restrict the formal analysis to the case of exponentially increasing taxes and a fixed research subsidy for analytic
convenience. This restriction allows for the simple characterization of a balanced growth path, but does not drive
any of the underlying intuition.
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be found by setting g∗
M

= 0 in (BGP-RD′). The following condition must hold for energy use to

increase on the BGP:

(1− gV )(1 + gτ ) ≤

1 + ηN

(
1−

[
(1− gV )(1 + gτ )− 1

ηE

] 1
1−λ
)1−λ α

1−α

(1 + n). (A5)

Intuitively, this condition places restrictions on the exogenous growth in tax-inclusive energy prices.

If energy prices grow quickly even when energy use does not, energy use need not grow on the BGP.

Remark 1. In an equilibrium with environmental policy,
dg∗M
dgτ

< 0. Moreover, g∗M > 0 if and only

if assumption (A5) holds.

Even if assumption (A5) does not hold, the growth rate of technological progress is unaffected by

the level of taxes or the research subsidy.

Remark 2. In an equilibrium with environmental policy, changes in energy research subsidies and

the level of energy taxes have no effect on the BGP growth rate of energy. Formally,
dg∗M
dτ0

=
dg∗M
dηS

= 0.

Proof. The intuition follows from the preceding discussion. Formally, the remark follows from

Proposition 2.

All of the results presented thus far are summarized and extended in Proposition 2. In particular,

it uses the relationship between equations (BGP-RD′) and (BGP-QE′) to explicitly characterize

the BGP in the presence of environmental policy.

Proposition 2. Let assumptions (A1)–(A4) hold. In an equilibrium with environmental policy,

there exists an unique BGP on which each of the following holds true:

1. If assumption (A5) holds, research allocations are implicitly given by

R∗E =


[
(1 + ηN (1−R∗E)1−λ)

α
1−α (1 + n)[(1 + gτ )(1− gV )]1/ψ

] ψ
1+ψ − 1

ηE


1

1−λ

and R∗N = 1−R∗E .

Otherwise, research allocations are given by

R∗E =

[
(1− gV )(1 + gτ )− 1

ηE

] 1
1−λ

and R∗N = 1−R∗E .

2. Technological growth rates are given by g∗E = ηE(R∗E)1−λ and g∗N = ηN (1 − R∗E)1−λ. If

assumption (A5) holds, the relationship between growth rates can be expressed as

(1 + g∗E)
ψ+1
ψ = (1 + g∗N )

α
1−α (1 + n)[(1− gV )(1 + gτ )]1/ψ.

3. Output per worker and consumption per worker grow at a constant rate, g∗R = (1+g∗N )
α

1−α −1.
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4. Total output and the capital stock grow at a constant rate, g∗Y = (1 + g∗R)(1 + n) − 1, which

implies that the capital-output ratio is fixed.

5. The real interest rate, rt, is constant.

6. Per period energy use grows at rate g∗M =
1+g∗R
1+g∗E

(1 + n)− 1.

7. The expenditure shares of energy, capital, labor, R&D inputs, and profits are all constant.

Proof. The intuition is provided in the text, and a formal proof is provided in Appendix Section

B.4.

3.6 Comparison to Cobb-Douglas

As mentioned in the introduction, the standard approach in climate change economics is to treat

energy as a CD component of the aggregate production function (Nordhaus and Boyer, 2000;

Golosov et al., 2014). The standard CD production function is given by

QCDt = ACDt Kγ
t E

ν
t L

1−γ−ν
t ,

where ACDt grows at an exogenous rate, gCD. Since energy extraction costs pE,t units of the final

good, final output is given by

Y CD
t = (1− ν

τ
)ACDt Kγ

t E
ν
t L

1−γ−ν
t .

As a result, the energy expenditure share under Cobb-Douglas is given by

θCDE,t =
ν

1− ν
τt

.

In the absence of growing taxes, the energy expenditure share is constant, matching the long-run

elasticity of substitution between energy and non-energy inputs, but not the near-zero short-run

elasticity of substitution. This has important implications for climate policy. In the CD model, a

tax on energy use – no matter how large – immediately generates declines in energy use that are

sufficient to leave the expenditure share essentially unchanged.26 This is at odds with data showing

that the energy expenditure share increases when the price of energy increases.

Since addressing climate change inherently involves long-run outcomes, the existing literature

argues that the CD approach may provide accurate predictions about the reaction of energy use to

policy interventions over the relevant time frame, even though it cannot match short-run responses

(e.g., Golosov et al., 2014; Hassler et al., 2016c, 2017; Barrage, forthcoming). The analytic results

from Section 3.5, however, cast doubt on this assertion. The DTC model matches both the short-

and long-run elasticities, suggesting that it will more accurately predict the effect of environmental

26In response to new energy taxes, there is actually a slight decrease in the energy expenditure share, which is due
to the tax rebate. This effect is quantitatively unimportant.
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taxes on energy use. This new model predicts that, in response to policy, the energy expenditure

share will not be constant on the transition path and the balanced growth level of the energy

expenditure share may even increase permanently in response to policy. Thus, there is good reason

to expect that the CD approach overestimates the decline in energy use following an environmental

policy intervention. Section 5.1 quantifies the difference in predictions between the models.27

4 Calibration

4.1 External Parameters

I solve the model in 10 year periods. As discussed above, the consumer and non-energy production

portions of the model are standard. I follow Golosov et al. (2014) and set α = .35, δ = 1, σ = 1,

and β = .860. I assume that the economy starts without environmental policy. As a result, all

taxes and subsidies can be thought of as relative to ‘business as usual’ case, which serves as the

baseline.

In addition to standard neoclassical elements, the DTC model includes R&D and energy ex-

traction. Thus, the parameters from these segments of the model cannot be taken from the existing

literature. Data sources and details can be found in Appendix A. Due to limitations on energy

expenditure data, I restrict attention to the period 1971-2016.

Over this period, the average growth rate of output in the United States was gY = 0.33

(2.9%/year). Population growth was n = 0.10 (1.0%/year). On the BGP, the growth rate of

income per capita is given by g∗R = (1 + g∗N )
α

1−α − 1. In the data, g∗R = 0.20 (1.9%/year), which

yields g∗N = 0.41. Final-use energy consumption in the United States grew at rate g∗M = 0.06

(0.6%/year). So, g∗E = 0.25 (2.2%/year), which is also the growth rate of energy prices, g∗P , on

the BGP. The average energy expenditure share in the data is 8.4%, and the expenditure share of

R&D is 2.6%.

4.2 R&D Calibration

The R&D production function has three unknown parameters, ηN , ηE , and λ. The η terms capture

the inherent efficiency of R&D in improving the two types of technology, while λ governs the the

degree of diminishing returns.

From equation (21), research arbitrage implies that

1 + gE,t
1 + gN,t

=
θE,t
α

ηE
ηN

(
RE,t

1−RE,t

)−λ
∀t, (28)

which takes advantage of the fact that all capital good producers make identical decisions.28 Next,

27In Appendix Section B.5, I explain the calibration procedure for the CD model and describe the balanced growth
path. I calibrate both models so that they have identical predictions for output and energy use in the absence of
policy.

28Hassler et al. (2016b) identify a similar relationship between equilibrium growth rates and the expenditure share
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consider the following two equations,

gE,t = ηE(RE,t)
1−λ, (29)

gN,t = ηN (1−RE,t)1−λ, (30)

which ensure that rates of technological progress match the data. Taking the ratio of (29) and (30)

yields

gE,t
gN,t

=
ηE
ηN

(
RE,t

1−RE,t

)1−λ
. (31)

Substituting ηE
ηN

from equation (31) into (28) and rearranging yields

RE,t
1−RE,t

=
gE,t

1 + gE,t

1 + gN,t
gN,t

θE,t
α
, (32)

which captures the equilibrium relationship between research allocation and growth rates. Con-

ditional on the equilibrium energy expenditure share, the equilibrium research allocations can be

found without knowing any of the parameters of the R&D production function. As expected, there

is a positive relationship between RE,t and both gE,t and θE,t. In equilibrium, research expenditure

on energy efficiency is higher when the growth rate of energy efficiency is high and when the energy

expenditure share is large. Bringing this equation to data yields, R∗E = 0.14 and R∗N = 0.86, which

implies that 14% of all R&D effort is devoted to improving energy efficiency.

As shown in the Appendix Section B.4.2, the equilibrium R&D share of GDP is equal to

θ∗R ≡
pRt
Yt

= (1− λ)α2
ηN

(
R∗N,t

)−λ
1 + g∗N

, (33)

on a BGP without environmental policy. Combined with equation (30), this gives

θ∗R = (1− λ) · α2 ·
g∗N/R

∗
N

1 + g∗N
, (34)

which yields λ = 0.38. Again, this result is independent of the other parameters in the R&D

production function. With an estimate of λ, I use equations (29) and (30) to solve for ηE = 0.85

and ηN = 0.45. The results suggest that improving energy efficiency technology is inherently easier

than improving non-energy technologies. Intuitively, this results follows from two facts observed

in the data. First, the energy expenditure share is small compared to the capital share of income,

of energy when considering a social planner solution with a general CES production function and a finite set of energy
resources that can be extracted from the environmental without cost (see also, Hart, 2013). In their framework, the
long-run equilibrium must also conform to the social planner’s optimal depletion condition for the energy resource.
This pins down the long-run expenditure share and technology growth rates. Since energy use is currently rising, the
data suggests that the BGP conditions are not met in the Hassler et al. (2016b) world, leading to the prediction that
the energy expenditure share will increase and consumption growth will decrease in the long run.
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suggesting that there is little incentive for firms to invest heavily in energy efficiency. Second,

relative to the expenditure shares, the growth rate of energy efficiency is high. If the relative

benefit of investing in energy efficiency in low, but investment is high, it must be the case that the

cost of improving energy efficiency is low. In other words, it is inherently easier to improve energy

efficiency.

Fried (2018) examines directed technical change in clean versus dirty sources of energy, as

well as non-energy technology, and finds diminishing returns of λ = 0.21. I use this value in

robustness analyses. Existing empirical work in endogenous growth models finds cost functions

that are approximately quadratic in research effort (Acemoglu et al., 2018; Akcigit and Kerr, 2018).

This would give λ = 0.5. As shown in Section 5.1, this would increase the difference between the

DTC and CD models.

4.3 Energy Sector Calibration

To calibrate the energy sector parameters, I start by noting that, on the BGP, both cumulative

and per period energy use grow at the same constant rate (i.e., g∗M = g∗
M

). The per period growth

rate of energy, g∗M , is observed in the data. Thus, I calculate the initial level of extracted energy as

E0

Ē−1
= g∗M , (35)

where E0 is flow energy use in the first period and Ē−1 is the cumulative energy used prior to the

first period. The calibration yields Ē−1/E0 = 15.7. Conditional on ψ, the ratio between the initial

stock and the per period flow of energy use determines the degree to which energy prices fluctuate

in response to policy-induced changes in energy use. If the stock of consumed energy is large, then

per period energy use fluctuations will only have a small effect on extraction costs.

The parameter ψ captures the shape of the energy extraction cost curve. To calibrate this

parameter, I use estimates of energy availability and extraction costs from McGlade and Ekins

(2015). They estimate global extraction cost curves for coal, oil, and natural gas. I combine these

curves to calculate total final-use energy availability at each extraction cost.

Figure 4 reproduces the resulting curve, which was also shown in figure 3. The outcome variable,

costi, is the cumulative extraction cost and is measured in 2010 dollars. The explanatory variable,

Ri, is the total amount of final-use energy available at costi or less in 2010. It is measured in

zettajoules (ZJ). I divide the range of Ri into 200 equally-spaced grid points and find the extraction

cost at each point. These grid points are the unit of observation, i, in the regression described

below.29

Taking logs, equation (5) is given by

ln pE,t = lnAV,t + ψ ln

(
Ē−1 +

t∑
s=0

Es

)
. (36)

29See appendix section B.6 for further details about the data and construction of the figure.
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Figure 4: Extraction Costs. Panel (a) presents extraction cost curves in terms of final-use energy availability.
Panel (b) shows the fit of equation (37) when estimated by OLS. Original cost and availability estimates are from
McGlade and Ekins (2015), and adjustments for the average efficiency at which primary energy is converted to
final-use energy are calculated using data from Rogner et al. (2012), the IEA and the EIA.

Here, pE,t is the extraction cost at time t, which corresponds to costi in the data. Costs are

measured at a single point in time. Also,
∑t

s=0Es is the amount of energy used between periods 0

and t. This corresponds to Ri in the data, which is the amount of energy that could be extracted

at a given cost. In the model, Ē−1 is cumulative energy used prior to start of the model. The

estimates from McGlade and Ekins (2015) do not include past extraction. Rogner et al. (2012)

estimate that cumulative extraction of coal, natural gas, oil prior to 2005 has been 16.5 ZJ,30 which

I take as given for the regression. Finally AV,t is the state of extraction technology at the time that

costs are measured, which is held constant in the data. Thus, I estimate

ln costi = b0 + b1 ln (16.5 +Ri) , (37)

by ordinary least squares. The coefficient of interest is b1, which provides the estimate of ψ. The

results of the regression are show in panel (b) of figure 4. I find ψ̂ = 1.16.31

With an estimate of ψ, it is now possible to calibrate gV , the growth rate of extraction technology

relative to TFP. From equation (5), the growth rate of the real energy price is given by

(1 + g∗P ) = (1− gV )(1 + g∗M )ψ. (38)

30See table 7.1 in their work. This estimate is in terms of primary energy. Converting primary to final-use energy
using the conversion factors described in Appendix Section B.6 yields ψ = 0.99 instead of ψ = 1.16. Given that these
estimates are relatively similar and it is not clear how accurate transformation data are for historical use, I use the
more conservative estimate of ψ.

31The regression has heteroskedasticity-robust standard errors of 0.03. Given that the underlying data are them-
selves estimates and that they have been aggregated together to build a cumulative cost curve, I do not rely on these
standard errors below. Instead, I show robustness with the extreme values of ψ = 0 (exogenous energy prices) and
ψ = 3.64 (gV = 0).
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Table 1: Parameters

Parameter Value Description Source

α .35 Capital share of income Golosov et al. (2014)
δ 1 Depreciation Golosov et al. (2014)
β .860 Discount factor Golosov et al. (2014)
σ 1 Inter-temporal substitution Golosov et al. (2014)
n 0.10 Population growth EIA

λ 0.38 Research dim. returns Calibrated
ηE 0.85 Research efficiency Calibrated
ηN 0.45 Research efficiency Calibrated

ψ 1.16 Extraction cost convexity Calibrated
Ē−1/E0 15.7 Energy stock/flow Calibrated
gV -0.17 Extraction technology growth Calibrated

Taking logs and rearranging, the BGP relationship becomes

ln(1− gV ) = ln(1 + g∗P )− ψ ln(1 + g∗M ). (39)

Differential technological progress is capturing the growth in energy prices that cannot be explained

by the shape of the extraction cost curve. This yields gV = −0.17 over ten years (-1.8%/year).

Technological progress in the energy extraction sector is significantly slower than technological

progress in final good production, though extraction technology is still improving over time. Finally,

the starting value AV,0 is a scale parameter calibrated to the starting price,

AV,0 =
pE,0

Ēψ−1

. (40)

Conditional on the other parameters, AV,0 simply reflects the choice of units.

For robustness, I also re-calibrate the energy extraction parameters under the assumption that

gV = 0. Then, ψ is directly identified from an updated version of equation (39): ψ = ln(1 +

g∗P )/ ln(1 +g∗M ). In this case, the increase in energy prices must be driven entirely by the convexity

of the extraction cost curve, which gives ψ = 3.64. As shown in section 5.1.4, this is a conservative

assumption in that it decreases the difference between the DTC and CD models. I also perform

robustness analyses assuming that energy prices grow at a constant exogenous rate. The results

are qualitatively and quantitatively similar to the baseline case, implying that none of the core

results in this paper rely on the functional form for extraction costs or the energy sector calibration

details.

4.3.1 Calibration Results

Table 1 presents the results of the baseline calibration.
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4.4 Solving the Model

Conditional on the price of energy, the model can separated into three pieces: the R&D allocations,

the standard neoclassical growth model, and the energy extraction sector. The fact that innovation

occurs in different characteristics of capital goods, rather than in different sectors, facilitates the

solution of the model. In particular, equations (22) and (23) demonstrate that, conditional on the

price of energy, the R&D allocations and technology growth rates can be found independently of

the consumer problem. To find the competitive equilibrium, I employ the following steps:32

1. Guess a vector of energy prices.

2. Solve for productivity paths and R&D allocations using equations (10), (22), and (23), noting

that all monopolists make identical research decisions.

3. Solve the neoclassical growth model conditional on the path of productivities using equations

(B.31) – (B.37) in Appendix Section B.4.1.

4. Back out implied energy use and energy prices using equations (3), (5), (6), and (7). This

takes advantage of the fact that (4) holds with equality in all periods.

5. Check if the initial guess and resulting prices are the same. If they are, then consumers have

made optimal decisions taking all future prices as given and the economy is in equilibrium.

6. If the economy is not in equilibrium, start from step 1 with a convex combination of initial

guess and resulting prices.

5 Results

5.1 Energy Taxes

In this section, I examine the effect of energy taxes in the new directed technical change (DTC)

model and compare the results to those in the standard Cobb-Douglas (CD) model. The period

length in the model is ten years. Policies are announced in the initial period, which I take as 2005

to match the stated objectives of international climate agreements. Policies take effect in 2015. The

gap between the announcement and implementation of the policy allows one round of endogenous

and directed technical change to occur before comparing the outcomes across the two models. If

the policy was not anticipated, the final good producer in the CD model could react, whereas there

would be no adjustment in the DTC model due to the Leontief structure.

32In all quantitative applications, this procedure is sufficient to find a competitive equilibrium. I have not shown
that such a procedure must converge to an equilibrium. In all cases, I use the BGP in the absence of energy taxes to
generate the initial guess of energy prices.
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5.1.1 Set-up

To understand the quantitative importace of the new model, it is helpful to consider a realistic

path of future energy taxes. Under the Paris Agreement, the United States aims to adopt policies

consistent with an 80% reduction in carbon emissions by the year 2050, when compared to 2005

levels (Heal, 2017). In a report for the United Nations, Williams et al. (2014) examine the technical

feasibility of reducing carbon emissions in 2050 by 80% compared to 1990 levels. Across a wide range

of scenarios, they find that total energy use needs to decrease by approximately 15% compared to

2005 levels.33 This is true even though their analyses suggest that almost all electricity is generated

from renewable sources by 2050 and that the share of final-use energy coming from electricity more

than doubles. These results imply that a 15% reduction in energy use between 2005 and 2055 is

necessary to meet climate policy goals, even in the face of large-scale substitution toward clean

sources of primary energy. Based on this evidence, I adopt this target of a 15% reduction in

energy use.34 The remaining reduction in emissions necessary to meet the Paris Agreement goals

is assumed to come from substitution between clean and dirty sources of energy, which is outside

of the model.35,36 As in Section 3.4, I consider energy taxes that grow at a constant rate,

τt = 1 · (1 + gτ )
t−2005

10 . (41)

Then, I search for the growth rate of energy taxes, gτ , that is necessary to achieve the policy goal.37

5.1.2 Policy Designed with Cobb-Douglas Model

In this section, I find the growth rate of value-added taxes, gτ , that achieves the policy target with

the CD model and then examine the impacts of these same taxes in the DTC model. The thought

experiment is straightforward. Suppose policy is designed with the models that employ the usual

33See figure 8 in Williams et al. (2014). According to the IEA, final energy use in 2005 was 65.4 EJ. See appendix
section A for links to IEA data.

34Since the model is solved in ten year periods, I choose taxes such that the reduction occurs by 2055.
35To endogenously determine the portion of emission reductions due to lower energy use, it would be necessary to

explicitly model substitution between energy and non-energy inputs and substitution between clean and dirty sources
of energy. There is no consensus in the literature about the elasticity of substitution between different sources of
primary energy. Adding this margin, therefore, would complicate the model without providing new theoretical or
quantitative insights. Instead, I focus on the 15% reduction in energy use that is necessary to meet environmental
policy goals even in the face of large-scale substitution towards clean energy sources.

36The existing literature uses a wide varying of estimates for the elasticity of substitution between clean and
dirty sources of primary energy. Golosov et al. (2014) take the average of oil-coal, oil-electricity, and coal-electricity
elasticities from a meta-study by Stern (2012), finding an average elasticity that is less than one. Given that electricity
is produced with both clean and dirty inputs, however, it is not clear that these estimates measure elasticities
between different primary sources of energy. They also impose the assumption that the relative price between oil and
renewables is equal to one at all times. Stern (2012) stresses that the underlying studies do not necessarily capture
directed technical change, implicitly attributing changes in technology to ex post substitution. In an econometric
study, Papageorgiou et al. (2017) find elasticities greater than one in the energy sector and overall economy, but
assume that all technical change is factor-neutral. In their economy-wide estimates, they also assume that the
aggregate production function is CD. Acemoglu et al. (2016) assume that clean and dirty production technologies are
perfect substitutes at the firm level and do not define an aggregate elasticity.

37To find the minimum tax necessary to meet the policy goal, I use a step size of 0.001.
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Figure 5: Energy Use. This figure presents energy use in the DTC and CD models, relative to 2005 levels. The
policy goal is a 15% reduction in energy use between 2005 and 2055, which is achieved in the CD model. Energy
taxes grow at a constant rate of gτ = 0.100 (1.0%/year). The policy is announced in 2005 and takes effect in 2015.

CD assumption about energy use, but reality actually follows the DTC model. How close will the

economy come to meeting the policy goals?

To meet the policy goal in the CD model, gτ = 0.100 (1.0%/year). Taking into account the

endogenous reduction in extraction costs, this implies that tax-inclusive prices are 52% higher than

baseline values in 2055. Figure 5 presents energy use in both model, relative to 2005 levels. The

DTC model misses the 2055 energy use target by 22 percentage points, implying that the path of

energy taxes is not sufficient to be bring energy use in 2055 below its 2005 level.

Figure 6 presents more detailed results from this analysis. All outcomes are shown relative to

a ‘business as usual’ case where the economy remains on the original BGP. Panel (a) presents the

results for energy use. While policy targets are often expressed in terms of medium-run energy

use, long-run cumulative energy use is most relevant for climate outcomes. In other words, climate

outcomes depend on the total area between the two curves. With this path of energy taxes, the

DTC model predicts 22% greater energy use over the next century.

Panel (b) demonstrates the mechanism driving these results. In the CD model, energy taxes

cause immediate reductions in the energy intensity of output (E/Y ) such that the expenditure

share of energy is essentially unchanged.38 In the DTC model, however, reductions in E/Y are

not large enough to prevent the energy expenditure share from rising. As demonstrated in figure

2, this is consistent with data from the United States. As a result, the DTC model predicts higher

medium-term and cumulative energy use, when compared to the CD model.

Panel (c) shows that energy extraction costs fall as the result of the policy intervention. Panel

(d) examines consumption. In 2115, consumption in roughly 2% below baseline in both models,

even though the DTC model does not hit the policy target. The differences in consumption will be

38The small reduction in the energy share is due to the tax rebate. The energy expenditure share is a constant
fraction of gross, as opposed to final, output.
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larger when considering a path a taxes that meets the policy goal in both models.

Panels (e) and (f) look at reductions in GDP and TFP. To make a relevant comparison, TFP

is defined as Yt/
(
Kα
t L

1−α
t

)
in both models. In the DTC case, the loss of TFP comes from the

reallocation of R&D inputs away from AN,t and towards AE,t. In the CD model, the loss to

productivity comes from direct substitution between energy, capital, and labor. In both cases,

productivity is increased by the fall in energy extraction costs, holding all else constant. In 2115,

TFP and GDP reductions are similar in the two models, but the transition is slower in the DTC

model.

Overall, this section presents a set of pessimistic conclusions with regards to environmental

policy. Suppose that the real world is captured by the DTC model, which is consistent with

aggregate data from the United States. If policy is designed with the CD model, the economy will

miss the medium-run energy use targets by a significant amount and have higher than expected

cumulative energy use in the long-run.

5.1.3 Policy Designed with Directed Technical Change Model

In this section, I find the path of taxes that are needed to achieve the policy goal in the DTC model.

I compare the results for the DTC with the new path of taxes to those found for the CD model

in the previous section. To achieve the environmental goals given above, the DTC model requires

gτ = 0.199 (1.8% year), compared to 0.100 (1.0%/year) in the CD model. When taking into account

the general equilibrium effect of energy use on extraction costs, this yields a tax-inclusive energy

price that is 137% higher than the baseline level in 2055, compared to 52% in the CD model.

Figure 7 presents the outcomes when both models meet the policy target. Panel (a) shows that

the two models now have identical energy use in 2055, which is the target year for environmental

policy. In order to reach this reduction in energy use, the DTC model must have a large increase

in the energy expenditure share, as shown in panel (b). The two models have nearly identical

paths of extraction costs, as shown in panel (c), implying that cumulative energy extraction is also

similar. Panels (d)–(f) present the results for consumption, output, and TFP, which are all lower

in the DTC model. Consumption in the DTC model is 10% lower than baseline in 2115, compared

to 2% in the CD model.39 So, the DTC model requires more aggressive policy and more forgone

consumption to meet environmental policy goals.

5.1.4 Robustness

In this section, I discuss the results of the robustness analyses. All analyses focus on the path of

taxes that meet the policy goal in the CD model. Figure 8 provides a summary of the results that

39Given that there are many unknowns about the impact of climate change on economic outcomes (e.g., the
existence and consequences of non-linearities in natural systems), this paper does not try to calculate optimal carbon
or energy taxes. Using a standard marginal abatement cost framework, however, it is clear that the DTC model will
yield lower optimal taxes when compared to the CD model, as long as the damage function between the two models
is held constant. This is true because the DTC model suggests that greater reductions in consumption are necessary
to achieve a given reduction in energy use.
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is directly comparable to figure 5. Panel (a) shows the baseline results for comparison. Appendix

Section B.7 presents more detailed results that are directly comparable to figure 6 in the baseline

case.

Alternate λ. — Panel (b) of figure 8 shows results with λ = 0.21, the degree of diminishing

returns estimated by Fried (2018) in the context of substitution between clean and dirty sources

of primary energy. The detailed results are presented in B.2. The smaller degree of diminishing

returns makes it easier to reallocate R&D inputs in the DTC case. Still, the DTC misses the policy

target by 15 percentage points, and cumulative energy use between 2015 and 2115 is 15% higher

in the DTC model. Thus, the results are qualitatively unchanged by assuming this smaller degree

of diminishing returns. As discussed above, existing empirical work in endogenous growth finds

cost functions that are quadratic in research effort. Setting λ = 0.5 would increase the difference

between the DTC and CD models when compared to the baseline analysis.

Exogenous energy prices. — As discussed above, the baseline model assumes that extraction

costs depend only on cumulative extraction in the economy under study, capturing the case of a

closed economy or the case where the all countries undertake identical actions and the U.S. is

responsible for a constant fraction of total energy use. Panel (c) presents results with exogenous

energy prices, capturing the case of a small open economy that takes unilateral policy action (see

figure B.3 for complete results). In this case, energy prices are assumed to increase exogenously

at the BGP rate in the baseline model. Importantly, this analysis still captures the main energy

supply facts discussed in Section 2, rising energy prices and flow energy use on the BGP. The

exogenous price scenario is equivalent to setting ψ = 0 and attributing all changes in prices to gV .

With exogenous energy prices, the CD model requires gτ = 0.088 (0.9%/year) to hit the policy

target. The DTC model model misses the target by 24 percentage points. From 2015 to 2115, cu-

mulative energy use is 28% higher in the DTC model. Eliminating the general equilibrium feedback

of endogenous energy prices increases the difference in predictions between the two models. Intu-

itively, this occurs because reductions in energy extraction costs partially offset initial reductions

in energy use caused by environmental policy. The difference in outcomes, however, is qualitatively

similar, implying that none of the baseline results are driven by the functional form assumptions

for extraction costs.

Higher ψ. — In the baseline analysis, I estimated the convexity of the extraction costs curve

using information from McGlade and Ekins (2015) and attributed the remaining increase in real

energy prices to slower technological progress in the extraction sector (gV > 0). Panel (c) shows

that the results are robust to attributing all changes in prices to gV . Panel (d) investigates the

opposite case where gV = 0 and the increase in real energy prices is entirely due to the convexity

of the extraction cost curve.

To explain the data, the cost curve must be highly convex, ψ = 3.64. In this case, environmental

policy interventions significantly reduce extraction costs. As a result, higher taxes are needed to

meet the policy goals. Specifically, gτ = 0.133 (1.3%/year) in the CD model. In this case, the DTC

model misses the 2055 policy target by 16 percentage points. Cumulative energy use is 14% higher
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in the DTC model. Figure B.4 in the appendix presents more detailed results. In the CD case, the

policy actually increases consumption in the long run. This occurs because environmental policy

lowers energy prices so dramatically Policy does not increase long-run consumption in the DTC

case.
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(a) Baseline
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(b) λ = 0.21
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(c) Exogenous pE
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(d) ψ = 3.64

Figure 8: Robustness Results. Comparison of energy use in the DTC and CD models when using an identical
path of taxes. The policy goal is a 15% reduction in energy use between 2005 and 2055, which is achieved in the CD
model. In baseline and λ = 0.21 cases, gτ = 0.100 (1.0%/year). In the exogenous energy price scenario, gτ = 0.088
(0.9%/year). When ψ = 3.64, gτ = 0.133 (1.3%/year). The policy is announced in 2005 and takes effect in 2015.

5.2 Research Subsidies

Many policymakers favor approaches, such as research subsidies or energy efficiency mandates, that

try to reduce energy use without raising prices (Gillingham et al., 2009; Allcott and Greenstone,

2012). A large academic literature, however, suggests that rebound effects could undermine the

effectiveness of these approaches (Gillingham et al., 2016). Rebound occurs when economic behavior

following improvements in energy efficiency leads to increases in energy use, at least partially

undoing the initial reduction. For example, people might drive more when cars get better gas

mileage. I use the DTC model to examine the effectiveness of these policies in reducing cumulative

energy use in the long-run, an important goal for climate change mitigation. Policies that increase
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energy efficiency could be desirable for other reasons if they are correcting a different externality

(Chan and Gillingham, 2015).

5.2.1 Existing Literature

The study of rebound has a long history in economics, dating back at least to Jevons (1865). A

large microeconomic literature examines the degree of rebound, usually in static, partial equilib-

rium settings (Gillingham, 2014; Gillingham et al., 2016).40 If energy mandates or subsidies are

to have a meaningful impact on climate change mitigation, however, they will necessarily have

dynamic, general equilibrium consequences. As stressed by Gillingham et al. (2016), the exclusion

of endogenous and directed technical change is a particularly important shortcoming in the existing

literature on rebound. Indeed, the existing literature abstracts from dynamic considerations almost

entirely.41 Thus, I contribute to the existing literature by examining the long-run consequences

of such policies, while paying special attention to the role of endogenous and directed technical

change. The existing literature stresses the importance of the elasticity of substitution between

energy and other inputs (e.g., Saunders, 1992; Wei, 2010). The DTC model is explicitly designed

to capture this aggregate elasticity, which varies over time.

Before continuing, it is worth briefly reviewing existing evidence on macroeconomic rebound,

which is closely related to the data on energy use and efficiency presented in Section 2. Descriptive

evidence from Davis (2017) suggests that new energy efficient technologies in lighting have recently

reduced household energy use in the United States. As stressed in that paper, however, the results

only demonstrate a short-run impact, and it is not yet clear whether long-run rebound will undo

the short-run decline. Longer-term evidence on lighting suggests that the introduction of new

technologies has led to enormous improvements in efficiency, but these improvements have coincided

with increased energy usage from lighting (e.g., Fouquet, 2008). Section 2 also demonstrates that

rapid increases in energy efficiency do not prevent aggregate energy usage from rising. Thus, the

aggregate evidence suggests that long-run rebound is likely to undo short-run reductions in energy

use, which is consistent with the theoretical results presented in Section 3.5. As shown below, the

quantitative model is consistent with all of these facts.

5.2.2 Results

Figure 9 presents the results. Panel (a) considers a single period research subsidy of 52% in

2015. This is a useful exercise for two reasons. First, this is analogous to the setting in most

of the existing literature, which examines one-off efficiency improvements. Second, it highlights

the mechanisms of the model in a simple and transparent manner. In the short-run, energy use

decreases considerably, due to the low short-run elasticity of substitution between energy and non-

energy inputs. After energy efficiency increases in the short-run, the incentive for further investment

40A recent exception is work by Lemoine (2016) who provides an analytic framework for examining rebound in a
static, general equilibrium setting, but does provide any quantitative analysis.

41Rausch and Schwerin (forthcoming) perform a growth accounting exercise assuming the usual CD production
function. They find that increases in energy efficiency have led to higher energy use.
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(b) Permanent Subsidy

Figure 9: Research Subsidies. All results are shown relative to a ‘business as usual’ case with no policy intervention.
Panel (a) demonstrates the effects of a single period research subsidy of 52%. Panel (b) demonstrates the effects of
a permanent subsidy of 52%. This policy achieves a 15% reduction in energy use by 2055, compared to 2005 levels.
E flow refers to per period energy use. E stock refers to cumulative energy use since 2015, the first year the policy
takes effect.

in energy-saving technology decreases, and the economy converges back to the original BGP. By

the end of the century, energy use is actually higher than in the business as usual case. This is

known as ‘backfire’ in the literature. Long-run per period and cumulative energy use are identical

in the policy and baseline cases. In the literature, this is known as ‘full rebound’ (Wei, 2010). Full

rebound occurs because one-off policy interventions do not change the long-run incentives of capital

good producers. Thus, the DTC model is consistent with the evidence presented in Davis (2017),

but suggests that endogenous R&D allocations will undo the short-run reductions in energy use,

limiting the effectiveness of these policies as tools for climate change mitigation.

While the existing literature often focuses on one-off shocks to estimate the degree of rebound,

attempts to reduce long-run energy use need not be constrained to temporary interventions. In

panel (b), I consider a permanent subsidy of 52% to energy efficiency research. This subsidy is

sufficient to achieve the 15% reduction in energy use discussed in the previous section. Permanent

interventions reduce long-run energy use relative to a business as usual scenario. As demonstrated

theoretically in Section 3.5, however, R&D subsidies are not sufficient to generate absolute long-

run declines in energy use. On the BGP, the economy will still have investment in both types of

technology. Given that energy prices are driven by increasing extraction costs, the incentives for

investment in energy efficient technologies come from increasing energy use.

Overall, the model suggests that policy interventions cannot achieve long-run reductions in

energy use without increasing prices. As a result, research subsidies are unlikely to be sufficient

tools for achieving climate change mitigation goals. Given the long transition paths, however, they

may be helpful as part of a larger set of interventions.
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5.3 Long-run Growth in the Absence of Policy Intervention

The main purpose of this paper is to develop a decentralized model of final-use energy consumption

and examine its implications for climate change mitigation policy. The model also delivers novel

predictions about long-run growth in the absence of policy intervention. Hassler et al. (2012, 2016b)

use a DTC model to examine how a social planner would manage a finite energy resource and study

the implications of the model for future consumption growth. They use the observation of a trendless

energy expenditure share to motivate their model, but find that the energy expenditure share cannot

be constant at its current level due to Hotelling (1931) forces (see also, André and Smulders, 2014).

To generate a long-run decline in energy use, their model requires greater investment in energy

efficiency and less investment in non-energy technology, implying that output and consumption

growth will not continue at current levels.

As discussed in Section 2.3, however, the U.S. data are inconsistent with the Hotelling (1931)

approach to energy prices, because energy use has been increasing while the expenditure share has

been constant. The data, therefore, are more consistent with a model where prices are driven by

increasing extraction costs. In a model with increasing extraction costs, current energy use and

expenditure patterns will continue in the absence of a shock that pushes the economy away from

the BGP. Thus, in the absence of policy or negative consequences energy use, the new DTC model

predicts a higher long-run growth rate of consumption.

Given that it predicts increasing energy use on the BGP, the new DTC is also more likely to

lead to an ‘environmental disaster’42 when compared to the existing literature. Such a disaster

could occur when energy inputs are exhausted, or when the climate consequences of fossil energy

use hit a ‘tipping point’ (Stern, 2008; Lemoine and Traeger, 2014). Existing evidence suggests that

the latter is a greater concern and that it is virtually impossible that all available sources of fossil

fuels will eventually be used (Rogner, 1997; Rogner et al., 2012; Covert et al., 2016).

6 Conclusion

Economic analysis of climate change has benefited substantially from the study of growth models

(e.g., Nordhaus, 1993, 2014; Golosov et al., 2014). This paper contributes to this ongoing effort by

focusing on the consumption of final-use energy, a crucial margin for climate change mitigation. In

particular, I develop a new directed technical change (DTC) model that can explain both short-

and long-run patterns of energy use and energy prices in the United States. The existing climate

change literature either abstracts from energy use (e.g., Nordhaus, 1993, 2014) or uses a Cobb-

Douglas (CD) approach that cannot replicate the same facts (e.g., Nordhaus and Boyer, 2000;

Golosov et al., 2014). The existing literature on directed technical change and the environmental

focuses on substitution between energy sources (e.g., Acemoglu et al., 2012, 2016; Fried, 2018) or

on the efficiency of the energy sector (e.g., André and Smulders, 2014), rather than final-use energy

42See Acemoglu et al. (2012) and Lemoine (2017) for recent work focusing on environmental disasters in the
absence of policy.
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efficiency.

The model developed in this paper provides a general framework for analyzing energy con-

sumption. I use the model to analyze two climate change mitigation policies. First, I examine the

impact of energy taxes. I find that policy conclusions based on the standard CD model overestimate

policy-induced reductions in energy use and underestimate reductions in consumption. Second, I

find that innovation-driven rebound effects prevent R&D subsidies from generating long-run de-

clines in energy use, highlighting the need for policies that increase effective prices.

This paper focuses on the importance of final-use energy and abstracts from other important

elements of climate change economics. One interesting extension would be to include the third

margin of technological investment in clean versus dirty primary energy sources. Combined with a

model of the carbon cycle, such an analysis would yield updated estimates of optimal carbon taxes

and the social cost of carbon. It would also allow for the comparison of second-best policies. For

example, it would be interesting to compare subsidies for renewable energy, which would limit the

incentive to improve energy efficiency, and energy taxes, which provide no incentive to invest in

clean energy sources.

It would also be interesting to examine the model presented here in a broader geographic scope.

Existing work with exogenous technological progress suggest that unilateral policy actions among

rich countries will have small impacts on overall carbon emissions (Nordhaus, 2010). With en-

dogenous technological progress and diffusion or trade, however, unilateral policies would improve

worldwide energy efficiency, leading to greater environmental benefit (Di Maria and Van der Werf,

2008; Hémous, 2016). This magnifies the difference with the standard CD approach, where sub-

stitution of capital and labor for energy in one country would have no direct impact on other

countries. The positive implications of these international spillovers could potentially outweigh the

more pessimistic conclusions that result from studying the DTC model in a closed economy.
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A Data Appendix

A.1 Figure 1

Primary Energy (Ep). Total energy extracted from the environment (i.e., production) plus net

imports. For renewables used in electricity generation, production is equal to electricity generated.

Measured in kilotonnes of oil equivalent (ktoe). Data available from 1971-2016. Source: ‘IEA

Headline Energy Data’ at http://www.iea.org/statistics/topics/energybalances/.

Final-Use Energy (Ef). Total energy consumption: total primary energy minus losses occur-

ring during transformation and energy industry own use. Measured in ktoe. Data available from

1971-2016. Source: ‘IEA Headline Energy Data’ at http://www.iea.org/statistics/topics/

energybalances/.

Carbon Dioxide Emissions (CO2). Carbon dioxide emissions from fuel combustion. Measured

in megatonnes (Mt). Data available from 1971-2016. Source: ‘IEA Headline Energy Data’ at

http://www.iea.org/statistics/topics/energybalances/.

Real GDP (Y ). Real gross domestic product in 2012 chained dollars. Data available from 1949-

2018. Source: NIPA Table Section 1. Accessed via ‘Table C1: Population, U.S. gross domestic

product, and U.S. Gross Output’ at https://www.eia.gov/totalenergy/data/annual/.

Price of Solar Energy. Real levelized cost of electricity ($2005/kWh) produced from pho-

tovoltaic (PV) modules in the United States. Data available from 1977-2009. Original source:

Nemet (2006). Accessed accessed via the Performance Curve Database from the Sante Fe Insti-

tute (Nagy et al., 2013), which includes updated data through 2009. See ‘Photovoltaics 2’ at

http://pcdb.santafe.edu/index.php.

Nominal Energy Price. Nominal average price of energy paid by end users in the United

States. Due to data limitations, prices for energy derived from renewable sources are not in-

cluded.43 Source: ‘Total energy prices and expenditures’ at https://www.eia.gov/state/seds/

seds-data-complete.php.

GDP Deflator. GDP implicit price deflator with base year 2012. Data available from 1949-2018.

Source: NIPA Table Section 1. Accessed via ‘Table C1: Population, U.S. gross domestic product,

and U.S. Gross Output’ at https://www.eia.gov/totalenergy/data/annual/.

Real Energy Price. Average real price of primary energy in 2012 chained dollars. Author’s

43Documentation is available at https://www.eia.gov/state/seds/seds-technical-notes-complete.php. Sec-
tion 7 of ‘Prices and expenditures’ covers consumption adjustments.
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calculation: Nominal Energy Price divided by GDP Deflator.

A.2 Figure 2

See Real GDP, Nominal Energy Price, and Real Energy Price from figure 1. Variables are

detrended with OLS, assuming a constant growth rate.

Nominal Energy Expenditure. Nominal energy expenditure in the United States. Due to

price data limitations, spending on final-use energy derived from renewable sources is not in-

cluded. Source: ‘Total energy prices and expenditures’ at https://www.eia.gov/state/seds/

seds-data-complete.php.

Nominal GDP (Y ). Nominal gross domestic product. Data available from 1929-2018. Source:

NIPA Table Section 1. Accessed via ‘Table C1: Population, U.S. gross domestic product, and U.S.

Gross Output’ at https://www.eia.gov/totalenergy/data/annual/.

Energy Expenditure Share (Eshare). Author’s calculation: Nominal Energy Expenditure di-

vided by Nominal GDP.

Energy Use. Final-use energy consumption. Author’s calculation: Nominal Energy Expenditure

divided by Nominal Energy Price. Given the limitations on price data, this is a measure of final-use

energy derived from non-renewable energy sources.44

Energy Intensity of Output (E/Y ). Total final-use energy consumption per real dollar of

GDP. Author’s calculation: Energy Use divided by Real GDP. By construction, this is the energy

intensity of output that matches the expenditure data.

A.3 Figure 3

See Primary Energy and Final-Use Energy from figure 1.

Oil. Total primary energy from oil, natural gas liquids, and feedstocks. Measured in kilotonnes

of oil equivalent (ktoe). Data available from 1971-2016. Source: ‘IEA Headline Energy Data’ at

http://www.iea.org/statistics/topics/energybalances/.

Renewable Energy. Total primary energy from renewable sources and waste. Data available from

1971-2016. Source: ‘IEA Headline Energy Data’ at http://www.iea.org/statistics/topics/

44As of this writing, the adjusted energy consumption measures are not directly available from the EIA. See at
‘Adjusted consumption for expenditure calculations’ CSV file for 1960-2017 at https://www.eia.gov/state/seds/

seds-data-complete.php.
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energybalances/.

Non-renewable Energy. Total primary energy from non-renewable sources. Author’s calcula-

tion: Primary Energy minus Renewable Energy.

Energy Extraction Costs. Estimates of available fossil fuel energy resources remaining in the

environment, and the cost of extracting those resources. Costs and availability are measured in

terms of final-use energy that can eventually used from primary resources. The original estimates

come from McGlade and Ekins (2015), who focus on primary energy availability and corresponding

extraction costs. I use conversion factors from Rogner et al. (2012) to convert heterogeneous

primary energy sources into common units, and data from the IEA and EIA to estimate efficiency

of transforming primary energy into final-use energy. Appendix Section B.6 provides further detail

on the calculations. Further background is available in McGlade (2014). Data available at: https:

//www.nature.com/articles/nature14016 (see source data for table 1).

A.4 Calibration

See above for details regarding Real GDP, Energy Use, Energy Expenditure Share, and

Energy Extraction Costs.

Population. Total resident population of the United States. Accessed via ‘Table C1: Population,

U.S. gross domestic product, and U.S. Gross Output’ at https://www.eia.gov/totalenergy/

data/annual/.

R&D Share. Share of GDP devoted to research and development. Data are available from 1981-

2017. Source: Bureau of Economic Analysis. Accessed via OECD Science, Technology and RD

Statistics: Main Science and Technology Indicators:

https://data.oecd.org/rd/gross-domestic-spending-on-r-d.htm.
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B Online Appendix

B.1 Final Good Producer Problem

In this section, I derive the inverse demand functions (15) and (16). Consider the maximization of

(3) subject to (4) with υt(i) as the Lagrange multiplier attached to capital good i,

L =

∫ 1

0
AE,t(i)Et(i)di− wtLt −

∫ 1

0
pX,t(i)Xt(i)di− τtpE,t

∫ 1

0
Et(i)di

−
∫ 1

0
υt(i)

[
AE,t(i)Et(i)− (AN,t(i)Xt(i))

α L1−α
t

]
di. (B.1)

Complementary slackness implies

υt(i)
[
AE,t(i)Et(i)− (AN,t(i)Xt(i))

α L1−α
t

]
= 0 ∀i. (B.2)

I focus on the case where the constraint is always binding. This will necessarily be true in the

empirical exercise, because δ = 1 is a sufficient, but not necessary, condition for the constraint to

bind. The first order conditions with respect to Et(i), Xt(i), and Lt are given by:

υt(i) = 1−
τtpE,t
AE,t(i)

, (B.3)

υt(i) =
pX,t(i)

αAαN,t(i)L
1−α
t Xt(i)α−1

, (B.4)

wt =

∫ 1

0
υt(i)(1− α)AαN,t(i)L

−α
t Xt(i)

αdi. (B.5)

Substituting (B.4) and (B.5) into (B.3), respectively, and multiplying through yields

pX,t(i) = αAN,t(i)
α

[
1−

τtpE,t
AE,t(i)

]
L1−α
t Xt(i)

α−1, (B.6)

wt = (1− α)

∫ 1

0

[
1−

τtpE,t
AE,t(i)

]
L−αt (AN,t(i)Xt(i))

α di. (B.7)

Thus, we have arrived at equations (15) and (16) from the text. A key result is that inverse demand

is iso-elastic, which allows for simple closed form solutions. This is shown in the next section.

B.2 Monopolist Problem

The monopolist maximizes profits subject to demand and research productivity constraints:

max πX,t(i) = pX,t(i)Xt(i)− τKt rtX(i)− (1− ηSt )pRE,tRE(i)− pRN,tRN (i) (B.8)

(B.9)

subject to
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pX,t(i) = αAN,t(i)
α

[
1−

τtpE,t
AE,t(i)

]
L1−α
t Xt(i)

α−1, (B.10)

AJ,t(i) =
[
1 + ηJRJ,t(i)

1−λ
]
AJ,t−1, J ∈ {N,E}, (B.11)

RJ,t(i) ∈ [0, 1], J ∈ {N,E}. (B.12)

In equilibrium, the research allocation must be interior due to the decreasing returns. Thus, I ignore

the last constraint for the remainder of this section. First, substitute (B.10) into (B.8) and take

the first order condition with respect to X(i). Constraint (B.11) is independent of the production

level, Xt(i). Hence, the model yields the standard first order conditions and results, adjusted for

the effective cost of energy:

τKt rt = α2AN,t(i)
α

[
1−

τtpE,t
AE,t(i)

]
L1−α
t Xt(i)

α−1. (B.13)

Applying τKt = α, which undoes the monopoly distortion,

rt = αAN,t(i)
α

[
1−

τtpE,t
AE,t(i)

]
L1−α
t Xt(i)

α−1. (B.14)

Rearranging gives

Xt(i) = α
1

1−α r
−1
1−αAN,t(i)

α
1−αLt

[
1−

τtpE,t
AE,t(i)

] 1
1−α

. (B.15)

(B.16)

Plugging in to (B.10) gives

pX,t(i) = rt. (B.17)

Next, to find optimal profits, we can re-write the monopolist problem after substituting in results

we have found so far. Noting that πX,t(i) = (pX,t(i)− τKt rt)Xt(i),

max πX,t(i) = α̃r
−α
1−α
t AN,t(i)

α
1−αLt

[
1−

τtpE,t
AE,t(i)

] 1
1−α
− (1 − ηSt )pRE,tRE,t(i) − pRN,tRN,t(i) (B.18)

subject to

AJ,t(i) =
[
1 + ηJRJ,t(i)

1−λ
]
AJ,t−1, J ∈ {N,E}, (B.19)
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where α̃ = (1 − α)α
1

1−α . Let κJ be the Lagrange multiplier for constraint (B.19). The first order

conditions for technology levels and research scientist allocations yield

pRN,t = κN (1− λ)AN,t−1ηNRN,t(i)
−λ, (B.20)

(1− ηSt )pRE,t = κE(1− λ)AE,t−1ηERE,t(i)
−λ, (B.21)

κN =
α

1− α
α̃r

−α
1−α
t AN,t(i)

α
1−α−1Lt

[
1−

τtpE,t
AE,t(i)

] 1
1−α

, (B.22)

κE =
1

1− α
α̃r

−α
1−α
t AN,t(i)

α
1−αLt

[
1−

τtpE,t
AE,t(i)

] 1
1−α−1

τtpE,tA
−2
E,t. (B.23)

Putting these together, we have

pRN,t = αψtA
α

1−α−1

N,t

[
1−

τtpE,t
AE,t(i)

] 1
1−α

ηNRN,t(i)
−λAN,t−1, (B.24)

(1− ηSt )pRE,t = ψtA
α

1−α
N,t τtpE,tAE,t(i)

−2

[
1−

τtpE,t
AE,t(i)

] 1
1−α−1

ηERE,t(i)
−λAE,t−1, (B.25)

where ψt = α
1

1−α (1− λ)r
−α
1−α
t Lt is common to both terms. In the next section, I shown the optimal

research allocations resulting from these first order conditions. Taking ratios of these first order

conditions yields (20) in the main text.

B.3 R&D Allocations

In this section, I derive the optimal research allocations given in equations (22) and (23). First,

note that RJ,t(i) = RJ,t ∀i, t, J . This occurs because all monopolists make identical decisions, and

there are a unit mass of monopolists. This also implies that AJ,t(i) = AJ,t ∀i, t, J . Also, factor

mobility ensures that pRE,t = pRN,t ∀t. Thus, equation (20) can be re-written as

(1− ηSt )
AE,t
AE,t−1

[
AE,t
τtpE,t

− 1

]
=

AN,t
AN,t−1

ηER
−λ
E

αηNR
−λ
N

. (B.26)

Replacing growth rates and technology levels with the values given by (10) and applying the resource

constraint (11) yields

(1− ηSt )(1 + ηER
1−λ
E,t )

[
(1 + ηER

1−λ
E,t )AE,t−1

τtpE,t
− 1

]
= (1 + ηN (1−RE,t)1−λ)

ηER
−λ
E,t

αηN (1−RE,t)−λ
(B.27)

Dividing by (1 − ηSt ), then multiplying through on the left-hand side and isolating the term with

energy prices yields

(1 + ηER
1−λ
E )2AE,t−1

τtpE,t
=

1

1− ηSt

[
ηER

−λ
E

αηN (1−RE)−λ

(
1 + ηN (1−RE)1−λ

)]
+ (1 + ηER

1−λ
E ).(B.28)
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Distributing terms on the right-hand side leaves

(1 + ηER
1−λ
E )2AE,t−1

τtpE,t
=

1

α(1− ηSt )

[
ηER

−λ
E

ηN (1−RE)−λ
+ ηER

−λ
E − ηER

1−λ
E,t

]
+ (1 + ηER

1−λ
E ).(B.29)

Now, (22) can be derived by multiplying through by
τtpE,t
AE,t−1

, taking the square root of both sides,

subtracting one, and dividing by ηER
−λ
E .

B.4 Solving the Model

B.4.1 Intensive Form

In this section, I show how to solve the model in intensive form. This is helpful both for the

quantitative exercise (see Section 4.4) and in proving the propositions in Sections 3.4 and 3.5. For

any variable Zt, I define

zt ≡
Zt

LtAR,t
, (B.30)

where AR,t = TFP
1

1−α
t and TFPt = AαN,t

[
1− pE,t

AE,t

]
. Applying (8), (9), and (12), this yields

yt = kαt , (B.31)

kt+1 =
yt − ct

(1 + gR,t+1)(1 + n)
, (B.32)

where 1 + gR,t =
AR,t
AR,t−1

= (1 + gTFP,t)
1

1−α . Moreover, the Euler equation yields

(
ct+1

ct

)σ
=

βrt+1

(1 + gR,t+1)σ
. (B.33)

Finally, when considering the interest rate, it is also important to keep track of the energy tax

rate, τt. Let ÃR,t = AαN,t

[
1− τtpE,t

AE,t

]
be TFP adjusted for energy taxes. Then, from equation (18),

rt = αAαN,t

[
1−

τtpE,t
AE,t

]
Kα−1
t L1−α

t (B.34)

= α

(
Kt

ÃR,tLt

)α−1

(B.35)

= α

(
AR,t

ÃR,t

)α−1(
Kt

AR,tLt

)α−1

(B.36)

= τ̃tαk
α−1
t , (B.37)

where τ̃t ≡
(
AR,t
ÃR,t

)α−1
=

1−
τtpE,t
AE,t

1−
pE,t
AE,t

is the interest rate wedge caused by the introduction of energy
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taxes.

When solving the model, I guess on a path of energy prices and then solve for the research

allocations and growth rates. Then, the solution to the remainder of the model is given by (B.31),

(B.32), (B.33), and (B.37). As described above, this is just the standard neoclassical growth model

with a few additions. The τ̃t term is the wedge in the interest rate caused by energy taxes, and

gR,t may not be constant due to endogenous research allocations and energy prices.

B.4.2 Proof to Propositions 1, and 2.

Proof of items 3 – 5 of Propositions 1 and 2. To find the BGP, first note that τ̃t = τ̄ , a

constant. In the laissez-faire case, τ̄ = 1. In the case of environmental policy (EP), τ̄ =
[
1− τtpE,t

AE,t

]
,

which is also constant. As discussed in the main text, gTFP = (1 + g∗N )α − 1 on the BGP because[
1− pE,t

AE,t

]
is fixed (at 1 in the case of EP). Thus, the growth rate of output per person is given by

g∗R = (1 + g∗N )
α

1−α − 1. With constant growth rates of technology, the BGP is given by:

r̄ =
(1 + g∗R)σ

β
, (B.38)

k̄ =
( τ̄α
r̄

) 1
1−α

, (B.39)

ȳ = k̄α, (B.40)

c̄ = ȳ − (1 + g∗R)(1 + n)k̄, (B.41)

where z̄ denotes the steady state value of z. Thus, rt is constant, Yt/Lt and Ct/Lt grow at rate g∗R,

and Yt and Kt grow at rate g∗Y = (1 + g∗R)(1 + n)− 1. This proves parts (3) – (5) of Propositions 1

and 2.

Item 6 of Propositions 1 and 2. At any point in time, energy use is given by

Et =
AαN,t
AE,t

Kα
t L

1−α
t = Yt/AE,t. (B.42)

Using the results from the previous subsection, the BGP growth rate of flow energy use (g∗M ) given

by

g∗M =
(1 + g∗N )

α
1−α

(1 + g∗E)
(1 + n)− 1. (B.43)

This proves item (6) of the propositions. Since there is a unit mass of R&D inputs, the maximum

possible value for g∗E is ηE . Thus, assumption (A1) (ηE > n) implies that g∗N > 0 whenever g∗M > 0.

Put differently, it is possible for rapid growth in energy energy to lead to decreasing flows of energy

use in the long run.
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Items 1 and 2 of Propositions 1 and 2. I now turn to finding the BGP R&D allocations. I

will use g∗
M

to denote the growth rate of the cumulative stock of extracted energy on the BGP. By

definition, output and technology grow at constant rates on a BGP. As a result, Et must also grow

at a constant rate, as seen in equation (B.43). If g∗M ≤ 0, g∗
M

= 0. If g∗M > 0, g∗
M

= g∗M .

The growth factor of the price of energy is given by

(1− gV )(1 + g∗
M

)ψ(1 + gτ ) = (1 + g∗P ). (B.44)

The maximum possible growth rate of the price of energy occurs when there is zero investment in

energy efficiency. In this case, per period energy use grows at a positive rate, which implies that

g∗
M

= g∗M . So, the maximum growth rate of energy prices is is (1− gV )
[
(1 + ηN )

α
1−α (1 + n)

]ψ
− 1.

Assumption (A3) implies that this growth rate is positive.

On a BGP, energy efficiency grows at the rate of the energy price times the growth in energy

taxes. Thus,

(1− gV )(1 + g∗
M

)ψ(1 + gτ ) = (1 + g∗E). (B.45)

• If g∗
M

= 0, then (1− gV )(1 + gτ ) = 1 + ηE(R∗E)1−λ, which determines the unique

R∗E =

[
(1− gV )(1 + gτ )− 1

ηE

] 1
1−λ
≡ R̃∗E . (B.46)

There are a unit mass of R&D inputs. So, if ηE > (1− gV )(1 + gτ )− 1 > 0 (assumption (A4)

in the main text), this BGP is feasible and has an interior solution. To determine when this

is the endogenous outcome, we plug (B.46) into (B.43) to determine if g∗M ≤ 0. As a result,

R∗E = R̃∗E and g∗
M

= 0 if and only if:

(1− gV )(1 + gτ ) ≥

1 + ηN

(
1−

[
(1− gV )(1 + gτ )− 1

ηE

] 1
1−λ
)1−λ α

1−α

(1 + n). (B.47)

This is captured by assumption (A5) in the main text. Intuitively, the BGP has a constant

stock of energy use when the exogenous component of the energy price grows sufficiently fast

to incentive large investments in energy efficiency. Without environmental policy, this reduces

to

(1− gV ) ≥

1 + ηN

(
1−

[
−gV
ηE

] 1
1−λ
)1−λ α

1−α

(1 + n). (B.48)

Thus, assumption (A2) in the main text implies that energy use increase in the absence of

policy.
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• If g∗
M

= g∗M > 0, then we can plug (B.43) into (B.45) to obtain:

(1 + g∗E)1+1/ψ [(1 + gτ )(1− gV )]−1/ψ = (1 + g∗N )
α

1−α (1 + n). (B.49)

Applying (10) and (11) to this equation yields item (2) of Propositions 1 and 2. Rearrang-

ing yields item (1). The existence of an interior R&D allocation is guaranteed because both

energy use and energy prices are increasing. With increasing energy prices, g∗E > 0. With

increasing energy use, g∗N > 0, as along as assumption (A1) holds.

Item 7 of Propositions 1 and 2. All that remains to show for these two propositions is that

expenditure shares are constant. I focus on income shares before taking into account taxes and

transfers. To start, from equation (16) note that

wtLt = (1− α)AαN,t[1−
τtpE,t
AE,t

]Kα
t L

1−α
t = τ̃t(1− α)Yt, (B.50)

which implies that the share is constant on the BGP. Next, from (25) and (18),

rtKt = αAαN,t[1−
τtpE,t
AE,t

]Kα
t L

1−α
t = τ̃tαYt, (B.51)

which again implies that the share is constant on the BGP. These results highlight the role of the

capital subsidy τKt , which undoes the monopoly distortion. Without EP, τ̃t = 1, implying that

total pre-tax income paid to capital and labor is equal to GDP. The government taxes some of

this income and distributes it to firms in the form of subsidies for capital purchases, which in turn

creates profits for the capital good producer that can be paid to R&D inputs. Since the taxes are

lump-sum, this does not distort incentives.

All research inputs are hired at the same rate. By equations (B.24) and (18), total payments

to research inputs are given by

pRt = α(1− λ)
rtXt

AN,t
ηNR

−λ
N,tAN,t−1 (B.52)

= (1− λ)
ηN (RN,t)

−λ

1 + gN,t
· τ̃tα2Yt, (B.53)

noting that there is a unit mass of research inputs. Again, this share is constant on the BGP.

To get the energy expenditure share in either case, rearrange equation (22) to isolate
τtpE,t
AE,t−1

=
τtpE,t(1+g∗E)

AE,t
, which is constant. In the laissez-faire case, τt = 1 and

pE,t
AE,t

=
θ∗E

1+θ∗E
. In the EP case,

limt→∞
pE,t
AE,t

= 0 ⇒ limt→∞ θE,t −
τtpE,t
AE,t

= 0. Thus, item (7) of the propositions is proven.
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B.5 The Cobb-Douglas Model

In this section, I derive the dynamics, BGP, and calibration procedure for the Cobb-Douglas model.

To start, I note that, due to perfect competition, aggregate energy use is given by

Et =

(
ν

τtpE,t

) 1
1−ν

(ACDt )
1

1−νK
γ

1−ν
t L

1−γ−ν
1−ν

t . (B.54)

This, in turn, yields

Qt =

(
ν

pE,t · τt

) ν
1−ν

(ACDt )
1

1−νK
γ

1−ν
t L

(1−γ−ν)
1−ν

t , (B.55)

Yt =
(

1− ν

τ

)
Qt. (B.56)

To analyze the model in intensive form, I define

zt =
Zt

Lt(ACDt )
1

1−γ−ν (τt · pE,t)
−ν

1−γ−ν
, (B.57)

for any variable Zt. This notation is specific to Appendix Section B.5.

The Euler equation is the same as in the DTC case. In intensive form,

ct+1

ct
=

βrt+1

(1 + gCD)
1

1−γ−ν (1 + g̃P,t+1)
−ν

1−γ−ν
, (B.58)

where 1 + g̃P,t+1 = (1 + gτ,t+1)(1 + gP,t+1), 1 + gτ,t = τt
τt−1

, and I have imposed σ = 1. The rest of

the dynamics are given by

kt+1 =
yt − ct

(1 + gCD,t+1)
1

1−γ−ν (1 + g̃P,t+1)
−ν

1−γ−ν (1 + n)
, (B.59)

yt = (1− ν

τ
)ν

ν
1−ν k

γ
1−ν
t , (B.60)

rt = γν
ν

1−ν k
γ−(1−ν)

1−ν
t . (B.61)

As in the case of the DTC model, I solve the CD model by first guessing a path of energy taxes

and then solving the growth model with equations (B.58) – (B.61).

I consider the BGP in a laissez-faire equilibrium. This gives

r̄ =
(1 + g∗CD)

1
1−γ−ν (1 + g∗P )

−ν
1−γ−ν

β
, (B.62)

k̄ = ν
−ν

γ−(1−ν) (r̄/γ)
1−ν

γ−(1−ν) , (B.63)

ȳ = (1− ν)ν
ν

1−ν k̄
γ

1−ν , (B.64)

c̄ = ȳ − (1 + g∗CD)
1

1−γ−ν (1 + g∗P )
−ν

1−γ−ν (1 + n)k̄. (B.65)
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As a result, rt is constant, Yt/Lt and Ct/Lt grow at rate (g∗R)CD = (1+g∗CD)
1

1−γ−ν (1+g∗P )
−ν

1−γ−ν −1,

and Yt and Kt grow at rate gCDY = (1 + g∗R)CD(1 + n)− 1.

I calibrate the CD model to the BGP using the same data as employed for the DTC model, lead-

ing to observationally equivalent paths for output and energy use. To match the energy expenditure

share, I set

ν

1− ν
= θ∗E (B.66)

and

γ = α− ν. (B.67)

All that remains is to ensure that total output grows at the same rate in the two models, which

implies that energy use will also grow at the same rate. Since the energy sector is equivalent in the

two models, this further implies that the price of energy will grow at the same rate. Thus, I set

(g∗R)CD = g∗R, where the latter comes from the DTC model in Section B.4.1. This implies that

g∗R = (1 + g∗CD)
1

1−γ−ν (1 + g∗P )
−ν

1−γ−ν − 1 ⇒ (B.68)

g∗CD = (1 + g∗R)1−γ−ν(1 + g∗E)ν − 1. (B.69)

B.6 Extraction Cost Estimates

B.6.1 Data

Extraction Costs. Extraction cost and energy availability estimates for coal, oil, and natural

gas are taken from McGlade and Ekins (2015).45 Estimates of energy availability include known

energy reserves in or scheduled to be in production, known resources not currently in production,

estimates of reserve growth within known sources of energy, and estimates of undiscovered resources.

Quantities correspond to remaining ultimately recoverable resources (RURR), the amount of energy

that could be profitably extracted from the environment at some point in the future, even if it is

not currently profitable to do so. This definition requires assumptions about future energy prices

and technology. ‘Additional occurrences’ of coal, oil, and natural gas that fall outside the definition

RURR are likely to be quite large (Rogner et al., 2012). I use the McGlade and Ekins (2015)

data to estimate the shape of the extraction cost curve, but not to estimate a limit to total energy

availability.

Extraction costs in McGlade and Ekins (2015) are estimated for current technology and include

operating expenses, capital expenditure, and capital costs necessary to bring primary sources of

energy to the market. They include exploration costs and exclude taxes. Costs were estimated

separately for sub-categories of energy within the three broad types of fossil fuel.

45Data available at: https://www.nature.com/articles/nature14016 (see source data for table 1). See McGlade
(2014) for further details.
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Both cost and energy availability estimates are uncertain. McGlade and Ekins (2015) construct

a range of extraction cost curves at the country level for each fossil fuel. The publicly available

global data are the median values from a Monte Carlo procedure that aggregates these country-level

estimates. I combine their estimates to construct a cost curve for an aggregate fossil fuel energy

composite.

Aggregation. Energy availability is measured in different units for each broad type of energy. Oil

is measured in barrels, natural gas is measured in cubic meters, and coal is measured by energy

content. I use data from Rogner et al. (2012) to estimate the energy content of oil and natural

gas.46 Energy conversion factors are presented in Table B1. Figure B.1a plots the primary energy

supply curves for each type of fossil fuel. Once availability is measured in terms of energy content

for all sources, the data can be aggregated to derive a single primary energy cost curve, which is

shown in figure B.1b.

Different types of energy are converted from primary to final-use energy at different rates. To

measure primary-to-final energy conversion factors, I take data on primary and final-energy use

in the United States from the International Energy Agency (IEA). These are the same data used

in figure 1a, except that I now focus on the Ep/Ef ratio for individual types of fossil fuel energy,

rather that country-level aggregates. Details on these calculations are provided below.

• Oil. I take total final-use energy consumption from oil products and subtract net imports

of final-use oil products. Then, I divide this difference by the supply of primary energy

from crude oil, natural gas liquids and refinery feedstocks. Data are average over the period

1971-2016.

• Natural Gas. Using the IEA data, I break natural gas usage into two categories: gas used

directly as a final energy source and gas used to generate electricity. Data on natural gas

usage is available from 1971-2016. By definition, the transformation efficiency for gas used

as final energy is one. For electricity, the average transformation efficiency is taken from

the EIA.47 Due to data limitations on the heat rate of electricity production, the average

efficiency is calculated using data from 2001-2016.

• Coal. The calculation for the transformation efficiency of coal is identical to the calculation

for natural gas.

Figure B.1c plots the final-use energy supply curves separately for each source of energy, and figure

B.1d plots the aggregated curve.

46See table 7.3 in Rogner et al. (2012).
47Transformation efficiency is calculated as the heat rate of electricity generation divided by 3,412 Btu, which is

the heat content of a kWh of electricity (https://www.eia.gov/tools/faqs/faq.php?id=107&t=3). Heat rate data
are taken from Table A6, ‘Approximate heat rates for electricity, and heat content of electricity,’ of the Annual Energy
Review (https://www.eia.gov/totalenergy/data/annual/).
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Figure B.1: Extraction Cost Curves. Estimates are originally from McGlade and Ekins (2015). Conversion

factors given in table B1.

Primary Type Original Unit Unit Conversion Final/Primary

Oil Barrels 5.71 GJ/bbl 85%
Nat. Gas Cubic meters 0.04 GJ/m3 73%

Coal Joules 1 GJ/GJ 39%

Table B1: Energy Conversion. Unit conversion factors for primary energy taken from Rogner et al. (2012).
‘Primary/final’ is the efficiency of transforming primary sources of energy (e.g., coal, oil) into final sources of energy
(e.g., electricity, gasoline). Efficiency data are taken from the IEA and EIA.

60



B.7 Robustness Results
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Figure B.2: Robustness with λ = 0.21. Comparison of the DTC and CD models when using an identical path of taxes. In particular, gτ = .100 (1.0%/year),
which meets the policy goal in the CD model. The policy goal is that energy use in 2055 is 15% lower than energy use in 2005. The policy is announced in 2005
and takes effect in 2015. All results are shown relative to a ‘business as usual’ case where the economy remains on the original BGP. Panel (a) compares flow
energy use. Panel (b) gives the energy expenditure share of final output. Panel (c) shows the pre-tax price of energy, which is equal to the energy extraction cost.
Panel (d) gives consumption by the representative household. Panel (e) gives final output. Panel (f) gives TFP. For ease of comparison between the models, TFP
is calculated as Yt/(K

α
t L

1−α
t ) in both cases.
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Figure B.3: Robustness with exogenous energy prices. Comparison of the DTC and CD models when using an identical path of taxes. In particular,
gτ = 0.088 (0.9%/year), which meets the policy goal in the CD model. The policy goal is that energy use in 2055 is 15% lower than energy use in 2005. The policy
is announced in 2005 and takes effect in 2015. All results are shown relative to a ‘business as usual’ case where the economy remains on the original BGP. Panel
(a) compares flow energy use. Panel (b) gives the energy expenditure share of final output. Panel (c) shows the pre-tax price of energy, which is equal to the
energy extraction cost. Panel (d) gives consumption by the representative household. Panel (e) gives final output. Panel (f) gives TFP. For ease of comparison
between the models, TFP is calculated as Yt/(K

α
t L

1−α
t ) in both cases.
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Figure B.4: Robustness with ψ = 3.64. Comparison of the DTC and CD models when using an identical path of taxes. In particular, gτ = 0.135 (1.3%/year),
which meets the policy goal in the CD model. The policy goal is that energy use in 2055 is 15% lower than energy use in 2005. The policy is announced in 2005
and takes effect in 2015. All results are shown relative to a ‘business as usual’ case where the economy remains on the original BGP. Panel (a) compares flow
energy use. Panel (b) gives the energy expenditure share of final output. Panel (c) shows the pre-tax price of energy, which is equal to the energy extraction cost.
Panel (d) gives consumption by the representative household. Panel (e) gives final output. Panel (f) gives TFP. For ease of comparison between the models, TFP
is calculated as Yt/(K

α
t L

1−α
t ) in both cases.
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B.8 Extension of Base Model

In this section, I consider an extension of the DTC model that allows for labor reallocation between

production and research, as well as the entry of new capital good producers. This extended model

incorporates insights from ‘second wave’ endogenous growth theory (e.g., Peretto, 1998; Young,

1998; Howitt, 1999). As a result, it eliminates scale effects that are present in existing models of

directed technical change (e.g., Acemoglu, 1998, 2002; Hassler et al., 2012, 2016b). I show that the

extended model continues to explain the key patterns observed in U.S. data.

Consider the following extension of the aggregate production function:

Qt =

∫ Mt

0
min

[
(Lt/Mt)

1−α (AN,t(i)Xt(i))
α , AE,t(i)Et(i)

]
di, (B.70)

where Mt gives the mass of (atomistic) capital good producers in operation at time t. This par-

ticular functional form is standard in the existing literature and eliminates the ‘love of variety’ in

production. I will refer to Lt as production workers. To operate in period t, a capital good producer

must hire ϕ−1 workers to cover fixed costs. This yields

Mt = ϕFt, (B.71)

where Ft is the total number of workers hired to cover fixed costs. There is free entry into capital

good production.

As in the main text, I assume

AJ,t(i) =
[
1 + ηJRJ,t(i)

1−λ
]
AJ,t−1, J = N,E, (B.72)

where AJ,t = 1
Mt

∫Mt

0 AJ,t(i) di,
48 except that research is now conducted by workers. The new labor

market clearing condition is given by

Nt = Lt + Ft +Rt ∀t, (B.73)

where Nt is the size of the aggregate workforce. The key difference with the main text is that

workers are now fully mobile across production sectors. As before, Nt grows at rate n. The Euler

equation is still standard, but is now written in terms of Nt to accommodate the broader notion of

population,

{Ct}∞t=0 = argmax
∞∑
t=0

βtNt
c̃1−σ
t

1− σ
, (B.74)

where c̃t = Ct/Nt. The remainder of the model is unchanged.

48As explained in footnote 21, this is equivalent to AJ,t = maxi{AJ,t−1(i)} in the baseline model.

65



Using the same steps outlined in earlier appendix sections, it is straightforward to derive the

following key expressions:

Yt =

[
1−

pE,t
AE,t

]
(ANtKt)

α L1−α
t , (B.75)

wt = (1− α)

[
1−

pE,t
AE,t

]
L−α (ANtKt)

α , (B.76)

π̄X,t ∝ r
−α
1−α
t A

α
1−α
N,t (Lt/Mt)

[
1−

pE,t
AE,t

] 1
1−α

, (B.77)

pRt ∝ r
−α
1−α
t (Lt/Mt)AN,t(i)

α
1−α

[
1−

pE,t
AE,t

] 1
1−α

ηN R̄
−λ
N,t

1

1 + gN,t
, (B.78)

where R̄J,t = M−1
t

∫Mt

0 RJ,t(i)di. Also, R̄t = R̄N,t + R̄E,t. I have applied the relevant market

clearing conditions, and the fact that all capital good producers face an identical problem and

make identical decisions. The latter implies that R̄J,t = RJ,t(i) ∀i, J . Again, π̄X,t is the profits of

the capital good producer before taking into account R&D costs. Compared to the equations in

the main text, the only difference is the inclusion of Mt in the last two equations.

I will show that there exists a balanced growth path with constant expenditure shares, matching

the data. On this BGP, a constant fraction of workers will be allocated to each occupation. I show

this in two steps. First, I show that, conditional on constant labor allocations, the extended model

reduces to the model presented in the main text. Thus, it has a BGP with constant expenditures

shares for all factors including energy and is consistent with the Kaldor facts. Second, I show that

this BGP is compatible with free mobility between occupations.

BGP assuming constant allocations. — Conditional on constant labor allocations (in

shares), the BGP of the extended model is almost identical to the version presented in the main

text. With constant allocations, Lt, Mt, and Rt grow at the same constant rate. Since Rt and

Mt grow at the same rate, the average number of R&D workers per firm R̄t is constant over time.

This is also true in the base model, where both the number of firms and number of researchers

are fixed. In terms of the return to R&D, the only difference with the main text is that Lt/Mt is

constant, whereas the baseline model had only Lt, which was growing. The size of the labor force,

however, has no impact on the relative return to improving the two types of technology.49 Taking

R̄ as given, therefore, the incentives for R&D are essentially the same as in the main text,

R̄E,t =

√
τtpE,t
AE,t−1

√
1

α(1−ηSt )

[
ηER̄

−λ
E,t

ηN (R̄−R̄E,t)−λ
+ ηER̄

−λ
E,t − ηER̄

1−λ
E,t

]
+ (1 + ηER̄

1−λ
E )− 1

ηER̄
−λ
E,t

,(B.79)

R̄N,t = R̄−RE,t, (B.80)

with the only difference being that R̄ replaces the normalized value of one. This immediately

49It will matter for the overall return to R&D, which I discuss in the next subsection.
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implies that pE,t/AE,t is constant on the BGP, which gives a constant energy expenditure share.

With a constant energy expenditure share and growth rates of technology, the rest of the model

is identical to the baseline case (which, in turn, a version of the neoclassical growth model with

time-varying TFP growth off of the BGP). Appendix section B.4.2 demonstrates that this model

has a standard BGP that matches the usual Kaldor facts.

Wage growth on the BGP. — Now, I show that constant allocations are consistent with

free mobility between sectors. In particular, I will show that wages in each sector grow at rate

(1 + g∗N )
α

1−α − 1, which is also the growth rate of output per capita. Equations (B.75) and (B.81)

are identical to the baseline model. They imply that the wages of production workers grow at the

rate of output per capita. The intuition is straightforward as these are standard equations from the

neoclassical growth model once pE,t/AE,t is constant. On a BGP, research allocations, technology

growth rate, the return to capital investment will all be constant. With constant allocations, Lt/Mt

is constant. Putting these together, it is immediate that the wage paid to scientists, pRt also grows

at (1 + g∗N )
α

1−α − 1 on the BGP. Finally, payments to fixed cost workers are determined by the free

entry condition. In particular, wages paid to fixed cost workers are proportional to the value of

operating a capital good firm conditional on technology (π̄X,t) minus R&D costs,

wFt =
1

ϕ

(
π̄ − pRt

)
(B.81)

∝ AN,t(i)
α

1−α . (B.82)

So, the growth rate of wages is the same for all occupations. The labor allocation is then determined

by the market clearing condition (B.73) and the free mobility condition, wt = wFt = pRt . There is

no closed form solution for the resulting allocation.

So, the extended model explains the same BGP facts while allowing for labor reallocation

between production and research. Following the existing quantitative literature on the macroeco-

nomics of climate change – e.g., Acemoglu et al. (2016) and Fried (2018) – the analyses conducted

in this paper use the baseline model, which does not allow for this reallocation. The extended

model demonstrates that the core intuition of the baseline model holds even in this richer setting.

B.9 R&D Spillovers and Differential Productivity Growth

Data on energy use and productivity growth indicate that technological progress in energy efficiency

is slower than overall technology growth (g∗E < g∗N ). Matching this fact places restrictions on the

functional form for equation (10), the law of motion for technology. In particular, it rules out R&D

spillovers between technologies and semi-endogenous growth specifications.

To see this, consider the following alternate R&D specification

AE,t(i) =
[
1 + ηERE,t(i)

1−λ
]
A1−φ
E,t−1A

φ
N,t−1, (9′)
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where φ ∈ (0, 1) and the law of motion for AN,t(i) has a symmetric form. The degree of spillovers

is decreasing in φ, and φ = 0 corresponds to the baseline case of no spillovers.

Following the same steps as in Appendix Section B.2, the research arbitrage condition is

1 =
α
[
1− pE,t

AE,t

]
pE,t
AE,t

·
ηNR

−λ
N

ηER
−λ
E

·
AE,tA

1−φ
N,t−1A

φ
E,t−1

AN,tA
1−φ
E,t−1A

φ
N,t−1

. (B.83)

Clearly, the LHS of this equation is constant. The first two terms on the RHS are the same as in

the baseline model. To match the trendless energy expenditure share, the first term on the RHS

must be constant on the BGP. Similarly, for productivities to grow at a constant rate, research

allocations must be constant on the BGP, which implies that the second term is constant.

It is straightforward to re-write the last term as
1+gE,t
1+gN,t

· A
2φ
E,t−1

A2φ
N,t−1

. Since technological progress is

constant on the BGP, this term could only be constant if
AE,t−1

AN,t−1
is constant or φ = 0. As explained

above, the former option is inconsistent with the data. So, the data are inconsistent with a model

that includes research spillovers.

It is also straightforward to show that the same limitation holds for a semi-endogenous specifi-

cation. In this case,

AE,t(i) =
[
1 + ηERE,t(i)

1−λ
]
AφE,t−1, φ ≤ 1 (9′′)

and

1 =
α
[
1− pE,t

AE,t

]
pE,t
AE,t

·
ηNR

−λ
N

ηER
−λ
E

·
AE,tA

φ
N,t−1

AN,tA
φ
E,t−1

. (B.84)

Following the same steps as above rules out the case where φ < 1.
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