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Abstract

Monetary policy can promote financial stability and improve household welfare. We con-

sider a macro model with a financial sector in which banks do not actively issue equity, output

and growth depend on the aggregate level of bank equity, and equilibrium is inefficient. Mone-

tary policy rules responding to the financial sector are ex-ante stabilizing because their effects

on risk premia decrease the likelihood of crises and boost leverage during downturns. Stabil-

ity gains from monetary policy increase welfare whenever macroprudential policy is poorly

targeted. If macroprudential policy is sufficiently well-targeted to promote financial stability,

then monetary policy should not target financial stability.
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1 Introduction

Economists increasingly debate whether monetary policy should be used to stabilize the financial

system. It is widely recognized that central bankers may pursue aggressive policies to stabilize the

financial system during downturns—i.e., enacting a “Fed Put” to cut borrowing costs—which en-

courages excessive risk-taking and leverage in good times and may ex-ante increase the probability

of financial crises. To counteract excessive risk-taking, some economists suggest that central banks

should “lean against the wind” (“LAW”) in good times to mitigate overheating in the the financial

sector. Proponents argue that systematically raising the cost of intermediation in good times will

decrease the probability of (extremely costly) financial crises.1 There are prevailing doubts that

the benefits of LAW outweigh the costs, and LAW may exacerbate crises if the economy enters a

crisis starting from a weaker position (Svensson, 2017).

Core to this debate is whether the financial sector creates inefficiencies with aggregate conse-

quences that monetary policy can adequately address. Monetary policy should consider targeting

financial conditions in addition to (or independent of) conventional targets only if the financial sec-

tor creates additional externalities. In other words, to justify targeting financial stability in addition

to inflation or output gaps, the financial sector must be more than a source of shocks to the rest of

the economy; it must be an inefficient source of shocks.2 This raises several fundamental ques-

tions. How do monetary policy rules affect financial stability? Can monetary policy effectively

correct financial-sector externalities? Do any benefits of targeting financial stability with monetary

policy persist if macroprudential tools are available?

We answer these questions using a continuous-time stochastic general equilibrium model in

which financial frictions endogenously create inefficient instability and systemic risk, building

on Brunnermeier and Sannikov (2014). Banks invest in productive capital, but banks can issue

only risk-free debt and not equity. As a result, banks invest more when they have more equity,

and capital is allocated more efficiently when banks are well-capitalized. Limited equity issuance

1See BIS (2014, 2016), Borio (2014); Borio et al. (2018) and Juselius et al. (2017). See also Adrian and Liang
(2016); Adrian and Duarte (2016); Adrian et al. (2019).

2If there were no externalities, then targeting the output gap in general would also indirectly address output gaps
caused by shocks to the financial sector; financial-sector shocks would just be demand or supply shocks to respond to
in the usual way.
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creates a distortion between the private and social values of bank equity, and so policies that im-

prove financial stability can potentially increase household welfare. To this setting we add the

model of monetary policy transmission from Drechsler et al. (2018) in which the nominal interest

rate determines the liquidity premium on banks’ investments. We assess optimal monetary pol-

icy and explain the underlying mechanisms by investigating the impact of interest rate rules on

the amplification of shocks, nonlinear dynamics, and systemic risk, which are central features of

the framework in Brunnermeier and Sannikov (2014). We then evaluate whether macroprudential

policy in the form of state-contingent leverage constraints changes the optimal monetary policy.

In our model, monetary policy can affect the return on banks’ investments, the rate of bank

equity growth, and banks’ leverage decisions. Through these effects, monetary policy can change

the frequency and duration of good and bad outcomes. We solve for the global dynamics of the

economy and find that the impact of interest rate rules on bank profitability, and thus on bank

equity growth, varies systematically with the state of the economy. How bank leverage varies over

the financial cycle depends primarily on how monetary policy changes over the cycle, much more

than on the overall level of rates.

Optimal monetary policy combines a Fed Put with LAW because it increases financial stability

ex-ante. A Fed Put increases leverage in bad times, which improves aggregate outcomes and raises

the expected rate at which banks recapitalize during crises. Surprisingly, even though banks expect

accommodation during crises, bank leverage in good times and asset price volatility do not sharply

increase, so the probability of crises is ex-ante lower with a Fed Put. LAW further improves

financial stability. Because the effects of monetary policy on leverage, asset price volatility, and

stability are state-dependent, the timing of interest rate movements matters. A large rate cut can

stabilize the financial sector better than a series of shallow rate cuts that start “early.”

Many economists have argued that macroprudential policy (MaP) should be the main tool for

addressing financial crises (see Svensson, 2017). An important concern is whether monetary pol-

icy still improves financial stability and/or welfare when macroprudential policy has been applied.

We find that if macroprudential policy is poorly targeted, then monetary policy should continue to

address financial stability, and conversely, if macroprudential tools are well-targeted, then mone-
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tary policy should not address financial stability. When macroprudential policy does not restrict

leverage at the right times, monetary policy has scope to improve stability and welfare. How-

ever, if macroprudential tools properly target excessive risk taking across the financial cycle, then

monetary policy is free to focus on conventional targets (e.g. inflation).

Related Literature Methodologically, our paper follows the stochastic continuous-time macro

literature, pioneered by Brunnermeier and Sannikov (2014, 2015, 2016a) and He and Krishna-

murthy (2012, 2013, 2019), who analyze the nonlinear global dynamics of economies with finan-

cial frictions, building on seminal results from Kiyotaki and Moore (1997) and Bernanke et al.

(1999). Within this literature, we combine the models of Drechsler et al. (2018) and Phelan (2016)

to study how monetary policy affects global dynamics. Drechsler et al. (2018) develop a dynamic

asset pricing model in which banks hold liquidity buffers to insure deposits against funding risks.

By influencing the liquidity premium on deposits, monetary policy affects the risk premium com-

ponent of the cost of capital. Risk-tolerant agents take deposits from risk-averse agents to buy

assets, and lower nominal rates raise leverage, resulting in lower risk premia as well as higher as-

set prices and volatility.3 We find that monetary policy has different effects on stability depending

on the extent to which the returns on productive factors are affected.

It is helpful to contrast our results with several closely-related papers. Svensson (2017) as-

sumes that a weaker economy in good times leads to a weaker economy in a crisis. This generally

need not be the case in reality, and in our model a Fed Put leads to a less severe crisis because bank

leverage increases in a crisis, a feature that is shared by Caballero and Simsek (2019, 2020). These

latter papers study the role of monetary and macroprudential policies to mitigate the severity of

demand-driven recessions. However, in these papers while the severity of a crisis is endogenous,

the probability is exogenous, whereas in our model both the severity and likelihood of crises are

endogenous. Van der Ghote (2020) shows that in a New Keynesian version of the model in Brun-

nermeier and Sannikov (2014), it is optimal for monetary policy to implement a countercyclical
3Drechsler et al. (2017) empirically confirm this transmission mechanism by examining how nominal rates affect

the supply of retail bank deposits, an important class of liquid assets. Bernanke and Kuttner (2005) document empiri-
cally that monetary policy shocks decrease risk premia. Kekre and Lenel (2019) consider a New Keynesian model in
which monetary policy shocks lower risk premia by redistributing wealth toward agents with greater propensities to
invest in risky capital.
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employment gap. In that model, monetary policy affects banks’ risk-taking incentives only indi-

rectly through the impact of the nominal rate on price dispersion. In current work, Van der Ghote

(2019) includes money as a means of payments to examine the real effects of interest-rate corridor

policies, which affect the cost of liquidity in financial markets.

There is a broad literature studying the relationship between monetary policy and financial

stability. Cieslak and Vissing-Jorgensen (2020) find that the Federal funds rate responds to asset

prices (the stock market); we consider responses to the condition of the financial sector specifically

(banks’ equity levels). Several papers have cautioned against central banks intervening in financial

markets (Diamond and Rajan, 2012; Farhi and Tirole, 2012). We take maturity mismatch and cor-

related risks as given and then consider, given these features, how monetary policy affects stability.

Because of the general equilibrium effects in our model, a Fed Put increases leverage when rates

are low but not before and the increase in leverage in bad times is stabilizing. Moreover, a Put does

not introduce a commitment or time-consistency problem because it is ex-ante stabilizing. These

results add to the analysis of Bornstein and Lorenzoni (2018), who develop a simple model where

passive monetary policy causes overborrowing due to an aggregate demand externality. Our model

suggests that moral hazard may not be a concern when a Fed Put addresses resource misallocation.

Our paper’s insight is also distinct from other research affirming the use of monetary policy to

address financial stability. Stein (2012) provides a model in which monetary policy can enhance

financial stability by reducing excessive short-term debt. Gertler and Karadi (2011), Cúrdia and

Woodford (2011, 2016), Christiano et al. (2015), and Caballero and Simsek (2019) study the ability

of monetary policy to address aggregate demand externalities in models with financial frictions,

and show that prudential monetary policy can mitigate the severity of a demand-driven recession.

In our economy, monetary policy corrects a pecuniary externality that produces dynamic resource

misallocation affecting both the severity and the probability of crises. These results together show

monetary policy can mitigate aggregate demand and aggregate supply issues caused by financial

frictions. Hansen (2018) characterizes LQ-optimal monetary policy near an efficient deterministic

steady state in a New Keynesian economy with a Bernanke and Gertler (1989) financial accelerator.

Equilibrium in our model is inefficient with a stochastic steady state.
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2 Model

The economy is populated by households and banks, owned by households. Capital can be used

to produce a final consumption good, which can be re-invested to create new capital. Banks have

an advantage at producing the consumption good. As a result, output and growth depend en-

dogenously on capital ownership. The financial friction is costly equity issuance. Outcomes will

depend on the level of equity in the banking sector. The model combines elements of the models

in Brunnermeier and Sannikov (2014), Phelan (2016), and Drechsler et al. (2018).

The baseline model presented in this section does not include macroprudential policy. Sec-

tion 4 introduces macroprudential policy (leverage limits) and considers the interaction between

macroprudential and monetary policy rules. Proofs are given in Appendix A.

2.1 Technology, Environment, and Markets

Time is continuous and infinite, and aggregate productivity shocks follow a Wiener process.

Capital The effective capital quantity kt evolves according to equation (1),

dkt

kt
= (Φ(ιt)−δ )dt +σdWt , (1)

where Φ(·) is a standard investment technology, ι is the rate of internal investment, σ is the volatil-

ity of capital growth, and Wt is an exogenous standard Brownian motion. The technology Φ(·)

satisfies Φ(0) = 0,Φ′(0) = 1,Φ′(·) > 0, and Φ′′(·) < 0. In equilibrium, ιt is the same for banks

and households. To reduce notation, we directly use this result when writing the growth rate.

Capital can be used to produce the final consumption good. Banks produce consumption goods

at the rate abkt while households produce at the rate ahkt , where ab > ah.

Capital is traded in a perfectly competitive market at a real price Qt . We postulate that the real

capital price (the “asset price”) follows the process

dQt

Qt
= µQ,t dt +σQ,t dWt , (2)
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which will be determined endogenously in equilibrium. The return to owning capital includes

dividends from production and the capital gains on the value of the capital. By Ito’s Lemma, the

real rate of return to agent i using capital is

dri
t =

(
ai− ιt

Qt
+Φ(ιt)−δ +µQ,t +σσQ,t

)
dt +(σ +σQ,t)dWt .

The volatility of returns on investments is σ +σQ,t , which includes fundamental risk σ and en-

dogenous price risk σQ,t .

Deposits and Monetary Policy There is a market for risk-free deposits. Deposits are in zero net-

supply with endogenous real return dr f ,t , which we assume has paths of finite variation. The central

bank sets the nominal interest rate it on deposits. (See Appendix B for details on implementation.)

Inflation is determined according to a standard Fisher equation

it = dr f ,t +πt .

We define policy functions for it later. We assume inflation is locally deterministic, i.e. d pt
pt

= πt dt.

Within the framework of our model, monetary policy is said to “target financial stability” when

the nominal interest rate deviates from some baseline path. A straightforward baseline is a constant

nominal rate. A constant nominal rate implies that monetary policy never responds to the state of

the financial sector, so it does not treat financial stability as a target. In the absence of nominal

rigidities but with liquidity costs imposed by nominal rates, ignoring the financial sector would

mean following the Friedman Rule (see also Proposition 4).

2.2 Households, Banks, and Asset Pricing

There is a continuum of risk-averse households denoted by h ∈ [0,1] with initial wealths nh,0.

Lifetime utility is given by

Vτ = Eτ

[∫
∞

τ

e−r(t−τ) log(ch,t)dt
]
,
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where ch,t is household flow consumption and r is the discount rate.

There is a continuum of banks, denoted by b ∈ [0,1], with initial book value (“equity”) nb,0.

Banks invest in capital and issue deposits. Banks are owned by households, who choose dividend

payouts, the level of deposits, the level of liquid reserves, and the portfolio weight on capital used

by banks. Because of un-modeled financial frictions, banks are subject to two constraints. First,

equity issuance is infinitely costly (i.e., dividends must be positive). Second, the value of banks’

assets minus liabilities nb,t cannot become negative (bankruptcy).4

Banks maximize the present value of dividends subject to their constraints. Dividends are

discounted by households’ stochastic discount factor ξt . Since households have log utility, the

stochastic discount factor is ξt = e−rtc−1
h,t . Due to banks’ productivity advantage, banks will borrow

debt to hold capital. To avoid bankruptcy, they will never finance their portfolio with only debt.

Following Drechsler et al. (2018) we assume deposits are subject to funding shocks, requiring

banks to self-insure by holding liquid assets. Since this behavior is not frictionless, borrowing with

deposits imposes a “liquidity premium” of operations that is proportional to the nominal interest

rate. See Appendix B for details.

Our results do not rely on this specific microfoundation for how monetary policy affects liquid-

ity premia, but only need a mechanism with two properties. First, the nominal interest rate creates

a wedge in banks’ first-order condition for their portfolio weight on capital but not in households’

first-order condition. Second, the wedge increases with the level of the nominal interest rate.

Other microfoundations would imply similar results. Nominal interest rates may determine liq-

uidity premia because banks have market power in the deposit market (see Drechsler et al., 2017;

Brunnermeier and Koby, 2018), because the central bank operates monetary policy through a cor-

ridor system5 and open market operations (see Bigio and Sannikov, 2019; Van der Ghote, 2019),

4The assumption that bank equity is “sticky” is empirically supported by Acharya et al. (2011), which shows that
the capital raised by banks during the crisis was almost entirely in the form of debt and preferred stock and not in the
form of common equity. Adrian and Shin (2010, 2011) provide evidence that the predetermined balance sheet variable
for banks and other financial banks is equity, not assets. Our results generalize so long as banks do not issue equity
too frequently. Relatedly, Gambacorta and Shin (2016) provide evidence that bank capital matters for monetary policy
transmission.

5While the Federal Reserve has used a floor system since 2008, many central banks (e.g. the Riksbank) continue to
operate corridor systems. Therefore, modeling monetary policy implementation as a corridor system still has empirical
relevance.
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or because banks use short bonds as collateral to back inside money (Lenel et al., 2019).

Households’ Problem Each household owns a bank, so their wealth wh,t equals the sum of their

“personal net worth” nh,t and the value of the shares in bank equity Ut . The distinction between nh,t

and Ut is necessary because banks control dividend payouts and cannot issue equity. Aggregate

investment into bank equity is not determined by households, but household wealth also includes

capital holdings and bank deposits, which households do control. Personal net worth refers to these

latter quantities. It will be useful to define ωt ≡ nh,t/wh,t , which is the share of a household’s total

wealth that is held in their personal net worth.

Let (xh,t ,xhd,t) be household’s portfolio weight on capital and debt, respectively. Since the

weights must sum to one, rewrite xhd,t = 1− xh,t . Formally, households solve the problem

max
xh,t≥0,ch,t ,ιt

Eτ

[∫
∞

τ

e−r(t−τ) log(ch,t)dt
]
,

subject to

dnh,t

nh,t
= dr f ,t + xh,t(drh

t −dr f ,t)+

(
Tt−

ch,t

nh,t

)
dt (3)

nh,t ,xh,t ≥ 0. (4)

where Tt denotes all transfers received by households normalized by their personal net worth.

Transfers include dividends from banks and any payouts from the government.

Proposition 1 characterizes households’ optimal decisions.

Proposition 1. Let σch,t denote the volatility of a household’s consumption. Then households

choose xh,t and ch,t such that (i) E[drh
t ]− dr f ,t ≤ σch,t(σ +σQ,t), and the inequality binds if and

only if xh,t > 0; (ii) ch,t = r(nh,t +Ut); (iii) σch,t = ωtσnh,t +(1−ωt)σU,t .

Households hold positive quantities of capital if the expected excess returns equal the covari-

ance of their consumption with returns and consume a constant fraction r of their total wealth.

Because household consumption is proportional to their wealth, the volatility of their consumption
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can also be written as a convex combination of the volatilities of their personal net worth and the

value of their bank shares.

Banks’ Problem Let (xb,t ,xbd,t) be the portfolio weights on capital and debt, respectively. Since

the weights must sum to one, we rewrite xdb,t = 1− xb,t . Formally, banks solve the problem

max
xb,t≥0,dζt≥0,ιt

Uτ = Eτ

[∫
∞

τ

ξt

ξτ

dζt

]
,

subject to

dnb,t

nb,t
= dr f ,t−

(
(xb,t−1)γit +Tt

)
dt + xb,t(drb

t −dr f ,t)−
dζt

nb,t
(5)

nb,t ,xb,t , dζt ≥ 0. (6)

Banks earn the deposit rate, pay the liquidity premium from holding reserves to back deposits,

earn the risk premium on capital holdings, and pay dividends at rate dζt .6 They also pay a tax Tt ,

which we include as a model technique to ensure a nondegenerate stationary distribution.7 The tax

is lump-sum distributed to households.

By homogeneity and price-taking, we can write the maximized value of a bank with equity nb,t

as

θτnb,τ ≡ max
xb,t≥0,dζt≥0,ιt

Eτ

[∫
∞

τ

ξt

ξτ

dζt

]
, (7)

where θt is the marginal value of equity, which summarizes how market conditions affect the value

of the bank per dollar of equity. The value θt equals 1 plus the multiplier on the equity-issuance

constraint and reflects the aggregate condition of the financial sector.

We can further characterize the optimality conditions in the following way.

6To minimize notation, we write banks’ problem after substituting their first-order condition for the portfolio
weight on reserves. Let xM,t be the weight on reserves. The microfoundation for monetary policy from Drechsler et al.
(2018) implies xM,t =−γxbd,t = γ(xb,t −1). In general, this formulation of the bank problem is correct as long as the
microfoundation implies that a bank scales its holdings of reserves in proportion to the level of its deposits.

7Alternative schemes to ensure a nondegenerate distribution include exogenous retirement, a preference for bank
debt in household’s utility function, and assuming banks are more impatient because they discount dividends using
e−rbtξt , where rb > 0. An earlier version of the paper used a preference for bank debt in household’s utility function
and the results are qualitatively the same.
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Proposition 2. Assume θt and ch,t follow the finite diffusions

dθt

θt
= µθ ,t dt +σθ ,t dWt , (8)

dch,t

ch,t
= µch,t dt +σch,t dWt , (9)

with σθ ,t ≤ 0. Then θtnt represents the maximal future expected payoff that a bank with book

value nt can attain, and {xb,t ,dζt , ιt} is optimal if and only if (i) θt ≥ 1 ∀t, (ii) dζt > 0 only

when θt = 1, and dζt = 0 otherwise, (iii) µθ ,t = Tt +σch,tσθ ,t − γit , (iv) E[drb
t ]− dr f ,t − LPt ≤

(σch,t−σθ ,t)(σ +σQ,t), with strict equality when xb,t > 0, (v) Φ′(ιt) = 1/Qt , (vi) The transversality

condition E[ξtθtnt ]→ 0 holds under {xb,t ,dζt}.

These optimality conditions provide insight about equilibrium dynamics. Banks will not pay

dividends when θt ≥ 1; θt can never be less than one because banks can always pay out the full

value of equity, guaranteeing a value of at least nb,t . Define the excess risk premium ERPt ≡

−σθ ,t(σ +σQ,t) and the liquidity premium LPt ≡ γit . The excess risk premium represents banks’

required risk premium (or instantaneous level of risk aversion) in excess of households’ required

risk premium on capital. Banks will hold capital only if the expected excess return over LPt is at

least the sum of ERPt and households’ risk premium. Internal investment is determined by Tobin’s

q. Finally, cutting interest rates locally affects the marginal value of bank equity by increasing the

drift of θt . Whenever µθ ,t < 0, lower rates slow down the expected decrease in θt , and whenever

µθ ,t > 0, lower rates accelerate the expected increase in θt .

Asset Pricing Since we look for an equilibrium where the risk premium and liquidity premium

are both non-negative, banks will almost surely hold capital. Banks’ first-order condition for their

portfolio weight on capital implies

ab− ιt

Qt
+Φ(ιt)−δ +µQ,t +σσQ,t = dr f ,t +σch,t(σ +σQ,t)+ERPt +LPt . (10)
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Households choose capital so that

ah− ιt

Qt
+Φ(ιt)−δ +µQ,t +σσQ,t ≤ dr f ,t +σch,t(σ +σQ,t) (11)

where the inequality reflects that households may not always hold capital in equilibrium. Differ-

encing (10) and (11) yields the equilibrium asset pricing condition:

ab−ah

Qt
≥ ERPt +LPt . (12)

Relative to households, banks earn extra returns of at least ERPt +LPt because they have higher

productivity but also bear the risk of holding capital. Condition (12) binds whenever households

hold a positive quantity of capital.

2.3 Characterizing Equilibrium

A competitive equilibrium is characterized by the market price for the risky asset, together with

portfolio allocations and consumption decisions such that given prices, agents optimize and mar-

kets clear. Due to equity issuance frictions, banks’ decisions depend on their level of equity, and so

equilibrium depends on banks’ equity levels and monetary policy has scope to affect equilibrium.

We solve for the global equilibrium dynamics using the methods in Brunnermeier and Sannikov

(2014). Define Nb,t =
∫

nb,tdb as aggregate bank equity. Because capital grows geometrically and

the bank problem is homogenous, the equilibrium state variable of interest is aggregate bank equity

as a fraction of total value of capital:

ηt =
Nb,t

QtKt
.

Equilibrium consists of a law of motion for ηt , and asset allocations and prices as functions of η .

The asset prices are Q(η) and θ(η), and the flow allocation is the fraction of capital held by banks

ψ(η). We derive the evolution of ηt using Ito’s Lemma and the equations for returns and budget

constraints.
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Lemma 1. The equilibrium law of motion of η will be endogenously given as

dηt

ηt
= µη ,tdt +ση ,tdWt +dΞt , (13)

where dΞt is an impulse variable creating a regulated diffusion. Furthermore,

µη ,t =
ab− ιt

Qt
−Tt +

(
ψt

ηt
−1
)
((σch,t−σθ ,t)− (σ +σQ,t))(σ +σQ,t)−dΞt

ση ,t =

(
ψt

ηt
−1
)
(σ +σQ,t), dΞt =

dζt

Nb,t
,

where dζt =
∫

dζb,tdb.

We convert the equilibrium conditions into a system of differential equations (“ODE”) in the

asset prices Q and θ . Given Q(η), θ(η), and θ ′(η) we can use equilibrium returns and allocations

to derive Q′(η) and θ ′′(η). We solve the ODE using appropriate boundary conditions (additional

details are in Appendix A).

Proposition 3. The equilibrium domain of the functions Q(η),θ(η), and ψ(η) is an interval

[0,η∗]. The marginal price of bank value θ is a decreasing function, and the following boundary

conditions hold: (i) θ(η∗) = 1; (ii) θ ′(η∗) = 0; (iii) Q(η∗) = Q; (iv) Q′(η∗) = 0; (v) Q(0) = Q;

(vi) lim
η→0+

θ(η) = ∞. Over [0,η∗], θt ≥ 1 and dζt = 0, and dζt > 0 at η∗ creating a regulated

barrier for the process ηt . The quantity Q is the price of capital in an economy with no banks, and

the quantity Q is the price of capital required by market-clearing for consumption at η∗.

Hence, the system ranges between 0 and η∗, at which point banks pay dividends because the

marginal attractiveness of debt outweighs the marginal attractiveness of an additional unit of equity.

When interest rates do not vary too much, there exists η ∈ (0,η∗) such that ψ(η) = 1 for η > η

and ψ(η) < 1 for η ≤ η .8 For high levels of η , banks can hold the entire capital stock. The

evolution of η induces a stationary density (PDF) f (η) with CDF F(η); the density f (η) solves a

Kolmogorov-Forward equation.
8Depending on the monetary policy rule’s specification, there can be multiple regions in which specialization

occurs and the state space is no longer cleanly separated into two regions around a single η . In this case, we still
define stability as the measure of states when ψ = 1.
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We define a crisis as when banks are so constrained that they have to sell capital at fire-sale

prices to households (i.e., η < η). The stability of the economy is the fraction of time the economy

is not in a crisis:

Stability = 1−F(η). (14)

The fundamental problem caused by financial frictions is the inability of banks to always hold the

entire capital stock. Households are worse-off when fire sales are more frequent. Our definition of

stability directly quantifies this problem. While alternative measures like asset price volatility can

be more easily mapped to data, our paper is primarily theoretical, so we prefer the transparency

provided by our definition of stability.9 Furthermore, high volatility occurs because of fire sales.

Higher stability will also imply lower asset price volatility in the long run.

If the price function is twice-continuously differentiable, then the evolutions of the capital price

and marginal bank value (equations (2) and (8)) are functions of η

dQt

Qt
= µQ(ηt)dt +σQ(ηt)dWt ,

dθt

θt
= µθ (ηt)dt +σθ (ηt)dWt ,

where the drift and variance terms are determined by the derivatives of Q(η) and θ(η). For the

remainder of the paper, we suppress the dependence on ηt and on time t for notational ease.

Monetary Policy Rules It is outside the scope of this paper to solve the optimal interest rate path

over the space of all policy functions. We can answer the questions of interest while maintaining

parsimony by focusing on a specific class of policy rules for the nominal interest rate, defined as

follows:

i(η) =


iPut η < ηPut ,

iPut + iLAW−iPut

ηLAW−ηPut (η−ηPut) ηPut ≤ η < ηLAW ,

iLAW η ≥ ηLAW .

(15)

9He and Krishnamurthy (2019) use a similar measure of stability. They define a crisis by when a capital constraint
binds for financial intermediaries and limits the equity they can raise. In our model, the equivalent notion of a binding
capital constraint is precisely the sale of capital by banks because low bank equity restricts their ability to hold capital.
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This policy rule captures the idea of a Fed Put with LAW in good times. For low η , the interest

rate is lowered to the constant level iPut , and for high η , the interest rate is raised to the constant

level iLAW . For intermediate η , the interest rate, for simplicity, increases at a linear rate from iPut

to iLAW . Where the Put and LAW regions begin and end are determined by ηPut and ηLAW . A

higher ηPut is more accommodative in two senses. First, iPut holds for a larger portion of the state

space. Second, the interest rate decreases at a faster rate from iLAW . A lower ηLAW has the opposite

effects. Note that this class of rules includes constant nominal rates, which occur when iLAW = iPut .

With a slight abuse of notation, this class also includes piecewise rules in which the interest rate

discontinuously jumps from iPut to iLAW at ηPut if ηPut = ηLAW .

Table 1: This table lists the model’s parameters, our chosen values, the quantities to match, the
target numbers, and the model’s calculations. The target numbers are the mean values with respect
to the stationary density. If a model number is reported but not the target, then we did not explicitly
set a target and instead aimed for a reasonable number. Conversely, if a target number is reported
but not the model number, then we are targeting the general behavior of the quantity to match. If
the quantity to match is taken from the literature or chosen by another rationale, we do not report
the target or the model’s calculation.

Description Parameter Value Quantity to Match Target Model

Bank Productivity ab 0.215 Consumption Growth 2% 1.9%
Household Productivity ah 0.172 Sharpe Ratio — 25.6%
Investment Adjustment Cost ε 6 Literature — —
Depreciation rate δ 10% Literature — —
Discount rate r 1% Risk-Free Interest Rate 2-3% —
Capital Growth Volatility σ 3.75% Consumption volatility 2% 2.0%
Tax on Banks τ 2.15% Bank Leverage — 3.3
Liquidity Premium Coefficient γ 10.2% Literature — —
Put Interest Rate iPut 0% Zero Lower Bound — —
LAW Interest Rate iLAW 4.5% Literature — —
Lift-Off from Put ηPut 6% Near ψ = 50% — 50.9%
Start LAW ηLAW 20% Near ψ = 100% — 100%
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Calibration Table 1 reports our baseline calibration and the targets. Our results are qualitatively

robust to alternative parameterizations. Following Brunnermeier and Sannikov (2016b), we choose

the internal investment function

Φ(ι) =
1
ε

log(ει +1). (16)

This functional form has computational advantages, but other choices like quadratic adjustment

costs would yield similar results. Brunnermeier and Sannikov (2016b) sets the adjustment cost

parameter ε = 10 while the standard value of ε in the literature is 3 when adjustment costs are

quadratic. We choose an intermediate number and calibrate ε = 6.

Bank productivity ab and capital growth volatility σ target 2% mean consumption growth and

2% mean consumption volatility. Households are 80% as productive as banks (ah = 0.172), which

generates a mean Sharpe Ratio of 25.6% for banks. A deprecation rate of 10% is the annualized

depreciation rate used in the literature. The discount rate r = 1% implies a risk-free interest rate

generally between 2% and 3%. The tax on banks is proportional to their equity and generates a

mean leverage of 3.3. The liquidity premium coefficient is based on the microfoundation from

Drechsler et al. (2018).10

The baseline model is calibrated under the assumption that the central bank implements a Fed

Put with LAW since most central banks in advanced economies arguably set rates in response to

financial conditions. The Put interest rate iPut is set to the zero lower bound, and the LAW interest

rate iLAW is set to 4.5% because a steady-state nominal interest rate of 4–5% is common estimate by

DSGEs. Rates are cut to the zero lower bound when the share of capital held by banks ψ reaches

around 50%. Rates are raised to 4.5% just after ψ reaches 100% to reflect the idea that monetary

policy will respond only when financial distress becomes likely. For later reference, we denote this

policy rule as the Baseline rule.

We interpret this rule as leaning against the wind even though the nominal rate in good times

10The funding shock size is κ = 40.85%, and the liquidity services multiplier on reserves is m = 4, which implies a
liquidity premium coefficient of γ = κ/m≈ 0.102. To ensure banks always choose full insurance, we additionally set
the funding shock frequency to χ = 13%, and the fire sale loss to ρ = 20%, which allows a maximum interest rate of
9.2%. If χ = 10% and ρ = 15%, as in Drechsler et al. (2018), then the maximum rate would be 5%.
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is set to a “standard” value from the literature. Our model does not have any nominal rigidities

that make positive nominal rates a natural choice. Instead, positive nominal rates insert a wedge in

banks’ asset pricing condition and, all else equal, disincentivize leverage. Within the lens of our

model, this disincentive is precisely leaning against the wind if it is applied when η is high.

3 Stability and Optimal Monetary Policy

We now consider the effect of monetary policy on financial stability and household welfare. Sec-

tion 3.1 first considers the positive effects of policy rules on equilibrium, focusing on stability.

Section 3.2 then considers how these positive effects translate into potential welfare gains and

solves for the optimal policy within the class of rules we consider. In this section there is no

macroprudential policy that could improve financial stability, and so monetary policy alone can

achieve welfare-improving stability gains.

3.1 Stability, Leverage, and Returns

To understand how monetary policy positively affects equilibrium dynamics and stability, we first

compare the policy rule under our Baseline calibration with nominal rates held constant at i = 0%

and i = 4.5%. Comparing the two constant rate equilibria illustrates the effects of globally higher

rates; comparing with the Baseline policy illustrates the state-dependent consequences of monetary

policy. Using our model as a counterfactual laboratory, we can compare these different policy rules

as well as the choices of iPut , iLAW , ηPut , and ηLAW to better understand how a Fed Put and LAW

affect macroeconomic stability.

The effects of monetary policy on asset prices and volatility in our model are similar to what

Drechsler et al. (2018) find in their model with two agents with heterogeneous risk aversion. In

contrast, the stationary density and leverage behave differently in our model. They find that higher

rates lead to lower leverage everywhere, which we do not find, and we find that changes in rates are

the key determinant of leverage. This difference in leverage behavior has important consequences

for the effects of a Fed Put and LAW.
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Stability Equilibrium under the Baseline policy generally resembles a combination of equilibria

under the two constant rate policies.11 Despite this behavior, the Baseline rule improves stability

ex-ante, in contrast to the worry that a Fed Put would be destabilizing. Stability (equation 14) under

Baseline equals 85%, but equals 81% and 80% under the i = 0% and i = 4.5% rules respectively.

Perhaps surprisingly, the i = 4.5% rule results in the least stable economy. Figure 1 illustrates this

result by plotting the stationary density of the economy under each policy, after normalizing the

x-axis and rescaling the densities to account for (small, endogenous) changes in η∗. In the region

to the left of where a density spikes sharply (e.g. around η/η∗ = .45 for the Baseline policy),

banks do not hold the entire capital stock. The Baseline policy both reduces the density in this left

region and shrinks the size of the crisis region since the density spikes sooner.

Figure 1: Stationary density (normalized support) with constant rates and Fed Put.

Leverage Figure 2(a) plots leverage levels across η (leverage is countercyclical), and Figure 2(b)

plots the percent deviation in leverage compared to the Baseline policy rule under the constant rate

policies. Policy rules affect leverage differently in good and bad times. In good times, all three

policy rules generate the same leverage. Explicitly, since ψ = 1 in good times, leverage must

be 1/η in equilibrium. Changes in the nominal interest rate (and changes in banks’ demand for

11We present results on stability, leverage, and returns in the main text. Appendix D.1 presents additional results on
equilibrium dynamics, prices, and allocations.
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capital) affect the capital price in equilibrium but not bank leverage.12 In bad times, however,

leverage is actually highest under the Baseline rule and substantially higher than the constant i =

4.5% rule. Surprisingly, for the lowest η , leverage under the Baseline rule is also higher than the

constant i = 0% rule, even though interest rates at those η are the same in both cases; general

equilibrium effects across the state space actually support higher leverage under Baseline.

(a) Leverage (b) Percent Deviations from Baseline

Figure 2: Equilibrium leverage with constant rates and Baseline.

Monetary policy affects leverage across the state space in this way because households are the

marginal pricers of capital in bad times but banks are the marginal pricers in good times. In bad

times, asset prices fall since households will only buy capital at fire-sale prices. All else equal, low

rates in bad times incentivize banks to demand more capital. Banks’ higher demand for capital

is met by higher supply because households are less productive and are therefore willing to sell

capital. In equilibrium, banks hold more capital by increasing their leverage. In contrast, during

good times banks hold the entire stock of capital, so interest rates affect asset prices instead of

allocations.
12In a previous version of this paper, we considered a two-good model where households specialized in the produc-

tion of one good. In equilibrium they always held some capital, hence banks in good times could actually increase their
leverage. However, leverage in the two-good model still behaved like leverage in this paper’s one-good model. In bad
times, low rates boosted leverage, but in good times the prospect of low rates in the future did not significantly boost
bank leverage. The reason was the same: interest rates in good times primarily affected asset prices, not allocations.
Intuitively, households were not willing to sell in good times because their capital holdings were efficiently used.
While low rates in the future incentivized higher leverage by banks, no agent was willing to sell, so prices changed
rather than allocations.
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Economists typically worry that the expectation of low rates during crises will trigger more risk

taking in good times and conclude that a Fed Put will decrease stability. This is not the case in our

model, which is one reason why the Baseline policy produces an ex-ante more stable economy. A

Fed Put does not lead to higher leverage in good times, and high leverage during bad times boosts

stability because it allows banks to earn greater excess returns and rebuild equity quickly.

Returns The other salient reason why a Fed Put with LAW improves stability is the state-

dependent impact on returns. Figure 3(a) and (b) displays banks’ excess returns and their Sharpe

ratio, respectively. Recall from Proposition 2 that banks’ hold capital if and only if

E[drb] = dr f +σch(σ +σQ)+ERP︸ ︷︷ ︸
Risk Premium

+ LP︸︷︷︸
Liquidity Premium

.

The RHS is banks’ excess returns, and dividing the RHS by σ +σQ yields the Sharpe ratio. Figure

3(c) decomposes banks’ excess returns into the risk premium and liquidity premium components,

as labeled above. In bad times, returns are largely the same, but in good times, returns are much

higher when interest rates are positive, with or without risk adjustments. The reason for this be-

havior is the state-dependent impact of the liquidity premium and thus monetary policy.

Excess returns in bad times are similar under the three policies because the liquidity premium

acts a substitute for the risk premium. During bad times, the risk premium under i = 4.5% is

lower than the risk premium under the other policies. The difference in risk premia arises from the

difference in liquidity premia. The behavior of the risk premium under Baseline provides further

evidence. When η is very low and rates are zero under this rule, the risk premium almost coincides

with the risk premium for the i = 0% policy. As η increases and the nominal interest rate under

the Baseline policy begins to increase, the risk premium deviates from the risk premium under the

i = 0% policy and decreases toward the premium under the i = 4.5% policy.

Equilibrium asset pricing condition (12) illustrates why the liquidity premium substitutes for
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(a) Excess Returns (b) Sharpe Ratio

(c) Risk and Liquidity Premia (d) Risk-Free Interest Rate

Figure 3: Equilibrium returns.

the risk premium in bad times. Recall that if households hold positive quantities of capital then

ab−ah

Q
= ERP+LP

must hold. Quantitatively, a higher LP barely changes the capital price Q, so the LHS of this

equation is almost constant. The intuition is that households are the marginal pricers of capital

during bad times. Since the liquidity premium affects banks’ incentives but not households’, the

price of Q does not strongly respond to the nominal interest rate. For the equality to hold, ERP

must decrease instead. A lower ERP can occur if the magnitudes of σθ , σQ, and/or ψ fall. In

equilibrium, all three of these quantities generally decrease with the liquidity premium.
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In good times, the returns differ because the liquidity premium becomes a substitute for the

risk-free interest rate (see Figure 3(d)) instead of the risk premium. While not identical, the risk

premia under the three different policies are much closer to each other in good times than in bad

times. In contrast, the risk-free interest rates under the three policies are similar in bad times but

significantly different in good times. The reason is that the asset pricing condition (12) is slack, so

expected returns now only need to satisfy (10):

ab− ι

Q︸ ︷︷ ︸
dividend yield

+Φ(ι)−δ +µQ +σσQ︸ ︷︷ ︸
Capital Gains

= dr f +σch(σ +σQ)+ERP+LP.

The risk-free interest rate in good times can move to absorb most of the effects of a higher nominal

rate, whereas in bad times, changes in LP have to be matched by changes in ERP and/or Q.

State-Dependency and Stability Monetary policy improves financial stability because its effects

on equilibrium depend on where the economy is located in the financial cycle: the differential

impact on leverage and returns is determined by whether or not banks hold the entire stock of

capital. We highlight two implications.

First, if stability is the only objective, central banks should “keep their powder dry” by waiting

to cut rates but then cutting quickly once a crisis occurs. We analyze the issue of timing in detail in

Appendix C and summarize our results here. Stability is maximized when rates are cut just before

a crisis occurs and then cut almost as much as possible. Because our model features nonlinear

dynamics, changes in rates matter more than the overall level of rates. If the central bank has the

flexibility to respond aggressively to financial distress, then it pays to keep the powder dry and

then cut fast. These equilibrium dynamics occur when the policy is known ex-ante. If the central

bank is constrained so that it cannot promise to respond aggressively to financial distress, then it is

better to cut early rather than to delay.

Second, a carefully targeted policy of leaning against the wind in good times, and only in good

times, promotes stability. Raising interest rates has a detrimental effect on stability if higher rates

increase bank funding costs during crises, precisely when rebuilding bank equity is most valuable.
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However, when banks are well-capitalized and hold the entire capital stock, raising rates increases

stability. Therefore, to stabilize the financial sector, iPut should be low, and iLAW should be high.

Appendix D.2 explores further dimensions of monetary policy’s state dependency.

3.2 Optimal Monetary Policy

Because households have log utility, their value function is

V =
log(Wh)

r
+h(η),

where h(·) is a wealth-independent term. Because household wealth satisfies the identity

Wh = Nh +θNb = Q(1+(θ −1)η)K,

the value function can be re-written into a function of η and K:

V (η ,K) =
log(K)

r
+

log(1+(θ −1)η)

r
+

log(Q)

r
+h(η).

Since η and K are initial conditions, for our purposes, we may normalize K = 1 and focus on the

value function V (η)≡V (η ,1).

Figure 4(a) plots household welfare under Baseline, i = 0%, and i = 4.5% policies, and Figure

4(b) plots consumption-equivalent welfare losses relative to Baseline. The Baseline policy yields

higher household welfare than the constant rate rules for all η , and this result holds for any constant

rate we considered. The stability gains from a Fed Put with LAW translate to welfare gains.

The consumption-equivalent welfare losses from using one of the constant rate rules are sizable,

ranging from at least 2% to low as 14% if η is very low (see Figure 4(b)).

Given the liquidity costs from positive nominal interest rates, in the absence of financial fric-

tions the Friedman Rule would be optimal in our model. Proposition 4 states this explicitly for the

case when banks can freely issue equity.

Proposition 4. When banks can freely issue equity (no financial frictions), the optimal nominal
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(a) Welfare (b) Consumption equivalent relative to Baseline

Figure 4: Household welfare and consumption-equivalent welfare losses under the Baseline, i =
0%, and i = 4.5% policies

interest rate is i∗ = 0 so that the Friedman Rule holds.

The model with financial frictions features pecuniary externalities so that banks generally take

excessive risk and thus the Friedman Rule need not hold. We now show that a positive liquidity

premium can potentially increase welfare by decreasing banks’ risk-taking to improve stability.

Optimal Policy We take a “timeless” perspective on the initial condition η : the initial condition

is not known, but we take expectations according to the stationary distribution. This “timeless”

perspective calculates welfare by letting the stationary density f (η) determine the ex-ante distri-

bution of initial conditions and then computes E[V (η)] using the stationary distribution occurring

in equilibrium. Another way to frame this exercise is that we adopt a prior on the capitalization

of the financial sector and compute the expected welfare. Because our class of monetary policy

rules is parameterized by the four parameters iPut , iLAW , ηPut , and ηLAW , it is numerically fea-

sible to search for the optimal choices of these parameters. We search over a fixed parameter

space to reduce computational time and because if iLAW is too high, then the numerical algo-

rithm fails to find a solution to the equilibrium boundary value problem. The parameter space

is (iPut , iLAW ,ηPut ,ηLAW −ηPut) ∈ [0,0.04]× [0,0.09]× [0,0.18]× [0,0.20], and the optimization

algorithm is the interior-point method.

24



The welfare results using this timeless perspective show that an aggressive Fed Put with LAW

is the optimal policy. Given the functional form, the optimal policy is given by

(îPut , îLAW , η̂Put , η̂LAW ) = (0.05%,8.16%,14.52%,19.37%). (Opt-NoMaP)

Since this is the welfare-maximizing (optimal) policy rule in an economy without macroprudential

policy, we refer to this policy rule as the “Opt-NoMaP” rule. The optimal choice of iLAW is nearly

twice the size of the Baseline calibration. This result provides strong evidence for the use of LAW,

though we maintain a cautious interpretation of the quantitative magnitude since our model does

not include standard frictions such as nominal rigidities, which would impose larger welfare losses

from high interest rates.

Table 2: Welfare and stability compared to the optimal policy rule. Welfare is reported in con-
sumption equivalent differences from the optimal policy, and stability is reported in percentage
point differences from the optimal policy. “Baseline” refers to the calibrated MP rule and the other
columns are constant interest rates.

Baseline i = 0% i = 4.5%

Welfare -2.14% -5.59% -6.70%
Stability -4.75% -10.06% -10.74%

Table 2 shows the welfare and stability losses from using Baseline or constant interest rate rules

compared to Opt-NoMaP. Welfare losses are reported in consumption-equivalent percentages while

stability losses are percentage point differences. The Baseline policy generates a sizable welfare

loss at -2.14% in consumption equivalents. The constant rate policies perform even worse, and

the higher the interest rate, the worse that household welfare becomes. Larger stability losses are

associated with larger welfare losses, so targeting financial stability with monetary policy improves

household welfare.
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Remark on Moral Hazard Banks may take more leverage in good times because they expect

rate cuts in bad times, and because of financial frictions leverage can be excessive. While aggregate

leverage could be excessive, we have not modeled any reason why banks may take actions that

households would not find desirable at the individual level. In reality, bank managers can be

“dishonest” and misbehave. It is common to assume that bankers can “steal” capital to divert

for their own consumption. Di Tella (2019) studies this form of dishonest moral hazard within a

continuous-time macro-finance model and finds that bankers face a greater incentive to steal when

prices are higher because they can earn more per unit of capital. In our setting, this externality

would be worsened by accommodative monetary policy. Placing a similar mechanism into our

model may mitigate the capacity of monetary policy to address financial stability. Banks also

function as monitors for depositors (see Diamond (1984)), but screening risky investments is costly.

Stable financial conditions may decrease screening effort, causing banks to systematically choose

poorer quality projects. Adrian and Shin (2011) motivate a value-at-risk (VaR) constraint as the

outcome of a moral hazard problem between depositors and the bank. Accommodative monetary

policy may loosen banks’ VaR constraints and produce even more leverage in good times, which

could undo the stabilizing effects of monetary policy.

While careful considerations of additional moral hazard problems would temper our results on

the margin, we conjecture that they are unlikely to reverse them. Leverage does not always sys-

tematically increase when a central bank commits to an interest rate rule that responds to financial

conditions, and when leverage does increase, then it does not necessarily harm welfare. Within our

model, whether monetary policy improves or worsens outcomes depends on whether households

or banks are the marginal pricers of capital. If policymakers and economists believe that lower

rates in bad times may lead to excessive risk taking in good times, then they should examine forms

of dishonest moral hazard.

4 Interaction of Monetary and Macroprudential Policies

We now investigate if monetary policy still improves financial stability and/or welfare when macro-

prudential policy (MaP) is also applied. We have so far found evidence that a Fed Put with LAW
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promotes both financial stability and welfare. These results extend so long as macroprudential pol-

icy is insufficient to address financial stability on its own. Monetary policy has scope to improve

stability and welfare if macroprudential policy does not restrict leverage at the right time. The key

reason is that banks choose socially suboptimal levels of leverage only for certain ranges of η , so

macroprudential policy has to limit leverage at the correct locations in the state space.

4.1 Macroprudential Policy Rules

We model macroprudential policy as a leverage constraint that depends on η . For some function

L(η), the share of capital allocated to banks must satisfy

ψ

η
−1≤ L(η).

Since all variables in the model depend on η in equilibrium, this constraint can also be written as

a function of other quantities like the marginal value of bank equity rather than η directly. The

presence of leverage constraints changes some of the equilibrium conditions used to derive Lemma

1 (see Appendix A).

4.2 Well-Targeted Macroprudential Policy

It is useful to divide the state space into three regions: “Crisis” when η is very low; “Distress”

when η is intermediate and banks still hold a large fraction of capital; and “Boom” times when η

is sufficiently high that banks hold all capital (ψ = 1). The phase(s) in which leverage constraints

bind determine the consequences for equilibrium dynamics and welfare. Because bank leverage is

countercyclical in equilibrium, leverage constraints that are simply defined are likely to bind when

the economy is already in a downturn. However, this is precisely when output is the worst and the

need to rebuild equity is the greatest.

We find that macroprudential policy performs best if it primarily restricts leverage during the

“Boom” phase of the financial cycle and allows more leverage during the downturn. One such
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natural rule ties leverage to the marginal value of bank equity:

L(η) = αθ . (17)

This constraint is close to the incentive-compatibility constraint on leverage used in Van der Ghote

(2020), and so we call (17) the “ICC” macroprudential policy. The coefficient α parameterizes how

stringent the leverage constraint is. This rule encourages countercyclical leverage (θ decreases

with η). When θ is low (during the Boom) bank leverage cannot be too high, but if bank equity is

low, then the constraint relaxes, allowing banks to borrow more.

(a) Leverage, percent deviations (b) Stationary density

Figure 5: Leverage and stability when the ICC macroprudential policy is applied in addition to
Baseline.

Figure 5 plots leverage and the stationary density when the ICC policy is applied and monetary

policy follows the Baseline rule. Figure 5(a) plots the percent deviations in leverage compared to

equilibrium with no ICC policy (i.e., α = ∞). The ICC policy leads to lower leverage in Distress

and Boom times.13 Crucially, compared to the equilibrium without any leverage constraints, the

general equilibrium consequences of lower leverage in Distress times is that leverage with the ICC

policy is higher in Crisis times. Because the ICC policy boosts leverage in bad times but dampens
13More precisely, the ICC policy causes lower leverage in the regions of the state space that would be classified as

Distress and Boom times if the Baseline rule without an ICC policy was used. Of course, by definition, leverage is
the same for η belonging to the Boom phase with or without ICC policy. Nonetheless, the ICC policy affects other
variables, such as drift and volatility, over these η .
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leverage in good times, the economy is overall more stable, as illustrated in Figure 5(b). The

drift of bank equity increases everywhere and systemic risk generally falls when the ICC policy

is applied. Although the ICC policy lengthens the region where ψ < 1, the higher drift and lower

volatility prevent the economy from slipping into deep recessions (η stays far away from zero).

Table 3: Welfare gains relative to Baseline, with ICC policy. Welfare is reported in consumption
equivalent differences from the Baseline calibration. The “Opt-NoMap” policy is the optimal MP
rule without macroprudential policy (see Section 3); the other columns consider constant rates.

MaP Constraint Opt-NoMap i = 0% i = 4.5%

None (α = ∞) 2.51% -3.15% -4.36%
α = 1.6 -4.67% 1.97% -0.84%
α = 1.15 -2.54% 1.58% 0.03%

The presence of the ICC policy completely changes the welfare consequences of monetary

policy rules. Welfare is now maximized when monetary policy ignores financial stability, adopting

the Friedman rule to minimize liquidity costs from positive nominal interest rates. Table 3 displays

welfare gains relative to the Baseline rule, varying the tightness of the ICC policy and the type of

monetary policy. Figure 6 plots welfare and stability, varying the tightness of the ICC policy α ,

for the Opt-NoMaP rule and a constant i = 0% rule. The Friedman rule (i = 0%) is now associated

with a welfare gain of roughly 2% in consumption equivalents relative to the Baseline rule, whereas

without the ICC policy the i = 0% policy results in a welfare loss of -3.15% relative to Baseline.14

Additionally, with the ICC policy a higher iLAW no longer improves welfare (a higher iPut still

hurts welfare). A Fed Put with LAW is not necessary when the ICC policy regulates leverage.

Figure 7 plots welfare while varying two sets of MP rules in the presence of the ICC constraint.

Figure 7(a) considers a Fed Put with ηLAW ,ηPut , iLAW set to the Baseline calibration and varies

14Welfare with the ICC policy is not monotonic in α , regardless of the monetary policy rule, which is shown in
Figure 6(a) for the Opt-NoMap policy and i = 0%, reflecting the tradeoff between stability and output: tighter MaP
constraints improve stability, but at the cost of lower flow output and growth. Thus, welfare is generally maximized
for an interior value of the ICC policy.
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(a) Ex-Ante Welfare Gains (b) ψ ≥ 50% Stability

Figure 6: Welfare and stability varying α under the Opt-NoMaP monetary policy rule and the
i = 0% rule. Welfare gains are calculated in consumption equivalents relative to Baseline.

iLAW , given an ICC constraint with α = 1.2,1.7,2.2. In each case, welfare is decreasing in iLAW

so that it is no longer optimal for monetary policy to pursue a Fed Put with LAW. 7(b) considers

constant interest rate rules and confirms that low interest rates are also optimal in the presence

of the ICC constraint. Proposition 4 shows that the Friedman rule is optimal in the absence of

financial frictions; these results suggest that the Friedman rule also maximizes welfare when MaP

can adequately address externalities caused by financial frictions.

The ICC policy erases the need for active monetary policy because it restricts leverage during

the appropriate phases of the financial cycle—during the Boom and Distress periods.15 Asset

price volatility is the highest when banks start to sell capital to households (Distress), hence the

economy’s pecuniary externality is the largest at that time (see Van der Ghote, 2020). Binding

leverage constraints during the Distress and Boom phases mitigate this externality. Accordingly,

the ICC policy dampens asset price volatility during the Distress phase and thereby reduces the

severity of the initial fire sales.

Restricting leverage during the Boom phase forces banks to sell capital to households and

causes a shallow recession. By accepting some output losses earlier in the financial cycle, macro-

15As before, leverage is restricted in the sense that the ICC policy decreases leverage in the regions of the state
space that would be classified as Distress and Boom times if the Baseline rule without an ICC policy was used.
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(a) Varying iLAW (b) Constant interest rates

Figure 7: Welfare and MP rules in the presence of ICC constraints. Figure (a) sets ηLAW ,ηPut , iLAW

to the Baseline calibration and varies iLAW (on the x-axis). Figure (b) considers constant interest
rate rules and varies the interest rate. Each line corresponds to tightness of the ICC constraint.
Welfare differences are reported in consumption equivalents relative to Baseline.

prudential policy lowers the probability of a severe recession and further reduces the severity of

fire sales. We further corroborate this conclusion by substituting the ICC policy with piecewise

linear leverage constraints during both the Distress and Boom phases. This simpler rule restricts

leverage in approximately the same regions of the state space as the ICC policy and also causes

the i = 0% rule to outperform the Baseline rule, which shows that the key characteristic of the ICC

policy is its impact on leverage during the Distress and Boom phases.

The mechanics of how MaP and MP affect welfare and stability are somewhat different. Mon-

etary policy increases welfare primarily by increasing leverage in bad times so that flow outcomes

improve and banks rebuild equity more quickly. In contrast, the ICC policy improves outcomes on

average by forcing banks to sell capital sooner, creating a small recession so that the likelihood of

a severe recession falls: when leverage limits bind, intermediation falls and flow outcomes suffer,

but binding leverage limits increase banks’ investment returns and so banks may rebuild equity

faster. If we modify our definition of stability in equation (14) to measure the probability that ψ

is greater than or equal to 50%, 25%, or 10%, then the ICC policy with i = 0% does improve

stability (properly defined) relative to the ICC policy with the Baseline monetary policy in all three

cases. Figure 6(b) verifies that stability, when measured as the probability that ψ ≥ 50%, decreases
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with α . When MaP is well-targeted, the general equilibrium consequences support higher lever-

age in Crisis times, mirroring the effects of decreasing interest rates following a Fed Put. These

differences between how MaP and MP affect welfare and stability are precisely why well-targeted

leverage constraints obviate the need for monetary policy to target financial conditions.

4.3 Poorly-Targeted Macroprudential Policy

With well-targeted macroprudential policy, monetary policy should not target financial stability.

However, our results from Section 3 (monetary policy can improve stability and welfare) continue

to hold so long as leverage constraints are poorly targeted. Appendix D.3 formalizes these results,

considering simple piecewise-linear leverage constraints that bind only during the Crisis or Distress

regions, which is where simply-defined policies are likely to bind. Leverage constraints during the

Crisis and Distress phases of the financial cycle turn out to be poorly targeted, failing to restrict

leverage when leverage exceeds the social optimum. For both types of macroprudential policies,

a Fed Put with LAW still improves household welfare and outperforms constant rate rules. With

poorly targeted leverage constraints, the Baseline rule always outperforms constant rate rules, and

rules with more aggressive Put or LAW improve welfare and stability. The Distress policy does

improve household welfare relative to the case of no leverage constraints, so it mitigates excessive

risk taking but could be better targeted by additionally restricting leverage during the Boom.

Our results regarding the interaction of macroprudential and monetary policies can be inter-

preted in light of the so-called Tinbergen (1952) principle, that a policymaker with n independent

objectives needs n policy tools. Our model is dynamic with state-contingent effects from policy

(and externalities). To address financial and price stability together, policy makers do not only

need 2 policy tools—they must also have sufficiently flexible tools. Addressing financial stabil-

ity therefore requires appropriately designed macroprudential limits. In reality, macroprudential

tools may be restricted as a result of regulation or challenges to implementation, whereas mone-

tary policy rules can be extremely nimble, responding immediately to financial stability concerns

if the central bank so chooses. If macroprudential tools are inflexible and cannot target sources of

financial instability at the correct time, then scope remains for monetary policy to address financial
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stability (see also Caballero and Simsek, 2019). Conversely, monetary policy is free to focus on

conventional targets (e.g. a stable price level) as its sole objectives only if macroprudential tools

are sufficient to mitigate financial crises.

Leverage constraints are not the only instrument in the macroprudential policy toolkit. Ap-

pendix A.2.6 models “boundary condition” macroprudential tools such as equity injections. The

numerical implementation of these policies amounts to changing the boundary conditions for the

equilibrium system of differential equations. We find that equity injections can also substitute for

active monetary policy. If these injections are sufficiently aggressive so that banks are able to al-

ways hold the entire capital stock, then monetary policy becomes unnecessary for stabilization.

However, achieving this objective may require quite active equity injections. In contrast, taxing or

subsidizing dividends does little quantitatively to improve outcomes.

5 Conclusion

We provide a macroeconomic model with a financial sector in which monetary policy endoge-

nously determines the stability of the economy and therefore determines the probability and sever-

ity of crises. Monetary policy influences outcomes by affecting risk and liquidity premia. Policies

that combine leaning against the wind in good times with accommodative rates during financial

distress can substantially improve stability and household welfare. The consequences of monetary

policy for financial stability are state-dependent, so the stability benefits of monetary policy de-

pend critically on the timing. Cutting rates during financial crises (and only then) yield the greatest

stability gains. When macroprudential policies are poorly targeted, monetary policy should target

financial stability, but when macroprudential policies are sufficiently well-targeted, then monetary

policy should not target financial stability.
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Appendices for Online Publication

A Proofs and Additional Equations

A.1 Proofs

Proof of Proposition 1. Conjecture that households have a twice-differentiable value function

Vt =
log(wh,t)

r
+ht =

log(nh,t +θtnb,t)

r
+ht ,

where ht is independent of household wealth. By Ito’s lemma, households’ HJB is

log(wh,t)+ rht = max
xh,t≥0,ch,t ,ιt

log(ch,t)+
1

r(nh,t +θtnb,t)
µwh,twh,t−

1
2r(nh,t +θtnb,t)2 (σwh,twh,t)

2

= max
xh,t≥0,ch,t ,ιt

log(ch,t)+
1
r

µwh,t−
1
2r

σ
2
wh,t .

Let ωt ≡ nh,t/wh,t . Then wh,t follows the process

dwh,t

wh,t
= {ωt µnh,t +(1−ωt)(µθ ,t +µnb,t +σθ ,tσnb,t)}dt

+{ωtσnh,t +(1−ωt)(σθ ,t +σnb,t)}dWt .

(18)
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Further, because σnh,t = xh,t(σ +σQ,t),

∂σwh,t

∂xh,t
= ωt

∂σn,t

∂xh,t
= ωt(σ +σQ,t).

Given this observation and (18), the first-order conditions are

(xh,t) : 0 =
ωt

r
(E[drh

t ]−dr f ,t)−
1
r

σwh,t
∂σwh,t

∂xh,t

= ωt(E[drh
t ]−dr f ,t−σwh,t(σ +σQ,t))

⇒ E[drh
t ]−dr f ,t = σwh,t(σ +σQ,t)

(ch,t) : 0 =
1

ch,t
− 1

r
ωt

1
nh,t

=
1

ch,t
− 1

rnh,t

⇒ ch,t = rwh,t

(ιt) : Φ
′(ιt) =

1
Qt

Since consumption is proportional to wealth,

σch,t = ωtσnh,t +(1−ωt)(σθ ,t +σnb,t), (19)

hence the first-order condition for xh,t equates expected excess returns with the covariance of

household consumption and returns.

Proof of Proposition 2. Homogeneity and price-taking imply that banks’ value function takes the

form Ut = θtnb,t , where θt is the marginal value of banks’ equity. Further, households’ discount

factor is ξt = e−rtc−1
h,t because households have log utility.

Therefore, the HJB can be written as

rθtnb,tc−1
h,t = max

xb,t≥0,dζt ,ιt
dζtc−1

h,t +E[d(θtnb,tc−1
h,t )], (20)

subject to the constraints (5) and (6).
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Conjecture that θt and ch,t both follow diffusions. By Ito’s product rule,

d(θtnb,t)

θtnb,t
= (µθ ,t +µnb,t +σθ ,tσnb,t)dt +(σθ ,t +σnb,t)dWt .

By Ito’s product and quotient rules,

(θtnb,tc−1
h,t )E

[
d(θtnb,tc−1

h,t )

θtnb,tc−1
h,t

]
= µθ ,t +µnb,t +σθ ,tσnb,t +σ

2
ch,t−µch,t−σch,t(σθ ,t +σnb,t).

After dropping the differential dt, equation (20) becomes

rθtnb,tc−1
t = max

xb,t≥0,ιt ,dζb,t≥0
c−1

t dζb,t +θtnb,tc−1
t (µθ ,t +µnb,t−µch,t +σ

2
ch,t +σθ ,tσnb,t−σch,tσnb,t−σch,tσθ ,t).

Dividing through by θtnb,tc−1
t and substituting wealth terms obtains

r = max
dζb,t

θtnb,t
+µθ ,t +dr f ,t + xb,t(E[drb,t ]−dr f ,t)− γxb,t it + γit−Tt−

dζb,t

nb,t

−µch,t +σ
2
ch,t + xb,tσθ ,t(σ +σQ,t)− xb,tσch,t(σ +σQ,t)−σch,tσθ ,t

By the stochastic maximum principle, the risk-free interest rate satisfies

dr f ,t = r+µch,t−σ
2
ch,t .

Substitution and re-arranging yields

dr f ,t = max
dζb,t

nb,t

(
1
θt
−1
)
−Tt +µθ ,t−σch,tσθ ,t +dr f ,t

xb,t(E[drb,t ]−dr f ,t +(σθ ,t−σch,t)(σ +σQ,t))− γxb,t it + γit

Tt = max
dζb,t

nb,t

(
1
θt
−1
)
+µθ ,t−σch,tσθ ,t

xb,t(E[drb,t ]−dr f ,t +(σθ ,t−σch,t)(σ +σQ,t))− γxb,t it + γit
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The first-order conditions imply

dζb,t > 0 if θt ≤ 1

dζb,t = 0 if θt > 1

E[drb,t ]−dr f ,t = (σch,t−σθ ,t)(σ +σQ,t)+ γit

Φ
′(ιt) =

1
Qt

.

Plugging these first-order conditions into the HJB and re-arranging yields

µθ ,t = Tt +σch,tσθ ,t− γit .

Proof of Lemma 1. After substituting banks’ asset pricing condition and using xb,t = ψt/ηt , the

process for banks’ aggregate equity Nb,t is

dNb,t

Nb,t
=

(
dr f ,t− γ

(
ψt

ηt
−1
)

it−Tt +
ψt

ηt
(σch,t−σθ ,t)(σ +σQ,t)+

ψt

ηt
γit−

dζb,t

Nb,t

)
dt

+
ψt

ηt
(σ +σQ,t)dWt

=

(
dr f ,t + γit−Tt +

ψt

ηt
(σch,t−σθ ,t)(σ +σQ,t)−

dζb,t

Nb,t

)
dt +

ψt

ηt
(σ +σQ,t)dWt .

The law of motion for the value of the aggregate capital stock is

d(QtKt)

QtKt
= (µQ,t +Φ(ιt)−δ +σσQ,t)dt +(σ +σQ,t)dWt .

Because banks’ asset pricing condition always holds in equilibrium, we may write

µQ,t = dr f ,t +(σch,t−σθ ,t)(σ +σQ,t)+ γit−
ab− ιt

Qt
− (Φ(ιt)−δ )−σσQ,t .
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Substituting into the law of motion for the value of capital

d(QtKt)

QtKt
=

(
dr f ,t +(σch,t−σθ ,t)(σ +σQ,t)+ γit−

ab− ιt

Qt
− (Φ(ιt)−δ )−σσQ,t +Φ(ιt)−δ +σσQ,t

)
dt

+(σ +σQ,t)dWt

=

(
dr f ,t +(σch,t−σθ ,t)(σ +σQ,t)+ γit−

ab− ιt

Qt

)
dt +(σ +σQ,t)dWt .

By Ito’s quotient rule,

d(1/(QtKt))

1/(QtKt)
=

(
(σ +σQ,t)

2−dr f ,t− (σch,t−σθ ,t)(σ +σQ,t)− γit +
ab− ιt

Qt

)
dt− (σ +σQ,t)dWt .

Using Ito’s product rule,

dηt

ηt
=

(
dr f ,t + γit−Tt +

ψt

ηt
(σch,t−σθ ,t)(σ +σQ,t)−

dζb,t

Nb,t

)
dt

+

(
(σ +σQ,t)

2−dr f ,t− (σch,t−σθ ,t)(σ +σQ,t)− γit +
ab− ιt

Qt

)
dt

− ψt

ηt
(σ +σQ,t)

2 dt +
(

ψt

ηt
−1
)
(σ +σQ,t)dWt .

The drift simplifies to

µη ,t =

(
ψt

ηt
−1
)
((σch,t−σθ ,t)− (σ +σQ,t))(σ +σQ,t)+

ab

Qt
−Tt−

dζb,t

Nb,t
.

Define dΞt ≡ dζb,t/Nb,t as a control creating an upper reflecting barrier. The drift and volatility of

dηt/ηt now match (13).

For the remainder of the proofs, time subscripts are suppressed unless required for clarity.

Proof of Proposition 3. To derive Lemma 1, we first conjectured that θ and Q are diffusions. We

now verify these conjectures by applying Ito’s lemma to write θ and Q as functions of η . By Ito’s
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lemma

dQ
Q

=

(
Q′

Q
µηη +

1
2

Q′′

Q
(σηη)2

)
dt +

Q′

Q
σηη dWt ,

dθ

θ
=

(
θ ′

θ
µηη +

1
2

θ ′′

θ
(σηη)2

)
dt +

θ ′

θ
σηη dWt .

The boundary conditions for θ at η∗ are straightforward. Banks’ first-order condition for dζ

implies θ(η∗) = 1. Since dΞ creates a reflecting barrier at η∗, smooth-pasting implies θ ′(η∗) = 0.

Market-clearing conditions pin down the behavior of Q. Aggregate household consumption is

r(Nh +θNb) = r(1−η +θη)QK.

Market-clearing for consumption requires

r(1−η +θη)QK = ((ab−ah)ψ +ah− ι)K.

When η = 0, households own all capital. The price of capital must satisfy

Q =
ah− ι(Q)

r
,

where ι(Q) make explicit the depencence of ι on Q due to Tobin’s q. When η = η∗, θ(η∗) = 1

implies that aggregate household consumption is

r(1−η
∗+θ(η∗)η∗)QK = r(1−η

∗+η
∗) = rQK.

Banks will also own all capital at η∗, hence

Q =
ab− ι(Q)

r
.

To obtain the boundary condition for Q′(η∗), notice that ψ will equal 1 over some interval [η ,η∗],
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where η < η∗. Then the derivative of the market-clearing condition for capital with respect to η is

Q′(η∗)(1−η
∗+θ(η∗)η∗)+Q(η∗)(θ ′(η∗)η∗+θ(η∗)−1) =−ι

′(Q(η∗))Q′(η∗)

Q′(η∗)(1−η
∗+η

∗)+Q(η∗)(0+1−1) =−ι
′(Q(η∗))Q′(η∗)

Q′(η∗)(1+ ι
′(Q(η∗))) = 0.

The properties of the investment technology Φ imply ι ′(Q(η∗)) 6=−1, hence Q′(η∗) = 0.

Finally, the boundary condition limη→0+ θ(η) = ∞ holds because if a bank has capital when

η is identically zero, then that bank can acquire arbitrarily high returns. In particular, η = 0 is an

absorbing equilibrium. If η reaches 0, then Q will remain forever at Q. Under the assumption that

interest rates are sufficiently near η = 0, a bank with an infinitesimal quantity of capital at η = 0

faces the excess returns

ab− ι

Q
+Φ(ι)−δ −dr f −LP >

ah− ι

Q
+Φ(ι)−δ −dr f = σchσ = σ

2.

Leverage does not reduce a bank’s excess returns because the bank is infinitesimal. Therefore, the

bank can borrow as much as it wants and obtain arbitrarily high returns, resulting in an infinite

value function.

The boundary conditions for θ require it to be decreasing for at least a positive-measure subset

of [0,η∗]. When the tax rate on bank equity T is sufficiently high, the equilibrium ODE for θ will

satisfy θ ′(·)< 0 and θ ′′(·)> 0 over [0,η∗].

Solving equilibrium with leverage constraints. Suppose the government specifies an exogenous

leverage constraint policy L(η) and requires bank leverage16 to satisfy

ψ

η
−1≤ L(η). (21)

If leverage constraints bind, then banks’ asset pricing condition (10) may not bind, which changes

16The leverage constraint applies to individual banks. Because the model admits a representative agent for banks,
we directly specify the leverage constraint on the representative bank to economize on exposition.
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the law of motion for η . However, if banks are leverage constrained, then it must be the case that

ψ < 1, hence households’ asset pricing condition (11) must bind with equality. This condition

implies

−ι

Q
+Φ(ι)−δ +µQ +σσQ−dr f = σch(σ +σQ)−

ah

Q
,

so

E[drb]−dr f =
ab

Q
− ι

Q
+Φ(ι)−δ +µQ +σσQ−dr f =

ab−ah

Q
+σch(σ +σQ).

Banks’ aggregate equity evolves according to

dNb,t

Nb,t
=

(
dr f ,t− γ

(
ψt

ηt
−1
)

it−Tt +
ψt

ηt

(
ab−ah

Qt
+σch,t(σ +σQ,t)

)
−

dζb,t

Nb,t

)
dt +

ψt

ηt
(σ +σQ,t)dWt .

The aggregate wealth process QtKt also evolves differently when leverage constraints bind.

The law of motion is

d(QtKt)

QtKt
= (µQ,t +Φ(ιt)−δ +σσQ,t)dt +(σ +σQ,t)dWt ,

and by Ito’s quotient rule,

d(1/(QtKt))

1/(QtKt)
= ((σ +σQ,t)

2−µQ,t− (Φ(ιt)−δ )−σσQ,t)dt− (σ +σQ,t)dWt .

Households’ asset pricing condition implies

−µQ,t− (Φ(ιt)−δ −σσQ,t =
ah− ιt

Q
−dr f −σch,t(σ +σQ),

hence

d(1/(QtKt))

1/(QtKt)
=

(
(σ +σQ,t)

2 +
ah− ιt

Qt
−dr f ,t−σch,t(σ +σQ,t)

)
dt− (σ +σQ,t)dWt .
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By Ito’s product rule,

dηt

ηt
=

(
dr f ,t−

κ

m

(
ψt

ηt
−1
)

it−Tt +
ψt

ηt

(
ab−ah

Qt
+σch,t(σ +σQ)

)
−

dζb,t

Nb,t

)
dt +

ψt

ηt
(σ +σQ,t)dWt

− ψt

ηt
(σ +σQ,t)

2 dt +
(
(σ +σQ,t)

2 +
ah− ιt

Qt
−dr f ,t−σch,t(σ +σQ,t)

)
dt− (σ +σQ,t)dWt

=

(
ψt

ηt

ab

Qt
−
(

ψt

ηt
−1
)

ah

Qt
− ιt

Q
− κ

m

(
ψt

ηt
−1
)

it−Tt−
dζb,t

Nb,t

)
dt

+

((
ψt

ηt
−1
)

σch,t(σ +σQ,t)−
(

ψt

ηt
−1
)
(σ +σQ,t)

2
)

dt +
(

ψt

ηt
−1
)
(σ +σQ,t)dWt

=

(
ψt

ηt

ab

Qt
−
(

ψt

ηt
−1
)

ah

Qt
− ιt

Q
− κ

m

(
ψt

ηt
−1
)

it−Tt−
dζb,t

Nb,t

)
dt

+

(
ψt

ηt
−1
)
(σch,t− (σ +σQ,t))(σ +σQ,t)dt +

(
ψt

ηt
−1
)
(σ +σQ,t)dWt .

Thus, µη and ση when leverage constraints bind are given by

µη =
ψ

η

ab

Q
−
(

ψ

η
−1
)

ah

Q
− ι

Q
− κ

m

(
ψ

η
−1
)

i−T −Ξ+

(
ψ

η
−1
)
(σch− (σ +σQ))(σ +σQ)

σθ =

(
ψ

η
−1
)
(σ +σQ)

Banks’ Bellman equation also changes because they cannot obtain first-order optimality for

their portfolio choice. Prior to substitution of the first-order condition for xb,t , their Bellman equa-

tion is

Tt = µθ ,t−σch,tσθ ,t + xb,t(E[drb,t ]−dr f ,t +(σθ ,t−σch,t)(σ +σQ,t))−
κ

m
xb,t it +

κ

m
it

Using households’ asset pricing condition, banks’ Bellman equation becomes

Tt = µθ ,t−σch,tσθ ,t + xb,t

(
ab−ah

Qt
+σch,t(σ +σQ,t)+(σθ ,t−σch,t)(σ +σQ,t)

)
− κ

m
xb,t it +

κ

m
it

= µθ ,t−σch,tσθ ,t +
κ

m
it + xb,t

(
ab−ah

Qt
+σθ ,t(σ +σQ,t)−

κ

m
it

)
.
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Re-arranging yields the new equation for µθ :

µθ = T +σchσθ −
κ

m
i− ψ

η

(
ab−ah

Q
−
(
−σθ (σ +σQ)+

κ

m
i
))

. (22)

To summarize, when leverage constraints bind, µη , ση , and µθ are given by the equations

derived above. The remaining quantities can be obtained using the same procedures as when

banks are not constrained. Furthermore, when leverage constraints do not bind, µη , ση , and µθ

are given by the exact same equations as before. Despite this fact, the global solution will change

because the behavior of θ and Q in the regions of η for which the leverage constraint binds will be

different, which affects their behavior elsewhere.

Proof of Friedman Rule, Proposition 4. When banks can freely issue equity, then equilibrium is

stationary with constant asset price Q∗, constant capital allocation (banks hold all capital), and no

endogenous risk or instability, implying banks do not have a required risk premium. Maximizing

the asset price is therefore sufficient to maximize welfare. From equation (10) we have

Q∗ =
ab− ι(Q∗)

r∗+σ2 +LP∗−Φ(ι(Q∗))+δ
,

where r∗ is the real interest rate and all stochastic terms are zero. It therefore follows immediately

that Q∗ is maximized for LP = 0 since the risk-free rate is not affected by nominal rates, and the

zero lower bound prevents LP < 0.

A.2 Numerical Algorithm

In this section, we show that equilibrium can be characterized as a system of differential equations

for θ and Q. To handle the endogeneity of the state space boundary η∗, we reformulate the bound-

ary value problem as a least-squares problem. For this section, we suppress time subscripts unless

required for clarity.
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A.2.1 No Leverage Constraints

From Proposition 2, the drift of θ is µθ = T +σchσθ − γi. Since θ decreases with η , a smaller

drift of θ implies that θ , in expectation, moves toward larger values and bad times at a slower rate,

reflecting the partial equilibrium intuition that higher interest rates should disincentivize excessive

risk-taking. By Ito’s lemma, we also have that

µθ ,t =
θ ′

θ
ηt µη ,t +

1
2

θ ′′

θ
η

2
t σ

2
η ,t .

Setting these two equations equal to each other yields a second-order ODE in ηt for θ .

The price of capital and the allocation of capital are related by the market-clearing condition

for consumption

rWh = (abψ +ah(1−ψ)− ι)K.

Substitution and dividing by K yields

rQ(1+(θ −1)η) = (ab−ah)ψ +ah− ι .

The functional form for internal investment (16) implies

Q =
(ab−ah)ψ +ah +

1
ε

r(1+(θ −1)η)+ 1
ε

. (23)

We obtain a differential equation for Q by using the equilibrium asset pricing condition (12).

When ψ = 1, (12) is slack, and Q′ can be obtained by directly differentiating (23) with respect to

η . When ψ < 1, (12) binds with equality and can be re-arranged to

σQ =

√√√√ ab−ah
Q −LPt

−θ ′
θ
(ψ−η)

−σ . (24)
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Recall that

ση =

(
ψ

η
−1
)
(σ +σQ).

By Ito’s lemma,

σQ =
Q′

Q
σηη ,

hence

Q′ =
QσQ

σηη
.

Therefore, equilibrium is characterized by a solution to the system of differential equations

Q′ =


QσQ
ση η

if ψ < 1,

− rQ(θ ′η+(θ−1))
r(1+(θ−1)η)+ 1

ε

if ψ = 1,
(25)

θ
′′ =

2
(σηη)2

(
θ µθ −θ

′
µηη

)
, (26)

where ψ ≤ 1 and can be calculated from Q using (23).

A.2.2 Leverage Constraints

To implement leverage constraints numerically, during integration of θ and Q, we add a check

for whether the leverage constraint L(η) is violated by the ψ consistent with the proposed θ and

Q according to market-clearing for consumption. If ψ exceeds the leverage constraint, then we

set ψ = η(L(η)+1) and calculate the derivative Q′ by directly differentating the market-clearing

condition for consumption instead of using banks’ asset pricing condition. Given sufficiently small

step sizes, continuity of the numerical solutions guarantee that the approximations to θ and Q obey

the leverage constraint.

A specific leverage constraint of interest is the incentive compatible leverage constraint used by
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Van der Ghote (2020). We assume each household delegate management of their bank to another

agent, and banks cannot accept deposits from their owning household. This delegation is subject to

a limited enforcement friction. The agent managing a bank can divert a portion 1/α of their assets

immediately after raising deposits from households. Should an agent do so, then that agent’s bank

immediately shuts down but they keep the assets they stole. As a result, a bank’s portfolio choice

has the following constraint:

1
α

xbnb ≤ θnb

The left-hand side is the value of the assets a bank manager could steal, and the right-hand side

is the bank’s value if the bank manager continues to operate the bank. After simplification, this

constraint becomes

xb ≤ αθ .

This inequality asserts that bank leverage cannot succeed a multiple of the marginal value of a

bank’s equity. Otherwise, the bank manager would strictly benefit by diverting assets and closing

down the bank.

For our model, this form of the constraint causes numerical problems. We instead consider the

following variant:

xb ≤ αθ +1,

which implies

L≤ αθ .
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A.2.3 Least-Squares Problem

The boundary conditions for Q at η = 0 and η can be calculated directly from the model’s pa-

rameters. The boundary condition for θ at η is also known. Since limη→0+ θ(η) = ∞, it must be

the case that limη→0+ θ ′(η) = −∞. Due to the singularity at η = 0, we solve over a grid slightly

perturbed away from 0 to some η , so we have to guess θ(eta) and θ ′(η). In practice, the choice of

θ ′(η) does not affect global dynamics as long as it is a sufficiently negative number. We fix θ ′(η)

at some guess and treat θ(η) as a control in a least-squares problem. Given θ(η) and θ ′(η), we

can integrate the equilibrium system of differential equations as if it is an initial-value problem

with the boundary conditions at η as terminating events:

1. θ(η)< 1,

2. θ ′(η)> 0,

3. Q(η)> Q.

The first and third terminating events imply each other when we have found a solution, but in

practice, omitting the third boundary condition makes the numerical algorithm perform better.

Our residual function is just a weighted sum of the squared errors in the boundary conditions:

F(θ(η)) = wT


θ(η)−1

θ ′(η)

Q−Q

w,

where w is primarily chosen to renormalize the size of the errors. With this residual function and

an initial guess for θ(η), we can use any standard algorithm for least-squares minimization, such

as the interior-point method or sequential quadratic programming, both of which are available

through MATLAB’s fmincon function. To reduce computational time, we start with a bisection
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search to find an interval in which θ(η) should belong. If the minimizing θ(η) implies a residual

function sufficiently close to zero, then a solution has been found.

To summarize:

1. Select η close to zero, set θ ′(η) to a very negative number (e.g. −5×104), and guess θ(η).

2. Integrate the differential equations for θ and Q until one of the terminating events occurs:

• θ(η)< 1,

• θ ′(η)> 0.

3. Calculate the residuals at the terminating η .

4. Use a least-squares solver to find a minimizing θ(η). If the residual are sufficiently close to

zero, then a solution has been found.

A.2.4 Welfare

To compute welfare, we solve the HJB for the representative household. Because households have

log utility, the representative household’s value function takes the form

V (Wh) =
log(Wh)

r
+h(η).

Plugging in for household wealth, we obtain

V (η) =
log(QK(1+(θ −1)η))

r
+h(η) =

log(Q)

r
+

log(K)

r
+

log(1+(θ −1)η)

r
+h(η).

Define H(η) = log(Q)/r+h(η). Then the value function simplifies to

V (η) =
log(K)

r
+

log(1+(θ −1)η)

r
+H(η).
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The HJB is

r
(

log(K)

r
+

log(1+(θ −1)η)

r
+H(η)

)
= log(Ch)+E[dV ]

log(K)+ log(1+(θ −1)η)+ rH = log(rQK(1+(θ −1)η))+E[dV ]

rH = log(rQ)+E[dV ].

It remains to characterize dV . Recall that

V =
log(K)

r
+

log(1+(θ −1)η)

r
+H(η).

We may write

d(1+(θ −1)η) = d(θη−η) = (θη(µθ +µη +σθ ση)−ηµη)dt +(θη(σθ +ση)−ηση)dWt

= (θη(µθ +σθ ση)+(θ −1)ηµη)dt +(θησθ +(θ −1)ηση)dWt

d(1+(θ −1)η)

1+(θ −1)η
=

(
θη

1+(θ −1)η
(µθ +σθ ση)+

(θ −1)η
1+(θ −1)η

µη

)
dt +

θησθ +(θ −1)ηση

1+(θ −1)η
dWt

By Ito’s lemma, for any Ito process dX ,

d log(X) =
dX
X
− (dX)2

2X2 .

Therefore,

E[dV ] =
1
r
E[d log(K)]+

1
r
E[d log(1+(θ −1)η)]+E[dH]

=
1
r

{
Φ(Q)−δ − 1

2
σ

2
}
+

1
r

{
θη(µθ +σθ ση)+(θ −1)ηµη

1+(θ −1)η
−

(θησθ +(θ −1)ηση)
2

2(1+(θ −1)η)2

}
+H ′ηµη +

1
2

H ′′σ2
ηη

2
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Plugging this quantity into the HJB yields a second-order differential equation for H:

rH = log(rQ)+
1
r

{
Φ(Q)− 1

2
σ

2
}
+

1
r

{
θη(µθ +σθ ση)+(θ −1)ηµη

1+(θ −1)η
−

(θησθ +(θ −1)ηση)
2

2(1+(θ −1)η)2

}
+H ′ηµη +

1
2

H ′′σ2
ηη

2

This can be re-arranged into the explicit differential equation

H ′′ =
2

(σηη)2 (rH−H ′ηµη −I ),

where I is the inhomogeneous part of the differential equation

I = log(rQ)+
1
r

{
Φ(Q)− 1

2
σ

2
}
+

1
r

{
θη(µθ +σθ ση)+(θ −1)ηµη

1+(θ −1)η
−

(θησθ +(θ −1)ηση)
2

2(1+(θ −1)η)2

}
.

This differential equation is linear in H.

To calculate welfare differences in consumption equivalents, define welfare under a baseline

scenario as

V (0) = maxE0

[∫
∞

0
e−rt log(C(0)

h,t )dt
]
.

Define V (1) similarly, and let it denote household welfare under an alternative scenario. The

consumption-equivalent increase in welfare is the quantity φ+, which satisfies

V (1) = maxE0

[∫
∞

0
e−rt log((1+φ

+)C(0)
h,t )dt

]
= maxE0

[∫
∞

0
e−rt(log(1+φ

+)+ log(C(0)
h,t ))dt

]
= log(1+φ

+)
∫

∞

0
e−rt dt +V (0) =− log(1+φ+)

r
e−rt |∞0 +V (0) =

log(1+φ+)

r
+V (0).

Re-arranging yields

φ
+ = exp(r(V (1)−V (0)))−1.
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Similarly, if household welfare decreases under the alternative scenario and φ− is the consumption-

equivalent decrease, then

φ
− = 1− exp(r(V (1)−V (0))).

Thus, the consumption-equivalent difference in welfare is

φ = |exp(r(V (1)−V (0)))−1|.

A.2.5 Stationary Distribution

If a stationary distribution exists, then the stationary probability density function g(η) solves a

Kolmogorov forward equation. Following Brunnermeier and Sannikov (2014), we simplify the

Kolmogorov forward equation to a first-order ODE, which can be solved as an initial value problem

and renormalized to satisfy
∫ η∗

0 g(η)dη = 1.

A.2.6 Boundary Macroprudential Policies

This section derives the boundary conditions for macroprudential policies which change the equi-

librium boundary conditions.

Dividend Subsidy/Tax When banks issue a dollar of dividends, the government also pays out

∆SD dollars and funds these payouts by lump sum taxes on households. If ∆SD < 0, then banks are

getting taxed when they issue dividends, and households receive lump-sump payments. We model

this policy by modifying banks’ objective function to be

E
[∫

∞

0
e−rt((1+∆SD)dζ

b
t Idζ b

t ≥0 +dζ
b
t Idζ<0)

]
.

This objective function implies θ(η) = 1+∆SD. The smooth-pasting condition becomes

θ
′(η) =

1
η
(1− (1+∆SD)) =−

∆SD

η
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since it still costs banks one unit of equity to pay dividends.

The boundary condition for Q′(η) remains the same. Additionally note it is still true that

θ
′(η)η +θ(η)−1 = 0,

so Q′(η) = 0 remains true.

Tail Risk Insurance. The boundary condition θ(η) changes to

θ(η) =−θ
′(η)η . (27)

To derive this boundary condition, note that tail risk insurance is equivalent to a lower reflecting

barrier with zero cost of reflection, hence

θ(η)+θ
′(η)η = 0. (28)

Re-arranging yields (27). Note that θ ′ < 0, hence this condition is positive.

The price of capital has the new boundary condition Q′(η) = 0. We can still reformulate the

boundary value problem as a least-squares problem but with η as an additional control. The dif-

ferential equations can also still be explicitly integrated. Given a guess for θ(η), we can calculate

θ ′(η), so we have the right initial values for θ . For Q, we have the first derivative rather than Q(0),

but we use the fact that either ψ < 1 or ψ = 1. If ψ < 1, then the asset pricing condition

ab−ah

Q
=−σθ (σ +σQ)+ γi

must still hold. Since Q′(η) = 0, σQ = 0. Since

σθ (η) =
θ ′(η)

θ(η)
(ψ−η)(σ +σQ(η)) =

θ ′(η)

θ(η)
(ψ−η)σ ,
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the value of Q(η) consistent with Q′(η) = 0 is

Q(η) =
ab−ah

−σθ (η)σ + γi(η)
.

Market-clearing for consumption gives

Q
(

r(1+(θ −1)η)+
ε1

ε2

)
= (ab−ah)ψ +ah +

1
ε2
.

Since θ(η) and η are taken as given, these two equations yield two equations for the two unknown

Q(η) and ψ(η). By solving these two equations, we obtain the initial values (θ(η), θ ′(η), Q(η)).

B A Model of Monetary Policy Transmission

In this section, we utilize the model of monetary policy transmission from Drechsler et al. (2018)

to microfound the relationship between the nominal interest rate and the liquidity premium on bank

deposits in our model.

B.1 Monetary Policy: Nominal Rates, Inflation, and Liquidity Premia

Following Drechsler et al. (2018), monetary policy determines the opportunity cost of holding

liquid assets—namely, central bank reserves—rather than capital (i.e., determines the liquidity

premium). To capture the money multiplier of reserves, each dollar of reserves yields m > 1 effec-

tive liquid assets. The central bank can create and withdraw reserves by exchanging government

bonds through open market operations (see Drechsler et al. (2018) for implementation details).

Let Mt be the total dollar value of reserves in the economy, and let st be the value of a dollar in

consumption units. Letting reserves be the numeraire, st becomes the inverse price level, and the

real value of liquid assets held by banks scaled by aggregate wealth is

St =
st(m−1)Mt

Qtkt
.
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The remaining liquidity is given by the value of government bonds held by the central bank, stMt .

Inflation and the Nominal Rate We assume inflation is locally deterministic, i.e.

−dst

st
=

d pt

pt
= πt dt.

Since the rate on deposits pins down the risk-free interest rate, the nominal interest rate is

it = r−φL +πt .

Liquidity Premia The liquidity premium on reserves is the opportunity cost of holding liquid

assets. Because reserves pay no interest, their return is equal to their capital gain, so the liquidity

premium that deposits earn is

dr f ,t−
dst

st
= dr f ,t +πt = it ,

which is precisely the nominal interest rate.

The government earns seigniorage from the liquid assets held by banks. To close the model,

we assume the seigniorage is distributed to households, so the fraction of bank equity is unaffected

by seigniorage, and the government maintains zero net worth.

Policy Implementation The implementation of an interest rate rule i is the same as Drechsler

et al. (2018), so we relegate the details to that paper. However, we still state the proposition here

because it yields an expression satisfied by the real value of liquidity which we will use later.

Proposition 5. To implement the nominal interest rate rule it , the nominal supply of reserves Mt

must grow according to

dMt

Mt
= (it − dr f ,t)dt +

dSt

St
+

dQt

Qt
+

(
dSt

St

)(
dQt

Qt

)
+

dkt

kt
+

(
dSt

St
+

dQt

Qt

)(
dkt

kt

)
, (29)
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and the real value of liquidity as a share of wealth satisfies

St = ηtκ(xb,t−1). (30)

B.2 Banks’ Problem

Following Drechsler et al. (2018) we assume deposits are subject to funding shocks, which are

modeled as a Poisson process Jt with constant intensity χ . Jt is an aggregate shock, and when

Jt realizes, banks must immediately redeem a fraction κ

1+κ
of their deposits, where κ > 0. Only

a fraction 1−ρ ∈ (0,1) of capital’s value can be recovered quickly enough to absorb a funding

shock. Banks may self-insure by holding liquid assets, which can be liquidated without causing

fire sales when a funding shock realizes.

Let (xb,t ,xM,t ,xbd,t) be portfolio weights on capital, reserves, and debt. Since the portfolio

weights sum to one, we rewrite xbd,t = 1− xb,t− xM,t .

Formally, banks solve the problem

max
{xb,t ,xM,tdζt}

Uτ = Eτ

[∫
∞

τ

ξt

ξτ

dζt

]
,

subject to

dnb,t

nb,t
= dr f ,t− (xM,t it +Tt) dt + xb,t(drb

t −dr f ,t dt)−
dζb,t

nb,t

− ρ

1−ρ
max

{
κ

1+κ
(xb,t +mxM,t−1)−mxM,t ,0

}
dJt ,

(31)

nb,t ,xb,t , xM,t dζt ≥ 0. (32)

Banks earn the deposit rate, pay the liquidity premium on reserves, pay an exogenous tax, earn the

risk premium on capital holdings, and pay dividends at rate dζt . The second line of (31) reflects

the exposure of banks to funding shocks given their portfolio. Note that, unlike Drechsler et al.

(2018), we abstract from government bonds and only include central bank reserves.17 Banks also

17For the equivalent net worth equation, see (A7) in the appendix of Drechsler et al. (2018) and note that xM,t in our
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do not earn seigniorage payments, which are instead distributed only to households.

Recall that in Appendix A, we solve banks’ portfolio choice problem by conjecturing θt , ch,t ,

and Qt follow diffusion processes. Given these conjectures, we can calculate first-order conditions

and derive the law of motion for the state variable ηt . Once we compute dηt , we can apply Ito’s

lemma to verify our conjectures, namely that θt , ch,t , and Qt are diffusion processes in equilibrium.

The microfoundation of monetary policy transmission from Drechsler et al. (2018) can be

easily placed within this solution strategy. Below, we derive a sufficient condition for the full-

insurance equilibrium, assuming our conjectures for θt and ch,t hold. If this sufficient condition

holds, then we can rewrite the bank’s portfolio choice problem as the problem stated in the main

text (Section 2.2). Thus, the proofs in Appendix A still hold with this microfoundation.

Lemma 2. Suppose θt and ch,t are diffusion processes

dθt

θt
= µθ ,t dt +σθ ,t dWt

dch,t

ch,t
= µch,t dt +σch,t dWt .

If χ and ρ are such that, for all it ,

χ
ρ

1−ρ

κ

1+κ
≥ LPt , (33)

where LPt ≡
κ

m
it is the liquidity premium at interest rate it , then banks fully self-insure, and their

liquidity demand is given by

mxM,t = max
{

κ(xb,t−1),0
}
.

Proof Lemma 2. Banks’ value function is θtnb,t . Banks also discount using the stochastic discount

paper is wM in their paper. Since we do not have government reserves, wG ≡ 0 so that wL = mwM .
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factor e−rtc−1
h,t . Under the conjectured law of motion for θt , Ito’s product rule implies

d(θtnb,t)

θtnb,t
= (µθ ,t +µnb,t +σθ ,tσnb,t)dt +(σθ ,t +σnb,t)dWt

− ρ

1−ρ
max

{
κ

1+κ
(xb,t +mxM,t−1)−mxM,t ,0

}
dJt .

After suppressing the controls, dropping the differential dt, and using the laws of motion for θtnb,t

and ch,t , equation (20) simplifies to

rθtnb,tc−1
h,t =max c−1

h,t dζt +θtnb,tc−1
h,t

(
µθ ,t +µnb,t−µch,t +σ

2
ch,t +σθ ,tσnb,t−σch,tσnb,t−σch,tσθ ,t

)
−χ

ρ

1−ρ
max

{
κ

1+κ
(xb,t +mxM,t−1)−mxM,t ,0

}
.

Note that banks take θt and ch,t as given because the marginal value of bank equity θt will not

change due to the decisions of an infinitissimal bank, and ch,t is not controlled by banks. Therefore,

the first-order condition for xM,t is

0≤−it−χ
ρ

1−ρ

(
κ

1+κ
m−m

)
it ≤ mχ

ρ

1−ρ

1
1+κ

γit ≤ χ
ρ

1−ρ

κ

1+κ

1+κθ ,t

1+κch,t

By our hypothesis, the FOC for xM,t is always satisfied. Since it in equilibrium depends on ηt , a

bounded variable, there always exist χ,ρ sufficiently large to ensure that (33) always holds.

Finally, to ensure that the max function returns zero, xM,t must satisfy

0 =
κ

1+κ
(xb,t−1)− 1

1+κ
mxM,t ,

which implies the desired demand function.

Lemma 2 implies that if θt and ch,t are diffusions, then equation (33) is a sufficient condition for

full insurance. If banks are fully insured against funding shocks, then their equity never jumps in
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equilibrium. If their equity never jumps in equilibrium, then the marginal value of bank equity will

never jump. Since ch,t = r(nh,t +θnb,t), household consumption wlll also never jump. Therefore, if

parameters are chosen such that (33) holds, then an equilibrium in which θt and ch,t are diffusions

is consistent with a bank’s optimal portfolio choice.

In a full-insurance equilibrium, we may zero out the jump term in (31). Because banks have a

productive advantage, they will always be levered, so we may directly substitute mxM,t = κ(xb,t −

1) into the Bellman equation. Hence, the nominal interest rates it determine the liquidity premium

LPt in equilibrium, where γ = κ

m in the main text.

C Timing the Put: Keep Powder Dry?

Cutting rates during a crisis can substantially improve stability by providing cheap funding for

banks, enabling them to quickly rebuild equity. Should central banks, therefore, cut rates early to

avoid entering a crisis? Or should central banks “keep their powder dry” by waiting to cut but then

cutting quickly? In a standard linearized model, what often matters the most is the level of rates,

not the change in the policy rule. In contrast, because our model features non-linear dynamics,

changes in rates matter more for some variables than the overall level of rates.

In a standard New Keynesian model, the optimal timing depends on the risk of hitting the zero-

lower bound (“ZLB”). Reifschneider and Williams (2000) find that when the ZLB is nowhere in

view, one can afford to move slowly and take a “wait and see” approach to gain additional clarity

about potentially adverse economic developments. But when interest rates are in the vicinity of

the ZLB, central banks ought to “vaccinate” against further ills, acting quickly to lower rates at

the first sign of economic distress. Our model provides complementary insights with regards to

using monetary policy to target financial stability, which is not identical to the standard focus of

aggregate stabilization. We find that whether the central bank should “keep their powder dry” or

not depends on the extent to which the central bank can cut rates during a financial crisis.18

To analyze the effect of cutting early and slow compared to cutting early and late, we fix

18Models of “information effects” of Fed policy have the same result that cutting once but big is better than small
and frequent, see for example Campbell et al. (2019).
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iPut = 0% and iLAW = 4.5%, and we also set the lower threshold ηPut at either 16% or 0%. When

ηPut = 16%, rates are held at zero for almost the entire crisis region. When ηPut = 0%, rates

are always positive converging to zero on at the very worst part of a crisis (if η = 0). We then

consider how stability varies with ηLAW : higher ηLAW corresponds to “early” rate cuts in the sign

of financial-sector distress, but shallower rate cuts, while a lower ηLAW corresponds to “late” but

fast rate cuts.

Figure 8(a) plots stability as a function of ηLAW . How stability varies with ηLAW depends

critically on ηPut . When ηPut = 16% so that rates will be brought to zero just before a crisis occurs,

stability is improved by delaying rate cuts until right before ηPut )—but then cutting quickly to

zero. As the red line illustrates, stability is greatest when ηLAW is very close to ηPut , corresponding

to late but fast cuts. In this case, the change in rates is larger, which leads to greater changes in

stability in a crisis, allowing more stability globally. Waiting too long, however, will hurt stability

(intuition below).

The results are quite different when rates are constrained to be positive during crises. When

ηPut = 0%, then it is better for stability to cut rates sooner; maximal stability occurs when ηLAW

is around 4.5%, much higher than was true in the previous case. In this case, because rates will

not hit zero unless a terrible crisis occurs, cutting rates earlier means lower rates everywhere—in

a crisis, and before the crisis. Thus, it’s important in this case to begin cutting rates early in order

to get rates low enough to provide support for the financial sector.

The intuition is provided in Figure 8(b), which plots how the crisis threshold η varies with

ηLAW in both cases. The black line depicts when ηLAW precisely equals the crisis threshold η .

When the blue or red line fall below the black line, then policy cuts rates before the crisis. Re-

member that in the crisis region η < η households hold capital, depressing the returns on bank

assets and weakening the automatic stabilizing mechanisms in the economy. When ηPut = 16%

so that rates will be held at zero throughout the crisis, waiting to cut rates (lower ηLAW ) stabilizes

the economy, and so in general the size of the crisis region endogenously remains almost the same

(the red line η does not change until ηPut is close to ηLAW ). Keeping the powder dry does not

endogenously make the crisis occur sooner in the financial cycle. In contrast, when ηPut = 0% so
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(a) Timing and Stability (b) Changes in η

Figure 8: Stability and endogenous changes in the crisis given timing of rate cuts.

that rates are positive in a crisis, the economy is always less stable, and so endogenously the crisis

occurs earlier (η is always higher for the blue line). Furthermore, when ηLAW is low so that rates

are held high for longer, the crisis occurs even earlier in the cycle, and can even occur while rates

are still held at iLAW . In this case, waiting to cut makes the crisis more likely, consistent with the

intuition that a rate cut would provide “vaccination” against a crisis occurring. The same effect

occurs when ηPut = 16% and rates are not cut until the last moment, which is why the red line

increases faster when ηLAW approaches ηPut .

D Additional Results on Monetary Policy and Stability

D.1 Baseline and Constant Rate Policies

Asset Prices and Dynamics Figure 9(a) plots the asset price Q(η) under each policy rule. As

expected, higher interest rates lead to lower asset prices. The asset price under the Baseline policy

is slightly higher than when rates are constant at 4.5%. A simple heuristic of “higher asset prices

means more ex-ante instability” turns out to be wrong. Importantly, even though interest rates are

always between 0% and 4.5%, and even though asset prices are between the levels when rates are

at 0% and 4.5%, the behavior of leverage, volatility, and stability are quite different.
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(a) Asset Price (b) dη , σQ, and ψ

Figure 9: Equilibrium prices and evolutions with constant rates and Baseline policy.

Figure 9(b) provides further insight into why the Baseline policy generates the most stable

economy. This panel plots the equilibrium drift and volatility of η ; volatility of Q; and capital

allocations ψ . The discontinuities in µη and volatilities occur at η , below which households hold

capital (roughly η = 17% in these economies). First, consider the constant rate policies. The

volatilities of the asset price and bank equity are higher with low constant interest rates, consistent

with the standard intuition that low rates may be destabilizing by increasing volatility. Lower

constant rates also increase the drift of bank equity (µη is higher), which is consistent with the

intuition that low rates allow banks to finance themselves more cheaply and to build up equity.

Under the Baseline policy, the drift µη , volatilities, and capital allocations largely fall in between

the values under the constant rate rules.

Therefore, the Baseline policy is more stable than the constant rate rules because it combines

the benefits of both policies without their downsides. The i = 4.5% policy is undesirable because

it reduces leverage in bad times—precisely when it is needed. The i = 0% policy is undesirable

because it causes volatilities to rise too much and does not generate as high returns for banks in

good times. Combining a Fed Put with LAW avoids these downsides while still obtaining the

positive effects of these policies.
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Welfare A relevant summary statistic for understanding welfare is the share of household wealth

held in their personal net worth ω . For a given η , the lower ω is, the more valuable a household’s

shares in bank equity are. In other words, if households hold less of their wealth in their personal

net worth under certain policy rules, then financial intermediation by banks provides relatively

more value under those policy rules. Figure 10 confirms that globally higher welfare is associated

with globally lower ω and thus more valuable intermediation by banks.

Figure 10: Household welfare via ω under the Baseline, i = 0%, and i = 4.5% policies

D.2 State-Dependent Consequences of Monetary Policy

In this section, we investigate the state-dependency of monetary policy. If ηPut < ηLAW , then

changing iPut and iLAW also changes the slope of the interest rate rule for η ∈ [ηPut ,ηLAW ]. To

isolate the Put and LAW components of the policy rule (15), we set ηPut = ηLAW to implement

piecewise interest rate rules. A different iPut or iLAW now only affects the interest rate in the Put or

LAW region.

State-Dependent Returns The stabilizing effects of a Put depend on when rates decrease (ηPut)

because the effects of higher or lower interest rates depend on whether rates primarily affect alloca-

tions or prices. Recall our discussion about the identity of the marginal investor. When households

are the marginal investors in capital (i.e., below η), policy changes affect allocations (banks take on
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more leverage when rates decrease) without detrimentally decreasing the returns on banks’ assets.

In contrast, when banks are the marginal investors in capital (i.e., above η), policy changes affect

the capital price but not allocations, which influences banks’ profitability. To illustrate these points,

consider two piecewise rules—one where the policy “strike” is at a lower level of ηPut = 12%, in-

side the crisis region where households hold capital, and another at a higher level of ηPut = 25%,

outside the crisis region. Figure 11 plots the Sharpe ratios for these two cases along with the Sharpe

ratios under constant rates of 0% and 4.5%.

(a) Low strike, ηPut = 12% (b) High strike, ηPut = 25%

Figure 11: Sharpe ratios varying the policy strike for piecewise Put.

The Sharpe ratio under the Put with low strike ηPut = 12% (Figure 11(a)) is higher than the

other policies when ψ initially falls below 1. This behavior is the most effective for stabilizing the

economy because it reduces the probability that the economy slips from a minor recession into a

severe one. The high returns in good times further stabilizes the economy by keeping banks well-

capitalized. However, the Sharpe ratio under the Put with a high strike (Figure 11(b)) is essentially

the same as the i = 0% policy except for very high η . Even then, the Sharpe falls below the

one when i = 4.5% always. This behavior reflects the fact that cutting rates in good times passes

through to prices rather than allocations, which depresses banks’ returns and thus profitability.

To understand the intuition for our results, it is also helpful to consider two extreme bench-

marks for how monetary policy could pass through into “prices and quantities” (or “returns and

leverage”). In a frictionless economy, a decrease in nominal rates would decrease the nominal
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return on banks’ investments exactly one-for-one so that the profitability of banking would not

change. There would be no change in banks’ leverage, banks’ rate of equity growth, or volatility.

In contrast, if a decrease in nominal rates did not pass through perfectly to returns, then the prof-

itability of banking would increase, banks would increase their leverage, and banks’ rate of equity

growth would increase. In our model, changes in monetary policy when banks are well-capitalized

affect bank returns, with no effect on bank leverage because banks are the marginal investors in

capital. Decreasing banks’ funding costs (cutting rates) when banks have very low levels of capi-

tal increases banks’ excess returns and encourages banks to use more leverage, enabling banks to

rebuild equity more quickly.

Unconditional LAW When we only consider policies with constant (unconditional) rates, lower

constant interest rates improve stability. Even though lower rates produce higher asset price volatil-

ity globally, low rates also allow banks to rebuild equity quickly, so capital is better allocated in the

long run. These results with constant interest rates provide a strong argument against uncondition-

ally leaning against the wind. Globally higher rates do not mitigate excessive risk-taking enough to

offset the losses from inefficient capital allocations arising when the banking sector is distressed.

State-Contingent Easing and Leaning Against the Wind Constant low interest rates lead to a

more stable distribution but higher volatility, but a state-dependent policy can achieve both stability

objectives: high interest rates (at times) to generate low volatility, and low interest rates (at other

times) to generate a favorable stationary distribution. Leaning against the wind must be state-

contingent. The global behavior of leverage depends on the state-dependent behavior of interest

rates much more than on the overall level. We now consider timing considerations regarding when

to lean against the wind and when to ease. Like the previous section, we consider piecewise rules

to isolate the Put and LAW components of the policy rule.

First, cutting rates in bad times is stabilizing, as is raising rates in good times. We find that

LAW generally improves stability when the central bank raises rates outside of crises. We solve

the model with iLAW ∈ [0,5%] and iPut ∈ [0,3%]. Figure 12 plots stability for ηPut = 3% and 18%.

Two results emerge clearly. A more aggressive Fed Put (lower iPut) is always more stabilizing
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regardless of the level of iLAW , and the position of the policy strike matters. When ηPut is outside

the crisis region, then a higher iLAW is more stabilizing—LAW in good times is an effective policy.

However, if ηPut is so low that rates are high for most of a crisis, a higher iLAW leads to a less stable

economy, as is the case when ηPut = 3% (Figure 12(a)).

(a) ηPut = 3% (b) ηPut = 18%

Figure 12: Stability with Leaning against the Wind together with a Fed Put, varying (iLAW , iPut)
and varying ηPut .

Since higher iLAW implies higher interest rates on average, it is instructive to compare the

LAW/Put policy to a constant-rate policy with the interest rate set equal to the long-run average

rate E[i] under the LAW/Put policy. We fix iPut = 0% and vary iLAW . We compute the average

interest rate E[i] under the piecewise policy and then compare stability under the piecewise policy

to stability under the constant-rate policy with the same level of average rates. While in an absolute

sense LAW may or may not improve stability (see ηPut = 3%), LAW always leads to stability gains

compared to the constant-rate policy, and those gains are larger for higher iLAW .

The evidence of this section suggests that LAW in good times can be an effective policy toward

improving financial stability. Increasing interest rates has a detrimental effect on stability when

higher rates increase bank funding costs during crises, precisely when increasing bank equity is

most valuable, and precisely when changing funding costs has minimal effect on banks’ investment

returns. A carefully targeted policy of leaning against the wind in good times, and only in good
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times, can improve financial stability.19

D.3 Poorly Targeted Macroprudential Policy

Some research (e.g. Phelan, 2016) has found that binding leverage constraints in bad times can

improve stability and welfare. On the other hand, the real problem may be excessive leverage when

signs of financial distress begin to appear. Tightening constraints before distress turns into a crisis

may improve outcomes by accepting some output losses today to avoid more severe economic

damage. Figure 13 illustrates these policies as linearly decreasing leverage constraints which bind

in one of three different regions of the state space. The “Crisis” leverage constraint binds only

when η is low, and the “Distress” leverage constraint binds when banks still intermediate a large

fraction of capital.

(a) Crisis (b) Distress

Figure 13: Linearly decreasing leverage constraints that bind only in one of two regiones, Crisis
or Distress. The black lines correspond to the loosest constraints. The leverage constraint corre-
sponding to the blue lines are tighter than the black ones, and the red lines are the tightest. In all
cases, the nominal interest rate follows the Baseline policy.

Leverage constraints during the Crisis and Distress phases of the financial cycle turn out to be

poorly targeted and thus fail to restrict leverage when it is most socially suboptimal. For both types

19While endogenous instability, represented either by σQ or ση , is highest for moderate values of η , excessive risk
taking in terms of the effect on stability is highest for high η . This is evident from the behavior of σQ in Figure 1. A
policy that raises interest rates for middle values of η does not improve stability and generally harms stability.
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of macroprudential policies, a Fed Put with LAW still improve household welfare and outperforms

constant rate rules. Tables 4 and 5 show the consumption equivalent welfare differences and stabil-

ity differences between alternative interest rate rules and the Baseline policy. The Baseline policy

always outperform constant rate rules (e.g. i = 0%, average conditional interest rate), and rules

with more aggresive Put or LAW improve welfare and stability. However, the Distress policy does

improve household welfare relative to the case of no leverage constraints, which suggests that the

Distress policy mitigates excessive risk taking but could be better targeted.

Table 4: This table lists welfare and stability under the Crisis and Distress leverage constraint
policies. The black, blue, and red lines in Figure 13 correspond to the “Loosest”, “Moderate”, and
“Tightest” labels in the first column. The columns consider alternative constant rate rules. Welfare
is reported first in consumption equivalent differences from the Baseline policy, and stability is
reported second in percentage point differences from the Baseline policy.

Leverage Constraint i = 0% i = 4.5% E[i]

Crisis
Tightest (-3.20%, -3.55%) (-4.52%, -4.54%) (-4.36%, -4.63%)
Moderate (-3.33%, -3.43%) (-5.13%, -4.19%) (-4.85%, -4.06%)
Loosest (-3.15%, -3.49%) (-4.36%, -4.56%) (-4.38%, -4.30%)

Distress
Tightest (-0.88%, -2.34%) (-4.72%, -3.68%) (-3.75%, -3.58%)
Moderate (-0.75%, -4.12%) (-4.36%, -4.84%) (-4.11%, -4.95%)
Loosest (-0.83%, -1.75%) (-3.91%, -1.75%) (-3.30%, -1.03%)
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Table 5: This table lists welfare and stability under the Crisis and Distress leverage constraint
policies. The black, blue, and red lines in Figure 13 correspond to the “Loosest”, “Moderate”,
and “Tightest” labels in the first column. The columns consider the effects of different iLAW and
iPut values. Welfare and stability are reported as an ordered pair. Welfare is reported first in
consumption equivalent differences from the Baseline policy, and stability is reported second in
percentage point differences from the Baseline policy.

Leverage Constraint iLAW = 5.5% iLAW = 3.5% iPut = 1%

Crisis
Tightest (0.67%, 0.98%) (-0.68%, -0.88%) (-0.68%, -0.81%)
Moderate (0.57%, 1.07%) (-0.84%, -0.67%) (-0.93%, -0.92%)
Loosest (0.67%, 0.98%) (-0.74%, -0.95%) (-0.83%, -0.82%)

Distress
Tightest (0.12%, 1.26%) (-0.31%, -0.26%) (-0.75%, -0.45%)
Moderate (0.17%, 0.41%) (-0.22%, -1.43%) (-0.79%, -0.36%)
Loosest (0.22%, 3.03%) (-0.27%, -1.92%) (-0.63%, -0.29%)
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