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Abstract

We theoretically investigate the state-dependent effects of monetary policy on macroeco-
nomic instability. In the model, banks borrow using deposits and allocate resources to pro-
ductive projects. Because banks do not actively issue equity, aggregate outcomes depend on
the level of equity in the financial sector. Carefully targeted monetary policy can improve sta-
bility by increasing the rate of bank equity growth, and improve allocations by encouraging
leverage when intermediation is needed. A fed put is generally stabilizing, but the marginal
impact of a rate cut depends on the state of the economy. The effectiveness of monetary policy
depends on the extent to which rate cuts pass through to bank returns. When banks are rel-
atively well-capitalized, rate cuts primarily decrease banks’ returns. In terms of welfare, the
costs of “leaning against the wind” generally outweigh the benefits, but a fed put can improve
outcomes if the costs of deviating from the inflation target are sufficiently small.
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1 Introduction

Economists increasingly debate the extent to which monetary policy should be used to stabilize the

financial system. On one side is the “BIS view” that monetary authorities should systematically

“lean against the wind” (“LAW”), raising rates to mitigate overheating in the the financial sector.1

The argument for LAW is that raising the cost of intermediation in good times, thus curtailing

credit growth or asset bubbles, can decrease the probability of (extremely costly) financial crises

(e.g., Adrian and Liang, 2016; Adrian and Duarte, 2016). However, there are prevailing doubts that

the benefits of LAW outweigh the costs (notably Svensson (2017)). To improve financial stability,

LAW causes a weaker economy in good times, and if a crisis hits, the economy may enter a worse

downturn because it started from a weaker position. As economists debate the costs and benefits

of LAW, it is also widely recognized that central bankers will likely pursue aggressive policies to

stabilize the financial system during downturns—i.e., enacting a “fed put” to cut borrowing costs.

Critics worry that it encourages moral hazard in the form of excessive risk-taking and leverage

because participants in financial markets expect that the central bank will step in during downturns

(see Blinder and Reis (2005)). By causing riskier behavior throughout the business cycle, the fed

put may backfire and heighten the probability of financial crisis.

But because LAW and the fed put occur at different points in the cycle, they are not opposing

policies. Does considering the joint policies of LAW and fed put change the effects of monetary

policy on financial stability? Should cost-benefit analyses consider state-dependent variations in

effectiveness?

To answer these questions, we use a continuous-time stochastic general equilibrium model in

which banks allocate resources to productive projects, and bank deposits provide liquidity services,

following Phelan (2016). Banks can invest in certain projects more efficiently than households can

directly, but banks can issue only risk-free debt and not equity. As a result, banks invest more

when they have more equity, and the economy’s resources are allocated more efficiently when

financial-sector net worth is high. Importantly, in crisis times households do invest directly in

bank-dependent projects. The model builds on Brunnermeier and Sannikov (2014), which demon-

1Proponents of this view include BIS (2014, 2016), Borio (2014); Borio et al. (2018) and Juselius et al. (2017).
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strates the inherent instability of economies with financial sectors and the pecuniary externalities

caused by equity constraints. To this model we add the model of monetary policy transmission

from Drechsler et al. (2018)2, in which monetary policy determines the liquidity premia on banks’

investments, with implications for risk premia. In our model, monetary policy can affect the return

on banks’ investments, the rate at which banks build up equity, and the amount of leverage banks

use. Importantly, however, how changes in monetary policy affect these variables varies systemat-

ically with the state of the economy. Accordingly the implications of LAW for stability depends

on whether the central bank also pursues a fed put.

To understand the intuition for our results, it is helpful to consider two extreme benchmarks

for how monetary policy could pass through into “prices and quantities.” On the one hand, in a

frictionless economy, a decrease in nominal rates would merely decrease the nominal rate of return

on banks’ investment exactly one-for-one, so that the profitability of investing would not change.

In this case, there would be no change in banks’ leverage, the rate of equity growth, or the volatility

in the economy. On the other hand, if a decrease in nominal rates did not pass through to returns

at all, then the profitability of banking would increase (funding is cheaper relative to investment

return), banks would increase their leverage, and the changes in funding costs and leverage would

have implications for the rate of growth and volatility of bank equity.

By affecting the risk premium of banks’ investment, monetary policy changes the frequency

and duration of good and bad outcomes. We solve for the global dynamics of the economy to

demonstrate the stability consequences of various monetary policies across the state space. We

show that whether the effect of monetary policy is more like the first or second extreme depends

on the state of the economy in which monetary policy is changing. In particular, how bank lever-

age varies over the cycle primarily depends on how monetary policy changes over the cycle, and

whether monetary policy becomes accommodating “early” or “late.” In our model, when banks

are well-capitalized, banks are the marginal investors in bank-dependent investments, and changes

2We choose this mechanism rather than assuming nominal rigidities because Van der Ghote (2018) shows that, in
a New Keynesian version of the model in Brunnermeier and Sannikov (2014), it is still optimal for monetary policy
to mimic the natural rate. The reason is that monetary policy in that model affects price dispersion, not banks’ risk-
taking incentives. Because we want to study the impact of monetary policy on macroeconomic instability, we need an
alternative to nominal rigidities.
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in monetary policy primarily affect bank returns, with little effect on bank leverage. However,

when banks have very low levels of capital, households may be the marginal investors in bank-

dependent investments, in which case changing banks’ funding costs will not have a large effect

on their returns but will instead encourage banks to use more leverage and enable banks to more

quickly rebuild equity. Thus, our analysis allows us to consider how monetary policy endogenously

changes the probability of a crisis—the primary proposed benefit of LAW—and whether a fed put

increases macroeconominic instability.

Our analysis has positive and normative implications for the dynamic consequences of mon-

etary policy for financial stability. First, a policy of leaning against the wind without a fed put

decreases financial stability, while a combination of LAW and put increases stability. The key

reason is that the fed put bolsters the expected rate at which banks recapitalize in bad times and

reduces asset price volatility nearly everywhere. However, the effects of monetary policy on lever-

age, volatility, and stability are state-dependent, so the power of monetary policy is contingent on

the timing of interest rate movements. Second, the normative implications of LAW depend on

when welfare is measured (i.e., the initial condition). In contrast, for a given level of rates during

good times, a fed put generally increases welfare so long as such a policy does not create large

inflation losses.

Opponents of LAW emphasize the importance of macroprudential regulations as alternatives to

interest rate policy for reducing financial fragility. To evaluate how significant these measures are

relative to monetary policy, we compare our results with a modified variant of the model in Phe-

lan (2016). In that paper, macroprudential regulations took the form of fixed leverage constraints,

which were shown to improve welfare by trading off flow outcomes for greater stability. We find

that while macroprudential regulation is much more successful at reducing the probability of crisis,

monetary policy has much larger quantitative effects on welfare.3 Therefore, although our analysis

suggests that LAW is inadvisable without a fed put or if inflation costs are too high, the “BIS view”

may correctly emphasize the importance of considering monetary policy and macroprudential pol-

icy together to address macroeconomic stability and the effects of financial crises.

3Moreover, leverage constraints may not be time-consistent since they worsen flow outcomes in bad times. In
contrast, the fed put lowers borrowing costs and bolsters asset prices when banks are poorly capitalized.
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Related Literature Methodologically, our paper follows the stochastic continuous-time macro

literature, pioneered by Brunnermeier and Sannikov (2014, 2015, 2016) and He and Krishnamurthy

(2012, 2013, 2014), who analyze the nonlinear global dynamics of economies with financial fric-

tions, building on seminal results from Bernanke and Gertler (1989); Kiyotaki and Moore (1997);

Bernanke et al. (1999). Within this literature, we combine the models of Phelan (2016) and Drech-

sler et al. (2018) to study how monetary policy affects global dynamics.4

The macroeconomic framework in Phelan (2016) is most closely related to Brunnermeier and

Sannikov (2014) and makes three modifications to their framework. First, the model contains two

goods, so that policy may affect the allocation of resources and the returns on different investments.

Second, banks are owned by households (banks are not competing agents) and have a comparative

advantage at investing in one sector (“bank-dependent”). Third, bank deposits provide liquidity

value, which motivates steady state leverage. Phelan (2016) studies how macroprudential policies

(i.e., leverage limits) can improve welfare by increasing stability. We study how monetary policy

affects financial stability.

Drechsler et al. (2018) develop a dynamic asset pricing model in which monetary policy affects

the risk premium component of the cost of capital. They consider a model in which risk-tolerant

agents (banks) take deposits from risk-averse agents to buy an asset. Lower nominal rates make

liquidity cheaper and raise leverage, resulting in lower risk premia and higher asset prices and

volatility. Drechsler et al. (2017) empirically confirm that this mechanism exists by showing in-

creases in the nominal rate induce big inward shifts in the supply of retail bank deposits, a large

and important class of liquid assets. We embed their model of monetary policy transmission into

the Phelan (2016) model to illustrate the state-dependent effects of monetary policies driven by the

role of banks in allocating resources to bank-dependent investments. Importantly, monetary policy

has different effects on stability depending on the extent to which the returns on different types of

investments are affected.

In our model, monetary policy affects financial stability by changing the endogenous evolution

of banks’ equity levels. The key assumption that equity is “sticky” or “slow-moving” is closely

4There is a rich asset pricing literature within this methodology. As examples, see Adrian and Boyarchenko (2012),
Moreira and Savov (2014), Gârleanu and Panageas (2015), Gârleanu et al. (2015).
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related to He and Krishnamurthy (2012, 2013). The assumption that bank equity is “sticky” is

empirically supported by Acharya et al. (2011), which shows that the capital raised by banks

during the crisis was almost entirely in the form of debt and preferred stock and not in the form of

common equity. Adrian and Shin (2010, 2011) provide evidence that the predetermined balance

sheet variable for banks and other financial banks is equity, not assets. Our results generalize so

long as banks do not issue equity too frequently. Relatedly, Gambacorta and Shin (2016) provide

evidence that bank capital matters for monetary policy transmission.

Stein (2012) provides a model in which monetary policy affects financial stability by affecting

private money creation. Farhi and Tirole (2012) consider how time-inconsistent monetary policy

can provide incentives for maturity mismatch and correlated portfolios. In our model we take ma-

turity mismatch and correlated risks as given and then ask, in light of these features, how changes

in monetary policy affects stability. Diamond and Rajan (2012) emphasize that low interest rate

policies may encourage excessive leverage. Interestingly, because of the general equilibrium ef-

fects in our model, a fed put increases leverage when rates are low but not before. Furthermore,

the increase in leverage when rates are low is stability improving, even though our model leads to

excessive leverage (see Phelan, 2016).

2 The Baseline Model

The economy is populated by households and banks, which are owned by households. There is

a single factor of production that can be used to produce two intermediate goods. Banks have

an advantage for producing one intermediate good and households for the other. As a result,

output and growth depend endogenously on capital ownership. The financial friction is that equity

issuance is costly, and thus outcomes will depend on the level of equity in the banking sector.

The model combines, with modifications, elements of the models in Brunnermeier and Sannikov

(2014), Drechsler et al. (2018), and Phelan (2016).
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2.1 Technology, Environment, and Markets

Time is continuous and infinite, and there are aggregate productivity shocks that follow a Wiener

process. One factor of production, capital, can be used to produce two types of intermediate goods

at unit rate. The effective capital quantity yt evolves according to equation (1),

dyt

yt
= gydt +σdWt , (1)

where dWt is an exogenous standard Brownian motion and gy depends on who manages capital and

what it is used to produce. The values of gy, given in Table 1, imply that banks are comparatively

better at managing good-1 production and households are better at managing good-2 production.

We interpret good-1 production as bank-dependent investments. We define the parameter restric-

tion on gB more clearly later in this section.

Table 1: Expected capital productivity growth rates by agent and good produced.

gy Good 1 Good 2
Households g− ` g

Banks gB gB

Denote by Yt the stock of effective capital at time t, which is also the flow production of goods

at time t. The consumption good is produced using goods 1 and 2 according to

Ct = Y
1
2

1tY
1
2

2t ,

where Ct is the quantity of the consumption good, Yjt is the quantity of good j (equivalently

the quantity of capital used to produce good j). Standard static optimization implies that the

equilibrium prices of intermediates are given by

p1t =
1
2

(
Y2t

Y1t

) 1
2

pt , p2t =
1
2

(
Y1t

Y2t

) 1
2

pt ,

where pt is the price of consumption. Let λt =
Y1t
Yt

be the fraction of capital cultivating good 1.
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Then the real prices of intermediate goods (Pjt = p jt/pt) are

P1t =
1
2

(
1−λt

λt

) 1
2

, P2t =
1
2

(
λt

1−λt

) 1
2

.

Capital is traded in a perfectly competitive market at a real price Qt . We postulate that the real

capital price (the “asset price”) follows the process

dQt

Qt
= µQ,t dt +σQ,t dWt , (2)

which will be determined endogenously in equilibrium. The return to owning capital includes the

value of the output produced and the capital gains on the value of the capital. By Ito’s Lemma, the

rate of return to agent i using capital to produce good j is

dri j
t =

(
Pjt

Qt
+gy +µQ,t +σσQ,t

)
dt +(σ +σQ,t)dWt ,

where gy is appropriately defined for agent i. The volatility of returns on investments is σ +σQ,t ,

which includes fundamental risk σ and endogenous price risk σQ,t . Denote by drb j
t and drh j

t the

returns respectively to banks and households from owning capital to produce good j. To simplify

notation, denote the expected returns as: E[drb j
t ] = r̄b j

t dt, E[drh j
t ] = r̄h j

t dt.

Finally, there is a market for risk-free deposits, which are in zero net-supply with endogenous

return rt .

2.2 Households

There is a continuum of risk-neutral households denoted by h ∈ [0,1] with initial wealths nh,0.

Households have the discount rate r, may consume positive and negative amounts (though in equi-

librium their consumption will always be positive), and have liquidity in the utility function with

constant marginal utility over bank deposits. Lifetime utility is given by

Vτ = Eτ

[∫
∞

τ

e−r(t−τ)(ch,t +φLδh,t)dt
]
,
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where ch,t is household flow consumption, δh,t are bank deposits, and φL > 0 is the liquidity pref-

erence parameter. It follows that households require an expected return of r on any real investment

and a return of r−φL on deposits due to liquidity value.5

We model the liquidity value of bank deposits directly in the utility function as a modeling

convenience. Deposits have liquidity values for a variety of reasons outside of the model, which

we leave out to simplify exposition.6 Because our objective is not to study liquidity provision or

demand, we impose constant marginal utility for deposits to simplify the model and so that no

endogenous value affects liquidity value or deposit rates. As we discuss below, this also allows the

interpretation that changes in monetary policy represent deviations from a baseline desired interest

rate, perhaps determined based on a standard Taylor rule.

2.3 Banks

There is a continuum of banks, denoted by b ∈ [0,1], with book value (“equity”) nb,0. Banks invest

in capital and issue deposits. Banks are owned by households, who choose dividend payouts, the

level of deposits, the level of liquid reserves, and the portfolio weights on capital used by banks

to produce goods 1 and 2. Because of un-modeled financial frictions, banks are subject to two

constraints. First, equity issuance is infinitely costly (i.e., dividends must be positive). Second, the

value of banks’ assets minus liabilities nb,t cannot become negative (bankruptcy).

The banks’ objective is to maximize the present value of dividends discounted at rate r (house-

holds’ time preference) subject to its constraints. Because banks can borrow using debt at a real

interest rate rL = r− φL < r, banks will never choose a capital structure that is completely eq-

uity. And because banks cannot have negative equity, to avoid bankruptcy banks will never choose

a capital structure that is completely debt. To reduce the advantage of banks, we assume that

gB = g−φL so that banks have a net advantage at cultivating good 1 but not at cultivating good 2.

Following Drechsler et al. (2018) we assume deposits are subject to funding shocks, which are

5In Appendix 4.2 we suppose that households may also suffer welfare losses from deviations of inflation from its
target level. Adding ad-hoc inflation losses in the way we do does not change any of the positive implications of the
model.

6See for example Diamond and Dybvig (1983), Gorton and Pennacchi (1990), or Lagos and Wright (2005).
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modeled as a Poisson process Jt with constant intensity χ . Jt is an aggregate shock, and when Jt

realizes, banks must immediately redeem a fraction
κ

1+κ
of their deposits, where κ > 0. Only

a fraction 1−ρ ∈ (0,1) of capital’s value can be recovered quickly enough to absorb a funding

shock. Banks may self-insure by holding liquid assets, which can be liquidated without causing

fire sales when a funding shock realizes.

2.4 Monetary Policy: Nominal Rates, Inflation, and Liquidity Premia

We model monetary policy transmission following Drechsler et al. (2018). Monetary policy deter-

mines the opportunity cost of holding liquid assets rather than capital (i.e., determines the liquidity

premium). Two types of liquid assets exist: government bonds and central bank reserves. To cap-

ture the money multiplier of reserves, we assume that each dollar of reserves yields m > 1 effective

liquid assets. The central bank can create and withdraw reserves by exchanging government bonds

through open market operations.

Let Gt and Mt be the total dollar value of government bonds and reserves in the economy (what

matters is the total value of all bonds and reserves rather than the actual quantity of their supply),

and let st be the value of a dollar in consumption units. Letting reserves be the numeraire, st

becomes the inverse price level, and the real value of liquid assets held by banks, measured in units

of government bonds and scaled by aggregate wealth, is

St =
st(Gt +(m−1)Mt)

QtYt
.

The remaining liquidity is given by the value of government bonds held by the central bank, stMt .

Inflation and the Nominal Rate We assume inflation is locally deterministic, i.e.

−dst

st
=

d pt

pt
= πt dt.
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Since the rate on deposits pins down the risk-free interest rate, the nominal interest rate is

it = r−φL +πt .

The central bank targets it , and we assume that it depends on a state variable ηt (i.e., it = i(ηt)) to

be described later.

We interpret changes in monetary policy in this model as deviations from a desired rate ī =

r−φL + π̄ , where π̄ is the inflation target and r may be the desired real interest rate coming out of

a New Keynesian model. Thus, deviations in it from ī represent changes in the inflation target in

response to the state of the financial sector. That said, in our model the state of the financial sector

will determine an “output gap” due to misallocation of resources, a distinct mechanism from the

standard New Keynesian model.

Liquidity Premia The liquidity premium on reserves is the opportunity cost of holding liquid

assets. In equilibrium, this premium is determined by forgone returns from holding liquid assets

rather than deposits, the next best investment. Because reserves pay no interest, their return is

equal to their capital gain, so the liquidity premium that deposits earn is

rt−
dst

st
= rt +πt = it ,

which is precisely the nominal interest rate. The premium on government bonds is similarly de-

termined. Let rg,t be the real interest rate on government bonds. Since these bonds produce liquid

assets at a supply 1/m of reserves, the liquidity premium on government bonds is

rt− rg,t =
1
m

it

We assume that government bonds are backed by deposits that banks hold with the Treasury and

earn the rate rg,t . Thus, the spread rt − rg,t reflects the returns per bond forgone by banks in order

to hold liquidity.

Through the conduct of monetary policy and the management of government bonds, seignior-
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age profits are earned. Scaled by aggregate wealth, the seigniorage accrues at the rate

stGt

QtYt
(rt− rg,t)+

stMt

QtYt

(
rt,g−

dst

st

)
=

st(Gt +(m−1)Mt)

QtYt
(rt− rg,t) =

St

m
it .

On the left, we have the returns on Treasury and central bank accounts. For each government bond,

the Treasury earns rt and pays out rg,t . Since central bank reserves are government bonds, they

earn rg,t but pay out the capital gains on reserves to banks. In the middle, we have the seigniorage

profits earned by the government due to banks holding liquid assets rather than deposits. The

(m−1)Mt term captures the fact that for each dollar of reserves, the government earns seigniorage

on (m−1) liquid assets held by banks. To close the model, we assume the seigniorage is distributed

to agents according to their wealth, so the distribution of wealth is unaffected by seigniorage, and

the government maintains zero net worth.

2.5 Banks’ Problem

Let xt = (xk1,t ,xk2,t ,xG,t ,xM,t) be portfolio weights (summing to one) on capital used for good 1,

capital used for good 2, government bonds, and reserves. We can simplify the banks’ problem by

noting that in equilibrium government bonds and reserves are perfectly substitutable. Therefore,

xL,t ≡ xG,t +mxM,t describes the effective share of wealth held in government bonds. We will also

use the shorthand xk,t ≡ xk1,t + xk2,t to refer to banks’ share of wealth invested in capital.

Formally, banks solve the problem

max
{xt ,dζt}

Uτ = Eτ

[∫
∞

τ

e−r(t−τ) dζt

]
,

subject to

dnb,t

nb,t
=

(
rt−

xL,t

m
it +

St

m
it

)
dt +(xk1,t drb1

t + xk2,t drb2
t − xk,trt dt)− dζt

nb,t

− ρ

1−ρ
max

{
κ

1+κ
(xk,t + xL,t−1)− xL,t ,0

}
dJt ,

(3)

nb,t ,xk1,t , xk2,t , xL,t dζt ≥ 0. (4)
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Banks earn the deposit rate, pay the liquidity premium on government bonds, receive seigniorage

payments from the government, earn the risk premium on capital holdings, and pay dividends

at rate dζt .The second line of (3) reflects the exposure of banks to funding shocks given their

portfolio.

By homogeneity and price-taking, the maximized value of a bank with equity nb,t can be written

as

θtnb,t ≡ max
{xt≥0,dζt}

Et

[∫
∞

t
e−r(s−t)dζs

]
, (5)

where θt is the marginal value of equity, i.e., the proportionality coefficient that summarizes how

market conditions affect the value of the bank’s value function per dollar of equity. The marginal

value of equity equals 1 plus the multiplier on the equity-issuance constraint and reflects the ag-

gregate condition of the financial sector.

Given the following conditions, it is optimal for banks to fully self-insure in equilibrium.

Lemma 1. Suppose χ and ρ are such that, for all it ,

χ
ρ

1−ρ

κ

1+κ
≥ κ

m
it ≡ LPt , (6)

where LPt ≡
κ

m
it is the liquidity premium at interest rate it . Then banks fully self-insure, and their

liquidity demand is given by

xL,t = max
{

κ(xk,t−1),0
}
.

We can further characterize the optimality conditions in the following way.

Proposition 1. Consider a finite process

dθt

θt
= µθ ,t dt +σθ ,t dWt , (7)

with σθ ,t ≤ 0. Then θtnt represents the maximal future expected payoff that a bank with book value

nt can attain, and {xt ,dζt} is optimal if and only if

1. θt ≥ 1 ∀t, and dζt > 0 only when θt = 1,

2. µθ ,t = φL−
(

κ +St

m

)
it ,
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3. E[drb j
t ]− rt−LPt ≤−σθ ,t(σ +σQ,t), with strict equality when x jk,t > 0,

4. The transversality condition E[e−rtθtnt ]→ 0 holds under {xt ,dζt}.

Hence, RPt ≡ −σθ ,t(σ +σQ,t) represents the bank’s required risk premium (or instantaneous

level of risk aversion), which must at least equal the expected excess return over the liquidity

premium. Cutting interest rates increases the drift of θt , and banks will not pay dividends when

θt ≥ 1.7

2.6 Equilibrium Asset Pricing

Since we look for an equilibrium where the risk premium and liquidity premium are both non-

negative, banks will never produce good 2. Thus, households will always produce good 2 and

sometimes produce good 1. Because households require a return of r on real investments, it follows

that household returns satisfy

P2t

Qt
+g+µQ,t +σσQ,t = r, (8)

P1t

Qt
+g− `+µQ,t +σσQ,t ≤ r, (9)

where the inequality reflects that households may not always produce good 1 in equilibrium. From

the banks’ investment in good 1 we have

P1t

Qt
+g+µQ,t +σσQ,t = r+RPt +LPt . (10)

When households do not produce good 1, then banks and households specialize in their respec-

tive sectors. Taking the difference between the equations (8) and (10), we obtain a market-clearing

condition for capital allocations:

RPt +LPt =
P1t−P2t

Qt
. (11)

When this is the case, changes in the liquidity premium may affect the difference in returns between

7Furthermore, θt can never be less than one because banks can always pay out the full value of equity, guaranteeing
a value of at least nb,t .
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goods 1 and 2. In contrast, when households produce good 1, we have P1t−P2t
Qt

= `, which implies

RPt +LPt = `. (12)

In other words, the sum of the banks’ risk premium and the liquidity premium equals the household

efficiency loss from investing in good 1. The differences between equations (11) and (12) provide

a crucial insight. When households do not produce good 1, banks are the marginal investors in the

intermediation sector. Accordingly, a decrease in interest rates might, all else equal, decrease the

relative return between sectors 1 and 2 (P1−P2 decreases). However, when households produce

good 1, households are the marginal investor in the intermediation sector. In this case, a decrease

in interest rates must increase banks’ equilibrium risk-premium, which will occur through higher

leverage.

2.7 Equilibrium

A competitive equilibrium is characterized by market price for the risky asset, together with port-

folio allocations and consumption decisions such that given prices, agents optimize and markets

clear. Since banks are subject to equity issuance frictions, equilibrium will depend on banks’ equity

levels and monetary policy will have scope to affect equilibrium.

We solve for the global equilibrium dynamics using the methods in Brunnermeier and Sannikov

(2014). With limited ability to issue equity, banks’ decisions depend on their level of equity, and so

equilibrium depends on banks’ aggregate level of equity. Define Nt =
∫

nb,tdb as aggregate bank

equity. Because capital grows geometrically and the bank problem is homogenous, the equilibrium

state-variable of interest is aggregate bank equity as a fraction of total value of capital, or a variant

of the “wealth distribution.” We thus use the following state variable:

ηt =
Nt

QtYt
.

Hence, equilibrium consists of a law of motion for ηt , and asset allocations and prices as

functions of η . The asset prices are Q(η) and θ(η), and the flow allocations and goods prices are
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λ (η), ψ(η), P1(η), P2(η). We derive the evolution of ηt using Ito’s Lemma and the equations for

returns and budget constraints.8

Lemma 2. The equilibrium law of motion of η will be endogenously given as

dηt

ηt
= µη ,tdt +ση ,tdWt +dΞt , (13)

where dΞt is an impulse variable creating a regulated diffusion. Furthermore,

µη ,t =
P1t

Qt
+(λt−ψt)`− (1−ψt)φL +(ψt−ηt)

κ

m
it−

(
ψt

ηt
−1
)
(σ +σQ,t)(σθ ,t +σ +σQ,t),

ση ,t =

(
ψt

ηt
−1
)
(σ +σQ,t),

dΞt =
dζt

Nt
,

where dζt =
∫

dζb,tdb and ψt = xk,tηt is the fraction of capital held by banks.

We solve for equilibrium by converting the equilibrium conditions into a system of differential

equations (“ODE”) in the asset prices Q and θ . Given Q(η), Q′(η), θ(η), and θ ′(η) we can

derive equilibrium returns and allocations then derive Q′′(η) and θ ′′(η). We solve the ODE using

appropriate boundary conditions (additional details are in the appendix).

Proposition 2. The equilibrium domain of the functions Q(η),θ(η), and λ (η), ψ(η), P1(η),

P2(η) is an interval [0,η∗]. The function Q(η) is increasing, θ(η) is decreasing, and the following

boundary conditions hold:

1. θ(η∗) = 1;

2. Q′(η∗) = 0;

3. θ ′(η∗) = 0;

4. Q(0) = q;

5. lim
η→0+

θ(η) = ∞.

8The one difference between Lemma 2 and the analogous result in Phelan (2016) is the liquidity premium term in
the drift of η .
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Over [0,η∗], θt ≥ 1 and dζt = 0, and dζt > 0 at η∗ creating a regulated barrier for the process

ηt . We refer to η∗ as the stochastic steady state. Furthermore, there exists η̄ ∈ (0,η∗) such that

ψ(η) = λ (η) for η > η̄ and ψ(η)< λ (η) for η ≤ η̄ .

Hence, the system ranges between 0 and η∗, at which point banks pay dividends because

the marginal attractiveness of debt outweighs the marginal attractiveness of an additional unit of

equity. For high levels of η , banks and households specialize in their relative investment sectors

(i.e., households do not produce good 1), but below η̄ households produce good 1. We say that a

crisis occurs when η < η̄ . The evolution of η induces a stationary distribution (PDF) f (η) with

CDF F(η) (the distribution f (η) solves a Kolmogorov-Forward equation).

If the price function is twice-continuously differentiable, then the evolutions of the capital price

and marginal bank value (equations (2) and (7)) are functions of η

dQt

Qt
= µQ,t(ηt)dt +σQ,t(ηt)dWt ,

dθt

θt
= µθ ,t(ηt)dt +σθ ,t(ηt)dWt ,

where the drift and variance terms are determined by the derivatives of Q(η) and θ(η). For the

remainder of the paper, the dependence on the state-variable ηt is suppressed for notational ease.

3 Monetary Policy and Equilibrium Stability

In this section we consider the positive effects of monetary policy on macroeconomic stability.

We first consider how interest rate policies affect the global dynamics of equilibrium, and we then

consider the marginal impact of extending low interest rates.

We solve the model numerically using the parameters from Phelan (2016) and Drechsler et al.

(2018).9 The two most important variables are volatility and the monetary policy transmission

value κ/m. The volatility of σ = 2% corresponds roughly to the volatility of TFP and also the

typical volatility of bank assets. The value of κ/m = 10.2% implies the empirically plausible

result that changing the nominal rate by 100bps changes the liquidity premium by roughly 10bps.

9In particular, r = 4%, g = 2%, σ = 2%, ` = 1%, and φL = 2%, m = 4, and κ = 0.4085. Please see those papers
for detail on parameter choices.
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3.1 Equilibrium and Interest Rate Policy

To illustrate the mechanisms of the model, we first solve for equilibrium with constant rates be-

tween 0% and 4%, and we then consider dynamic, state-dependent policies that raise or lower

rates between these levels. The consequences of high or low interest rates for stability depends

crucially on the global behavior of interest rate policy. The effects of interest rates on asset prices

and volatility are similar to what Drechsler et al. (2018) find in their model with two agents with

heterogeneous risk aversion. In contrast, in our model the stationary distribution looks quite differ-

ent (bimodal rather than similar to a normal distribution), and leverage behaves slightly differently

(they find that higher rates lead to lower leverage everywhere, which we do not find). Accord-

ingly, we focus on the results concerning stability. Additional figures illustrating the properties of

equilibrium are in the appendix.

Constant interest rates Figure 1(a) plots the drift and volatilities (evolutions) of Q and η . The

kinks in good prices, drifts, and volatilities occur at η̄ , below which households produce good 1

(roughly 2.75% in these economies), thus preventing goods prices from rising if a crisis intensi-

fies (bank equity decreases). The volatilities of the asset price and bank equity are higher with

low interest rates, consistent with the standard intuition that cutting rates may be destabilizing by

increasing volatility. While leverage (not shown here) is generally higher with lower rates, the

difference is negligible (and leverage is actually slightly lower in a neighborhood around η̄).

Figures 1(b) and 1(c) plot the stationary and cumulative distributions of bank equity (PDF and

CDF) with high and low rates. While volatility is higher in the low-rate economy, the economy

is generally more stable—spending less time at low levels of equity and more time at high levels

of equity. The economy is more stable with low constant rates because the drift of bank equity is

significantly higher (bank funding is cheaper owing to a lower liquidity premium). Furthermore,

the steady state η∗ is lower with high rates because banking is less profitable (higher liquidity

costs) and thus banks pay dividends earlier.10

Indeed, lower constant interest rates do generally improve stability. We define stability as the

10However, even controlling for the change in η∗, the low-rate economy is more stable (i.e., f (η) and F(η) plotted
against η/η∗ are more stable with low rates).
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Figure 1: Equilibrium with constant interest rates at 4% and 0%.

probability of time the economy is not in a crisis, i.e., 1−F(η̄).11 Table 2 provides the stability

of the economy varying interest rates from 0 to 4%. As is clear, the economy is more stable

with lower rates. Taken at face value, these results with constant interest rates provide a strong

argument against leaning against the wind. After all, the whole purpose of LAW is to minimize

crises, but the economy is more stable with constant lower rates.12 However, while constant low

interest rates lead to a more stable distribution, volatility is higher. Perhaps policy could get the

best of both world: high interest rates (at times) to generate low volatility, and low interest rates

(at other times) to generate a high level of stability. Indeed, the global behavior of leverage—an

important determinant of volatility and stability—depends not only on the level of rates but on how

rates change. Changes in monetary policy across the state space can have much more significant

effects on bank leverage than parallel shifts in rates. The next exercise makes clear that stability

and leverage are heavily influenced by the state-dependent behavior of interest rates.

Table 2: Interest rates and stability, constant interest rates.
Higher percentage is more stable.

it 0% 1% 2% 3% 4%
Stability 75.05% 72.04% 68.50% 63.14% 55.32%

11Intuitively, a crisis occurs when banks are so constrained that they have to sell capital at fire-sale prices and
households need to intermediate capital in the bank-dependent sector.

12As we discuss later, not only is stability higher with lower rates, but in the absence of inflation losses welfare is
also higher with lower rates.
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State-dependent policies We now consider the effects of state-dependent interest rate policies.

We first illustrate the mechanisms by considering two dynamic policies, a “fed put” and a “fed

call,” each with a “strike” at ηP = 2.75% so that rate changes occur in the region where house-

holds produce good 1. Under the fed put, interest rates are 4% for η > ηP and rates are cut to 0%

for η < ηP; the reverse occurs under the fed call. Figure 2(a) plots the interest rate rules we con-

sider. Importantly, while interest rates under these policies always fall between the constant levels

considered above, the resulting levels of bank leverage do not fall between the levels corresponding

to the constant-rate policies.

Figure 2(b) plots leverage levels across η . Notice that with constant rates leverage is hardly

affected by the level of rates, and in all cases leverage levels in good times (high eta) barely change

across policies. But for low levels of equity the fed put dramatically props up bank leverage and

the fed call depresses leverage. These changes occur even though interest rates in each case are the

same as one of the constant-rates policies.

Figure 2(c) plots the drift and volatilities of the asset price and state variable. The economy

is less volatile with a fed put. Asset price volatility is lower with the fed put—even lower than

holding rates constant at 4%—and substantially lower than holding rates constant at 0%. The state

variable η is only more volatile for the lowest levels of η when bank leverage increases, but this is

also when the drift of the economy is the greatest, exceeding the drift when rates are held constant

at 0%. The drift increases because (comparing these equilibria) bank returns are higher but funding

costs are the same and banks use more leverage. Finally, as the stationary distributions in Figure

2(d) illustrate, the economy is most stable with the fed put and least stable with the fed call.13

Indeed, fed puts are generally stabilizing. We now consider a linear fed put policy in which

it = 4% for η > ηP, but below ηP rates vary linearly to zero:

i(η) = min
{

4%,
4%
ηP η

}
.

We solve for equilibrium and then compute the average interest rate ī(ηP) under the policy and

13Plotting probability and cumulative distributions normalizing by η∗ makes the change in stability even more clear.
We provide this figure in the Appendix.
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Figure 2: Equilibrium leverage and stability with constant rates or fed put/call policies.

compare equilibria under the fed put to the constant interest rate ī(ηP). Table 3 presents the

stability of the economies, varying ηP and comparing to constant rate policies. In every case, the

economy is more stable with the fed put than with constant interest rates.

Leaning against the wind When the fed intends to cut rates during crises, the effect of LAW on

stability is completely different. In fact, taking the crisis policy as given, higher interest rates during

good times do improve stability. We now consider piece-wise fed puts: it = 0 for η < ηP, and

it = iLAW for η > ηP. We solve for equilibrium and then compute the average interest rate ī(iLAW )

under the fed put. Table 4 presents the stability of the economies, varying iLAW and comparing to

21



Table 3: Interest rates and stability, linear fed put from 4% to zero starting at ηP, compared to
constant average rates.

ηP 1.75% 2.75% 3.75%
Linear fed put 71.39% 76.69% 80.74%
Constant ī(ηP) 57.58% 60.25% 59.49%

∆Stability 13.81% 16.45% 21.24%

constant rate policies (clearly, when iLAW = 0 the constant rate policy is the same at zero). There

are two key results. First, in every case the economy is more stable with the fed put. Second, the

fed put is more stabilizing the higher is iLAW , implying that LAW does improve stability.

Table 4: Interest rates and stability, rates drop to zero below ηP = 2.75% compared to constant
average rates.

iLAW 0% 1% 2% 3% 4%
Fed put 75.05% 78.73% 81.76% 84.27% 86.32%

Constant ī(ηP) 75.05% 73.10% 70.11% 65.84% 60.51%

LAW is stabilizing when ηP > 2.75% as well, and even if interest rates in bad times are fixed at

4% instead of 0%. This suggests that increasing interest rates has a detrimental effect on stability

only when higher rates increase bank funding costs during crises, precisely when increasing bank

equity is most valuable (and precisely when changing funding costs has minimal effect on banks’

investment returns). The effects of LAW when the fed put occurs at ηP = 1.75% corroborates this

claim because LAW is not monotonically better for stability under this policy, as shown in Table 5.

Higher rates extend into crisis times, so the effect of LAW is somewhere between the constant-rates

economy and the ηP = 2.75%-fed-put economy.

Table 5: Interest rates and stability, rates drop to zero below ηP = 1.75%.

iLAW 0% 1% 2% 3% 4%
Stability 75.05% 77.19% 77.98% 77.84% 77.24%
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3.2 Marginal Impacts of Monetary Policy

While a fed put is generally stabilizing, the effects depend on when the fed put kicks in. Specifi-

cally, when the central bank cuts rates in states banks are the marginal investors in bank-dependent

investments, cutting rates can decrease the Sharpe ratio for a portion of the state space. In this

case, changing interest rates affects goods prices, which changes the returns banks get relative to

households. However, in the region where households produce good 1, risk premium plus liquidity

premium sum to `, so cutting rates will in equilibrium increase banks’ risk aversion. Since banks

face a single balance sheet decision for risk—namely, leverage—banks’ instantaneous risk aver-

sion increases (all else equal), by increasing leverage.14 But when households do not produce good

1, cutting rates will primarily decrease the wedge between goods prices, affecting banks’ returns.

To illustrate, we first return to the fed put and call in Figure 2(a) and now also consider when

the policy strike is at the higher level of ηP = 4.75% when only banks produce good 1. Figure

3 plots the Sharpe ratios for ηP = 2.75% (when households produce good 1) and ηP = 4.75%.

Importantly, the Sharpe ratio under the fed put with a high strike is substantially below what it

would be with the low strike fed put, and can fall below the Sharpe with other policies (Figure

3(b)).

State-dependent effects of fed put We now compare in more detail the consequences of fed

puts with ηP = 1.75%, 2.75%, and 3.75% to policies of constant interest rates. Generally, com-

pared to constant interest rates at the average level the fed put increases leverage below ηP but

not otherwise; improves stability by decreasing the fraction of time the economy has low equity

and increasing the fraction of time the economy has high equity; decreases price volatility; and

increases Sharpe ratios, though non-monotonically depending on when the fed put kicks in.

The following figures plot the ratio of equilibrium objects under the fed put to the constant

14The risk premium is−σθ (σ +σQ). As seen in Figure 2(b), σQ actually decreases with the fed put, so the increase
in risk aversion arises from a more negative σθ , whose closed form expression is

σθ =
θ ′(η)

θ(η)

(ψ−η)σ

1− q′(η)
q(η) (ψ−η)

.

The observed increase in leverage makes ψ−η larger, which makes σθ more negative, as θ ′(·)< 0.
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Figure 3: Sharpe ratios varying the policy “strike” for fed put and call.

level. Thus, a value above 1 means that the variable of interest has a higher value with the fed put

than with constant interest rates. While a fed put is generally stabilizing, some results depend on

the location of ηP.

Figure 4(a) plots the interest rate rules we consider. The solid lines are the fed put and the

dashed lines are the corresponding average rates. The vertical dotted lines mark the strike ηP.

Figure 4(b) plots the ratio of leverage in each case. Leverage is generally higher during for η < ηP,

but leverage can be lower for η > ηP (the effect is small for high η). When ηP is very low (the

blue at 1.75%), leverage before the put begins is starkly lower than would occur under constant

rates. In other words, there is no “moral hazard”: banks do not take on high leverage in anticipation

of being “bailed out” later by a rate cut. This pattern remains in the other cases, although to a much

lesser extent.

Figure 5(a) plots the non-monotonic increases in Sharpe ratios. Figure 5(b) plots the changes

in the stationary distribution: as discussed, the fed put improves stability. Figure 5(c) plots the

changes in price volatility and Figure 5(d) plots the changes in the evolution of η . With a fed

put, price volatility is lower almost everywhere because the economy is more stable. As a result,

the volatility of η falls even before the put kicks in (which contributes to economic stability) and

rises only when leverage is higher. However, at this point the drift of the economy also increases,

substantially so, which is why the economy is more stable with the fed put.
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Figure 4: Effects of fed put on leverage compared to constant interest rates.

Marginal impacts of extending low rates We now examine the marginal impacts of changing

fed policy depending on the state of the economy η . We consider interest rate rules that hold rates

at zero for η < ηP but set rates to 4% for high levels of η . We then compare these outcomes to

when we extend the range over which rates are held at zero by the equivalent of 5% of time the

economy is in that range (according to the stationary distribution). Figure 6(a) plots the interest

rate rules we consider. The shaded portion corresponds to the range over which the central bank

extends zero rates. (Thus, the blue exercise extends low rates from below η = 1% to 1.75%.)

Figure 6(b) plots the ratio of leverage in each case. Leverage spikes during the extension period,

with a smaller spike when extension occurs at higher ηP. Hence, the marginal impact on leverage

is greatest when ηP is low.

Figure 7 plots the changes in Sharpe ratios. the stationary distribution, and evolutions. For the

high-ηP policy, the marginal impact of extending dramatically decreases the Sharpe ratio over the

policy extension range, with almost no increase globally. In contrast, the marginal impact of the

low-ηP policy is to increase the Sharpe ratio for past ηP with a small decrease in the Sharpe over

the policy extension range. Similarly the marginal impact of the low-η policy is to strictly stabilize

the economy, but the marginal impact of the high-η policy can increase the likelihood of crises.15

15In fact, the support of the distribution changes substantially between those policies, so one may want to normalize
the support (by dividing by η∗) to compare the stationary distribution. In this case, the likelihood of being in high
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Figure 5: Effect of fed put on returns and stability.

Figures 7(c) and 7(d) plot the changes in price volatility and the evolution of η . Price volatility

falls for η > ηP but rises once the economy enters the policy extension range below ηP. Thus,

mechanically, price volatility is lower for a much larger range when the policy occurs at a lower η .

Similarly, the marginal impacts on equity drift and volatility are much larger for the low-η policy,

which is why the effect on stability is much greater for that policy.

Indeed the marginal impact on stability of extending rates up to ηP = 3.75% is bad for stability.

Table 6 presents the change in stability, measured as the probability of not being in crisis 1−F(ηP),

from extending low rates up to ηP. The marginal

η regions actually decreases when the high-η policy is extended, which further supports the interpretation that the
marginal impact of the high-η policy is destabilizing.

26



(a) Interest rate rules (b) Change in leverage

Figure 6: Extending low interest rates and marginal impacts on changes in leverage.

Table 6: Marginal impacts of extending low interest rates on stability.

ηP 1.75% 2.75% 3.75%
∆Stability 6.13% 8.46% -2.20%

In Appendix B we do the same analysis for a measure of the marginal impact of a fed put.

We consider a fed put that linearly decreases to zero beginning at some ηP, and consider the

consequences of extending the aggressiveness of the fed put by increasing ηP. The results in that

case are quite similar to the results in this section; however, extending the fed put changes rates

for all η below the strikes, so the marginal impact will generally have more pronounced global

implications.

4 Monetary Policy and Welfare

Having established the state-dependent dynamic consequences of monetary policy for financial

stability (positive results), we now consider the welfare implications of these policies. Welfare in

our model is easy to characterize. First, because capital grows geometrically, household welfare

27



(a) Change in Sharpe ratio (b) Change in PDF of η

(c) Change in price volatility (d) Change in η evolution

Figure 7: Marginal impacts of extending low interest rates on returns and stability.

scales multiplicatively with capital, so we can write household welfare as

Vt =V (η)Yt ,

where V (η) implicitly includes how the evolution of η affects capital growth. Second, because

households are risk neutral and their investments earn expected return r and r−φL for deposits, ex-

pected discounted utility is equal to wealth. Household wealth includes the capital they own and the

debt and equity invested in banks. The total wealth is QtYt +(θt −1)Nt = (1+(θt−1)ηt)QtYt .16

16Their capital is worth (1−ψt)QtYt ; their debt is worth ψtQtYt−Nt ; bank shares are worth θtNt , since the expected
value of dividends from banks is θNt = θQηtYt .
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Therefore we have

V (η) = (1+(θ −1)η)Q.

In other words, the expected present discounted value of consumption and liquidity services is

given exactly by this value, incorporating the bank value and capital price. Given the dynamics of

the model, V (η) is an increasing function, meaning that expected discounted household utility is

higher when the financial sector is well-capitalized.

We first solve for welfare in the baseline model. Doing so gives us a model-specific measure

of the costs and benefits of monetary policy for financial stability. In the baseline model, the only

possible costs of monetary policy are decreasing the present value of banks and the capital price

(which are together sufficient summaries of the expected discounted value of consumption and

liquidity).

It appears that when considering constant interest rate rules, the Friedman Rule is optimal.

Indeed, this is not surprising given the role of liquidity premia in the model. Low interest rates

increase asset prices, which increase welfare. And while stability can be improved through state

dependent interest rate policies (which could increase capital prices at any given point), capital

prices are nonetheless higher with zero rates.

Because the Friedman Rule appears to be optimal, we then incorporate reduced-form inflation

costs as a way of capturing mechanisms outside our model and to impose costs of lowering interest

rates excessively. In this case, we suppose that any deviation of inflation from target (equivalently,

of interest rates from the target ī) leads to flow (quadratic) inflation losses. Thus, in this extension

the costs of dynamic monetary policies (e.g., LAW and fed put) are strictly higher than in the

baseline model.

4.1 LAW/Fed Put in the Baseline Model

The baseline model without inflation costs provides a lower-bound on the costs of dynamic mone-

tary policy. However, even the baseline model provides results arguably consistent with the cost-

benefit analysis in Svensson (2017).

First, the effect of the fed put on welfare depends (unsurprisingly) on the initial condition:
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relative to constant rates the fed put can either increase or lower welfare depending on the current

state of the financial sector. In particular, for low levels of η , the fed put increases welfare, which is

not surprising given the nature of the policy (and the behavior of the price Q)—when η is low, the

“bailout component” of the policy is most salient (in present value terms), thus increasing welfare.

Figure 8 plots the change in welfare, comparing the fed put to constant rates at the same average

level, at every η . Thus, if the financial sector is currently well capitalized, then central bankers

would decide against having monetary policy systematically respond to the financial sector. When

the economy is presently at a high η , the costs of LAW/fed-put policies (primarily in lowering

asset prices for high η), outweigh the benefits from stability.17
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Figure 8: Effect of fed put on welfare.

Second, however, the results can be quite different when using an agnostic perspective on the

initial condition. Rather than taking a particular η as given, we consider calculating welfare by

letting the stationary distribution determine the ex-ante distribution of initial conditions and then

compute E[V (η)] using the stationary distribution f (η) occurring in equilibrium. One can think

17These asset pricing implications are similar to those in Drechsler et al. (2018); however, their model with hetero-
geneous agents does not include the same tight relationship between asset prices and welfare.
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of this exercise as adopting a prior on the capitalization of the financial sector and computing the

expected welfare, given this prior. Table 7 shows the percentage gain in welfare, according to

this ex-ante measure, comparing the fed put to constant rates. In each case the fed put increases

welfare, and the effects are non-monotonic in the strike ηP. This occurs because the higher strike

policy has a greater effect on stability, thus increasing the fraction of time in states with higher

welfare, but it is precisely in those high states that the fed put hurts welfare relative to constant

rates.

Table 7: Effect of fed put on welfare using ex-ante measure.

ηP 1.75% 2.75% 3.75%
Gain in E[V (η)] 0.488% 0.479% 0.612%

Finally, Table 8 calculates the marginal impact on ex-ante welfare of extending low rates.

As one would expect given the positive results, the marginal impact is state-dependent and non-

monotonic.

Table 8: Marginal impacts of extending low interest rates on welfare using ex-ante measure

ηP 1.75% 2.75% 3.75%
Gain in E[V (η)] 0.440% 0.339% 0.361%

Thus, whether the benefits of monetary policy for stability can outweigh the costs depends

on the perspective one takes. However, one credible conclusion is that even without a cost for

deviating from ī, the benefits of LAW/fed-put policies are unlikely to outweigh the costs.

4.2 Welfare Losses From Inflation

As already discussed, in our model the Friedman Rule appears to be optimal in this model since

asset prices respond significantly to nominal rates. Because the model does not include any New

Keynesian feedback between output gaps and inflation (or vice versa), the central bank has no
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reason to avoid inflation far below target. To mitigate this result, we attempt to capture some

of the costs of having inflation deviate from target in a very reduced-form way: we assume that

households suffer quadratic utility loss when inflation deviates from the target. Household utility

is now

Vτ = Eτ

[∫
∞

τ

e−r(t−τ)(ch,t +φLδh,t− επ(πt− π̄)2Yt)dt
]
, (14)

where επ is the measure of inflation costs and we scale by aggregate capital to maintain homo-

geneity in welfare. We let L(η) denote the discounted expected inflation loss, and so household

welfare is now given by V (η)−L(η). The inflation loss L(η) solves the following HJB equation:

rL(η) = επ(π(η)− π̄)2 +L′(η)ηµ
η +

1
2

L′′(η)(ησ
η)2. (15)

Adding the inflation loss does not have any consequences for prices or quantities in equilibrium,

but only affects household welfare. (Figure 16 in the appendix plots welfare with high and low

constant rates and with a fed put, incorporating two sets of inflation costs.)

Comparing fed put and constant rates We now more carefully consider the welfare implica-

tions of a fed put relative to constant interest rates. However, importantly, we now suppose that

the constant interest rate is the target interest rate ī such that no inflation losses occur. Thus, the

fed put will incur inflation costs at high η when leaning against the wind (interest rates are above

target), and also at low η when interest rates are below target.

In general, the higher are inflation costs, the less likely is welfare to increase with a fed put

relative to constant rates at the average level. With low inflation costs, welfare is higher with a fed

put, but with high inflation costs welfare is higher with constant rates. Figure 9 shows how inflation

costs affect the welfare implications of a fed put. The figure shows the ratio of welfare gains under

the fed put compared to constant interest rates at the average level, with each panel considering

different levels of inflation costs. For low inflation costs, a fed put is welfare improving for low η

but not for high η (this is driven entirely by the change in the asset price Q, which we saw earlier).

However, as inflation costs increase, the potential welfare gains from the fed put decrease because

the fed put incurs higher inflation costs. With higher inflation costs, the likelihood that the fed
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put is welfare improving decreases, and for high enough inflation costs the fed put is not welfare

improving for any η . A fed put incurs at times large deviations interest rates, while constant rates

lead to smaller deviations throughout. With quadratic costs, the losses from the fed put can be

larger.
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(b) επ = 20
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(c) επ = 40

Figure 9: Relative welfare with inflation costs comparing fed put to constant rates.

Figure 10 shows the marginal impact on welfare when rates are held at zero, varying the level

of inflation costs. The figure plots the ratio of welfare with extended low rates compared to welfare

under the baseline levels of low rates. With low inflation costs the marginal impact is positive for

welfare in every case (the asset price increases). However, for high inflation costs, the marginal

impact can be generally negative, although there are state-dependent effects. The low-η policy

can have a positive marginal impact for welfare when η is high, but negative impact when η is

low, whereas the high-η policy has negative impact throughout the state space. With even higher

inflation costs, the marginal impact of all policies is negative throughout the state space.

(a) επ = 0 (b) επ = 20 (c) επ = 40

Figure 10: Marginal impact of low rates on welfare with inflation costs.

33



Table 9 presents the gains in ex-ante welfare from a fed put for various levels of inflation costs.

As discussed, we set the target central bank rate to the average interest rate over the fed put so that

there are no inflation costs with constant interest rates (hence, constant interest rates corresponds

to regular policy ī). Interestingly, even when welfare at each particular η can be lower with the

fed put, the ex-ante welfare with the fed put can still be higher because of the change in stability.

In other words, because the fed put economy is more stable, integrating over welfare using f (η)

means summing over high-η states with higher welfare. Thus, the ex-ante measure can still lead

to welfare gains from a fed put even when the initial conditions all suggest welfare losses.

Table 9: Effect of fed put on welfare using ex-ante measure with inflation costs.

ηP 1.75% 2.75% 3.75%
επ = 20 0.290% 0.235% 0.326%
επ = 40 0.091% -0.011% 0.038%
επ = 60 -0.110% -0.259% -0.249%

Table 10 presents the marginal impacts on welfare of extending low interest rates using ex-ante

measure for various levels of inflation costs. Again, the marginal impacts are non-monotonic in

the policy level ηP, and can be negative if inflation costs are sufficiently high. For this exercise we

maintain ī = 4% throughout. Importantly, the marginal impact on inflation losses from extending

low interest rates is greatest when the policy occurs at low levels (see Figure 18 in the Appendix).

Table 10: Marginal impacts on welfare of extending low interest rates using ex-ante measure.

ηP 1.75% 2.75% 3.75%
επ = 20 0.279% 0.157% 0.090%
επ = 40 0.116% -0.027% -0.183%
επ = 60 -0.047% -0.212% -0.461%

Optimal fed puts In the previous exercise we compared the fed put to a constant rate, where

the target rate was the constant rate. Thus, the aggressiveness of the fed put, which changes the
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average rate, would change both how much rates are cut in bad times and also how much higher

rates are kept during good times; this leads to inflation losses in both good and bad times. However,

one may also want to consider more flexibility by holding fixed the target rate ī and considering

how a fed put changes welfare when ī is held fixed.

Given the Friedman Rule result we’ve already seen, in the absence of inflation costs, lower-

ing rates—anywhere or everywhere—increases welfare by increasing asset prices. However, as

inflation costs rise, an aggressive fed put leads to larger inflation losses. We investigate how the

optimality of a fed put changes with inflation costs by considering fed puts with two degrees of

freedom: above ηP interest rates are held at ī, but below ηP interest rates decline linearly to i0.

Thus, a policy consists of a pair (ηP, i0). We calculate welfare at η∗ given these pairs, and we

calculate how welfare varies with the fed put even for high inflation costs. Specifically, we search

over ηP ∈ (0,5%) and i0 ∈ [0,4%]. We find that even for very large inflation costs, i.e., επ = 100,

the optimal strike is ηP = 5%, beginning to cut rates as soon as possible. However, as inflation

costs rise, the rate at which the central bank cuts rates declines, so that i0 increases as επ increases.

For low inflation costs, the optimal put cuts rates to zero, but if επ = 100 then the optimal put cuts

rates to 2%, thus decreasing the inflation losses when the central bank cuts.

Finally, this exercise provides additional evidence against LAW. Raising rates in good times

would improve stability, but the welfare costs would not justify such a policy (supposing a high

initial condition). Instead, the optimal policy is to maintain the desired target level ī and to system-

atically deviate below that target when bank capitalization falls. This policy cuts banks’ funding

costs, allowing them to rebuild equity more quickly. Given the state-dependent consequences of

monetary policy, the costs and benefits of cutting rates in bad times can be quite different from the

costs and benefits of raising rates in good times.

4.3 Comparison with Macroprudential Policy

In the debate about whether monetary policy should be used to address financial stability, one of

the key considerations is the extent to which macroprudential policy measures (“MaP”) can be

used instead. Informed by the analysis in Phelan (2016), we briefly discuss how the results with
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monetary policy would compare to the effects with MaP. Specifically, Phelan (2016) considers the

effects of leverage limits on financial stability.

First, the mechanics of how MaP and monetary policy affect stability are quite different. When

leverage limits bind, intermediation falls and so flow outcomes suffer. At the same time, lever-

age limits increase banks’ investment returns (when they bind), and so banks rebuild equity faster,

thus improving stability. Thus, MaP provides a tradeoff between current outcomes (worsened)

and dynamic stability (improved). Furthermore, since Phelan (2016) finds that leverage limits are

actually likely to bind following losses (i.e., balance sheet leverage is countercyclical), MaP pro-

vides a time-inconsistency problem because regulators would be tempted to relax leverage limits

following bad shocks.

In contrast, the monetary policy can increase the rate of equity growth for banks by decreasing

funding costs and liquidity premia. Crucially, lower rates encourage higher leverage (when rates

are lower) and so accommodative monetary policy improves flow allocations. Thus, using mone-

tary policy to target financial stability is actually time-consistent, given the transmission channel

and mechanism in our model.

Second, the quantitative implications of MP and MaP appear to be quite different. Leverage

limits have quantitatively larger effects on financial stability, more effectively shifting mass toward

high η states. Indeed, very stringent leverage limits (assuming they are effective) can lead to

extremely stable financial sectors almost without bound, whereas there appears to be a bound to

how much monetary policy can improve stability.

Nonetheless, monetary policy appears to have quantitatively much larger effects on welfare.

Decreasing interest rates improves stability and flow outcomes at the same time, while MaP im-

proves stability at the cost of flow outcomes. Thus, using MaP to improve welfare is more difficult,

and so it appears that the potential welfare gains from MaP are negligible compared to the poten-

tial gains from monetary policy. As an example, consider when interest rates are 0% and imposing

leverage limits of 12. The welfare gain evaluated at η∗ is roughly 0.04%, and evaluated under

the ex-ante measure it is 0.35%. In contrast, compared to holding rates at 4% everywhere, cutting

rates to zero below 2.75% improves welfare by 0.87% evaluated at η∗ and by 1.9% evaluated un-
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der the ex-ante measure. Even with large inflation costs of επ = 40, this fed put improves welfare

by 0.17% evaluated at η∗ and by 0.69% evaluated under the ex-ante measure.18

Finally, MaP does not incur inflation losses arising from deviating from the target rate. Indeed,

since MaP can substantially improve stability, it appears that using MaP in conjunction with mon-

etary policy could decrease the inflation losses from deviations in monetary policy. Since flow

inflation costs occur predominantly at low η , and since MaP decreases the likelihood of the econ-

omy entering low η regions, the expected discounted inflation losses decrease with MaP is also

used. However, the quantitative significance of these changes appear to be negligibly small.

5 Conclusion

By affecting risk and liquidity premia, monetary policy can affect the stability of the financial

sector and potentially improve the stability of the macroeconomy. We provide a macroeconomic

model with a financial sector in which monetary policy endogenously determines the stability

of the economy, and therefore determines the probability of crises. Policies combining leaning

against the wind with accommodating rates during financial distress can substantially improve sta-

bility. Importantly, the effectiveness of monetary policy depends on the extent to which decreasing

rates affects banks’ investment returns, and we find that during times of financial crisis the effect

on returns is low. Hence, the consequences of monetary policy for financial stability are state-

dependent, and so the stability benefits of monetary policy depend critically on the timing, with

the greatest potential benefits coming when rate cuts occur during financial crises. However, it is

less clear that the costs of using monetary policy to target financial stability outweigh the potential

benefits.
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Appendices

A Proofs and Additional Equations

A.1 Equilibrium System of Differential Equations

By (20), we have

µθ ,t = φL−
κ

m
(1+ψt−ηt)it .

Since ηt < 1, we have that µθ ,t is always less than or equal to the equivalent drift in the economy

with zero liquidity shocks. Since θt decreases with η , a smaller drift fo θt implies that θt , in expec-

tation, moves toward larger values and bad times at a slower rate, reflecting the partial equilibrium

intuition that higher interest rates should disincentivize excessive risk-taking. By Ito’s lemma, we

also have that

µθ ,t =
θ ′

θ
ηt µη ,t +

1
2

θ ′′

θ
η

2
t σ

2
η ,t .
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Setting these two equations equal to each other yields a second-order ODE in ηt for θ . Similarly,

using equation (9) and Ito’s lemma, we have the following equations

µQ,t = r− P2t

Qt
−g−σσQ,t ,

µQ,t =
Q′

Q
ηt µη ,t +

1
2

Q′′

Q
η

2
t σ

2
η ,t .

Hence, we obtain a coupled system of second-order ODEs:

θ
′′ =

2θ

(ηtση ,t)2

(
φL−

κ

m
(1+ψt−ηt)it−

θ ′

θ
ηt µη ,t

)
,

Q′′ =
2Q

(ηtση ,t)2

(
r− P2t

Qt
−g−σσQ,t−

Q′

Q
ηt µη ,t

)
.

We solve for σQ,t ,σθ ,t in closed form using Ito’s lemma, and these terms remain the same as in

Phelan (2016).

A.2 Proofs

Proof Lemma 1. Taking the first derivative w.r.t. xL,t and multiplying through by κ , we have that

an optimal choice of xL,t satisfies

0 =−κ

m
it−χκ

ρ

1−ρ
max

{
κ

1+κ
−1,0

}
≥−κ

m
it +χ

ρ

1−ρ

κ

1+κ

Using our hypothesis, we have

0≥−κ

m
it +

κ

m
it = 0,

so the FOC is always satisfied. Since it in equilibrium depends on ηt , a bounded variable, there

always exist χ,ρ sufficiently large to ensure that (6) always holds.
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Finally, to ensure that the max function returns zero, we need

0 =
κ

1+κ
(xk,t−1)− 1

1+κ
xL,t ,

which implies the desired demand function.

Proof of Proposition 1. Homogeneity and price-taking imply that banks’ value function takes the

form Ut = θtnb,t , where θt is the marginal value of banks’ equity. The HJB can be written as

rθtnb,t = max
xk1,t ,xk2,t ,xL,t ,dζt

dζt +E[d(θtnb,t)], (16)

subject to the constraints (3) and (4).

By Ito’s product rule,

d(θtnb,t)

θtnb,t
= (µθ ,t +µnb,t +σθ ,tσnb,t)dt +(σθ ,t +σnb,t)dWt

− ρ

1−ρ
max

{
κ

1+κ
(xk,t + xL,t−1)− xL,t ,0

}
dJt .

Suppressing the controls and dropping the differential dt, equation (16) simplifies to

rθtnb,t = max dζt +θtnb,t
(
µθ ,t +µnb,t +σθ ,tσnb,t

)
−χ

ρ

1−ρ
max

{
κ

1+κ
(xk,t + xL,t−1)− xL,t ,0

}

Under the assumption of full self-insurance, we may ignore the Poisson term. Because banks

provide liquidity services, they will always be levered, so we may directly substitute xL,t = κ(xk,t−

1) into the Bellman equation. Using the dynamic budget constraint (3),

rθtnb,t = max dζt +θtnb,t(µθ ,t +σθ ,tσnb,t)

+θtnb,t

(
rt−

κ(xk,t−1)
m

it +
St

m
it + xk1,t(E[drb1

t ]− rt dt)+ xk2,t(E[drb2
t ]− rt dt)− dζt

nb,t

)
= max(1−θt)dζt +θtnb,t(µθ ,t +σθ ,tσnb,t)

+θtnb,t

(
rt−

κ(xk,t−1)
m

it +
St

m
it + xk1,t(E[drb1

t ]− rt dt)+ xk2,t(E[drb2
t ]− rt dt)

)
.
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In real terms, bank returns on capital holdings satisfy:

drb j
t =

(
Pjt

Qt
+g−φL +µQ,t +σσQ,t

)
dt +(σ +σQ,t)dWt , (17)

where j = 1,2 and Pjt = p jt/pt is the real price of intermediate good j. Using these returns, we

may write σnb,t = xk,t(σ +σQ,t). Our remaining controls are xk1,t ,xk2,t ,dζt . The linearity in dζt

implies that banks use consumption to create a reflecting barrier whenever θt ≤ 1. Taking FOCs

w.r.t. portfolio shares, we obtain, with a slight abuse of notation, the asset-pricing condition

E[drb j
t ]− rt ≤−σθ ,t(σ +σQ,t)+

κ

m
it , (18)

where j = 1,2. Intuitively, this expression says that in equilibrium the excess (real) returns on

capital holdings equal the sum of a risk premium and a fixed multiple of the liquidity premium.

A.3 Policy Implementation

Proposition 3. To implement the nominal interest rate rule it , the nominal supply of reserves Mt

and government bonds Gt must grow according to

εt
dMt

Mt
+(1− εt)

dGt

Gt
= (it− rt)dt +

dSt

St
+

dQt

Qt
+

(
dSt

St

)(
dQt

Qt

)
+

dYt

Yt
+

(
dSt

St
+

dQt

Qt

)(
dYt

Yt

)
, (19)

where εt = (m−1)stMt/(StQtYt) is the net contribution of reserves to aggregate liquidity, and the

real value of liquidity as a share of wealth satisfies

St = ηtκ(xk,t−1). (20)

Proof. We can express the real value of all liquid assets held by the public as

StQtYt = stGt +(m−1)stMt .
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By Ito’s product rule,

d(StQtYt)

StQtYt
=

dSt

St
+

dQt

Qt
+

(
dSt

St

)(
dQt

Qt

)
+

dYt

Yt
+

(
dSt

St
+

dQt

Qt

)(
dYt

Yt

)
.

We can write the evolution of liquid assets as

d(Gt +(m−1)Mt)

Gt +(m−1)Mt
=

1
StQtYt

(
dGt

Gt
Gt +(m−1)Mt

dMt

Mt

)
=

Gt

StQtYt

dGt

Gt
+(m−1)

Mt

StQtYt

dMt

Mt

=
stGt

StQtYt

dGt

Gt
+(m−1)

stMt

StQtYt

dMt

Mt

Recall that StQtYt = stGt +(m−1)stMt . Thus, 1−εt = stGt . By Ito’s product rule and the fact that

inflation is locally deterministic, we obtain (19) after re-arranging.

To obtain (20), recall that ηt = nb,t/(QtYt) and StQtYt is the total real value of liquidity. There-

fore,

ηtκ(xk,t−1) =
nb,txL,t

QtYt
=

StQtYt

QtYt
= St ,

as desired.

A.4 Evolution of η

It remains to derive the evolution of ηt . The net worth of banks is scale invariant, and banks only

use capital in the production of good 1. Define dΞt ≡ dζt/nb,t . Assuming full self-insurance, the

law of motion becomes

dnb,t

nb,t
=

(
rt−

κ(xk,t−1)
m

it +
St

m
it

)
dt + xk,t(drb1

t − rt dt)−dΞt .

44



Substituting in rt = r−φL, (10), and (20) yields

dnb,t

nb,t
=
(

r−φL− (1−ηt)(xk,t−1)
κ

m
it + xk,t

(
−σθ ,t(σ +σQ,t)+

κ

m
it
))

dt−dΞt + xk,t(σ +σQ,t)dWt

Define ψt to be the share of capital held by banks. Then xk,t = ψt/ηt , and we have

dnb,t

nb,t
=

(
r−φL +(1+ψt−ηt)

κ

m
it−

ψt

ηt
σθ ,t(σ +σQ,t)

)
dt−dΞt +

ψt

ηt
(σ +σQ,t)dWt .

By Ito’s product rule,

d(QtYt)

QtYt
= (µQ,t +µY,t +σσQ,t)dt +(σ +σQ,t)dWt .

We may write µY,t and µQ,t as:

µY,t = ψt(g−φL)+(λt−ψt)(g− `)+(1−λt)g = g−ψtφL− (λt−ψt)`

µQ,t = r−σθ ,t(σ +σQ,t)+
κ

m
it−

P1t

Qt
−g−σσQ,t

= r−φL−σθ ,t(σ +σQ,t)+
κ

m
it−

P1t

Qt
− (g−φL)−σσQ,t

Plugging this in and applying Ito’s quotient rule implies

d(1/(QtYt))

1/(QtYt)
=

(
(σ +σQ,t)

2− (r−φL)+σθ ,t(σ +σQ,t)−
κ

m
it +

P1t

Qt
+g−φL +σσQ,t

)
dt

−
(
g−ψtφL− (λt−ψt)`+σσQ,t

)
dt− (σ +σQ,t)dWt .
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By Ito’s product rule,

dηt

ηt
=

(
(1+ψt−ηt)

κ

m
it−

ψt

ηt
σθ ,t(σ +σQ,t)

)
dt−dΞt +

ψt

ηt
(σ +σQ,t)dWt

+

(
(σ +σQ,t)

2 +σθ ,t(σ +σQ,t)−
κ

m
it +

P1t

Qt
+g−φL +σσQ,t

)
dt

−
(
g−ψtφL− (λt−ψt)`+σσQ,t

)
dt− (σ +σQ,t),dWt−

ψt

ηt
(σ +σQ,t)

2 dt

=

(
P1t

Qt
+(λt−ψt)`− (1−ψt)φL +(ψt−ηt)

κ

m
it−

(
ψt

ηt
−1
)
(σ +σQ,t)(σθ ,t +σ +σQ,t)

)
dt

−dΞt +

(
ψt

ηt
−1
)
(σ +σQ,t)dWt

Compared to Phelan (2016), the only new term is the liquidity premium, which affects the drift of

ηt . Thus, many of the properties in Phelan (2016) should hold true here as well.

A.5 Numerical Algorithm: No Constraints

Assuming that the government implements (19), the only significant change in the numerical al-

gorithm from Phelan (2016) is the additional term representing the liquidity premium in the first

equation of (10). Thus, we can use the exact same algorithm with only mild adjustments to asset

pricing conditions and equilibrium expressions. For clarity, we derive these expressions here.

The Bellman equation is given by

rθtnb,t = max
xk,t ,dζt

(1−θt)dζt +θtnb,t(µθ ,t +σθ ,tσnb,t)

+θtnb,t

(
rt +

(
κ +St

m

)
it + xk,t(E[drb1

t ]− rt−
κ

m
it)
)
.

Plugging in our first-order conditions and using the bang-bang control in dζt imply

rθtnb,t = θtnb,t µθ ,t +θtnb,t

(
r−φL +

(
κ +St

m

)
it

)
⇒ µθ ,t = φL−

(
κ +St

m

)
it .

By (20), we have

µθ ,t = φL−
κ

m
(1+ψt−ηt)it .
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Since ηt < 1, we have that µθ ,t is always less than or equal to the equivalent drift in the economy

with zero liquidity shocks. Since θt decreases with η , a smaller drift fo θt implies that θt , in expec-

tation, moves toward larger values and bad times at a slower rate, reflecting the partial equilibrium

intuition that higher interest rates should disincentivize excessive risk-taking. By Ito’s lemma, we

also have that

µθ ,t =
θ ′

θ
ηt µη ,t +

1
2

θ ′′

θ
η

2
t σ

2
η ,t .

Setting these two equations equal to each other yields a second-order ODE in ηt for θ .

We can similarly derive a second-order ODE for q. Using the second equation in (10), we may

write

µQ,t = r− P2t

Qt
−g−σσQ,t .

By Ito’s lemma, we also have

µQ,t =
Q′

Q
ηt µη ,t +

1
2

Q′′

Q
η

2
t σ

2
η ,t .

In this way, we obtain a coupled system of second-order ODEs:

θ
′′ =

2θ

(ηtση ,t)2

(
φL−

κ

m
(1+ψt−ηt)it−

θ ′

θ
ηt µη ,t

)
, (21)

Q′′ =
2Q

(ηtση ,t)2

(
r− P2t

Qt
−g−σσQ,t−

Q′

Q
ηt µη ,t

)
. (22)

By Ito’s lemma, we can solve for σQ,t ,σθ ,t in closed form, and they remain the same as in Phelan

(2016).

Specialization Households do not produce good 1, so ψ = λ . Taking the difference between the

two equations in (10), we obtain a market-clearing condition for capital allocations:

P1t−P2t =−σθ ,t(σ +σQ,t)Qt +
κ

m
itQt (23)
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Non-Specialization Households produce good 1, so we must have

P1t

Qt
+g− `+µQ,t +σσQ,t− r =

P2t

Qt
+g+µQ,t +σσQ,t− r⇒ P1t−P2t = lQt .

However, since ψ < λ , we need an additional condition to pin down ψ . In this case, we use the

fact that households’ asset pricing condition for good 1 is satisfied, hence

P1t

Qt
+g+µQ,t +σσQ,t−

P1t

Qt
− (g− `)−µQ,t−σσQ,t = r−σθ ,t(σ +σQ,t)+

κ

m
it− r

⇒ `=−σθ ,t(σ +σQ,t)+
κ

m
it (24)

In other words, the household efficiency loss from investing in the “intermediation sector” equals

the sum of the banks’ risk premium and the liquidity premium.

Plugging in, we obtain

`=−θ ′

θ

Q(ψ−η)σ

Q−Q′(ψ−η)

(
σQ

Q−Q′(ψ−η)

)
+

κ

m
it .

Let x = ψ−η and y = `− κ

m
it . Then

y
(
Q−Q′x

)2
=−θ ′

θ
σ

2Q2x

Q2−2QQ′x+(Q′x)2 =−θ ′

θ

σ2

y
Q2x

x2(Q′)2 + x
(

θ ′

θ

σ2

y
Q2−2QQ′

)
+Q2 = 0.

By the quadratic formula, we may solve for x and obtain using that ψ = x+η .
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A.6 Leverage Constraints

Suppose that banks are subject to a leverage constraint L. When constraints do not bind, the

evolution of η is as above. If they do bind, then the first equation in (10) no longer holds. We leave

asset-pricing conditions undetermined and leave the excess returns terms as they are. Instead, we

simply note that

µQ,t = E[drb1
t ]− P1t

Qt
−g−σσQ,t ,

so

dQtYt

QtYt
=

(
g−ψtφL− (λt−ψt)`+E[drb1

t ]− P1t

Qt
−g
)

dt +(σ +σQ,t)dWt

d(1/(QtYt))

1/(QtYt)
=

(
(σ +σQ,t)

2 +ψtφL +(λt−ψt)`−E[drt ]
b1 +

P1t

Qt

)
dt− (σ +σQ,t)dWt .

Therefore, by Ito’s product rule,

dηt

ηt
=

(
r−φL− (1−ηt)

(
ψt

ηt
−1
)

κ

m
it +

ψt

ηt
(E[drb1

t ]− (r−φL))

)
dt−dΞt +

ψt

ηt
(σ +σQ,t)dWt

+

(
(σ +σQ,t)

2 +ψtφL +(λt−ψt)`−E[drt ]
b1 +

P1t

Qt

)
dt− (σ +σQ,t)dWt−

ψt

ηt
(σ +σQ,t)

2 dt

=

(
P1t

Qt
− (1−ψt)φL +(λt−ψt)`+

(
ψt

ηt
−1
)(

E[drb1
t ]− (r−φL)− (σ +σQ,t)

2
)
− (1−ηt)

κ

m
it

)
dt

−dΞt +

(
ψt

ηt
−1
)
(σ +σQ,t)

2 dWt .

A.7 Numerical Algorithm: Leverage Constraints

Subject to a leverage constraint, the Bellman equation is given by

rθtnb,t = max
xk,t ,dζt

(1−θt)dζt +θtnb,t(µθ ,t +σθ ,tσnb,t)

+θtnb,t

(
rt +

(
κ +St

m

)
it + xk,t(E[drb1

t ]− rt−
κ

m
it)
)
.
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Using a bang-bang control, we can remove the first term. Substituting in xk,t = (1+L) and St =

κ(xk,t−1)/m, we have

rθtnb,t = θtnb,t(µθ ,t +σθ ,t(1+L)(σ +σQ,t))

+θtnb,t

(
r−φL +

κ

m
it +

ηtκ(1+L−1)
m

it +(1+L)(E[drb1
t ]− (r−φL)−

κ

m
it)
)

Simplifying, we acquire

rθtnb,t = θtnb,t

(
µθ ,t + r−φL +(1+ηtL)

κ

m
it
)

+(1+L)
(
E[drb1

t ]− (r−φL)−
κ

m
it +σθ ,t(σ +σQ,t)

)
Dividing through by θtnb,t and re-arranging, we have

µθ ,t = φL− (1+ηtL)
κ

m
it− (1+L)(E[drb1

t ]− (r−φL)−
κ

m
it +σθ ,t(σ +σQ,t))

We still use that

µQ,t = r− P2t

Qt
−g−σσQ,t

as this still holds in equilibrium. Therefore, our ODEs become

θ
′′ =

2θ

(ηtση ,t)2

(
φL− (1+ηtL)

κ

m
it
)

+
2θ

(ηtση ,t)2

(
−(1+L)

(
E[drb1

t ]− (r−φL)+σθ ,t(σ +σQ,t)−
κ

m
it
)
− θ ′

θ
ηt µη ,t

) (25)

Q′′ =
2Q

(ηtση ,t)2

(
r− P2t

Qt
−g−σσQ,t−

Q′

Q
ηt µη ,t

)
(26)

B Marginal Impacts of Extending Fed Put

Figure 11 plots the marginal impact of extending the fed put. Most importantly, the marginal

impact on the Sharpe ratio can be very negative if the fed put occurs at high η when banks are the

marginal investors in bank-dependent investments.
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C Additional Figures

This section provides additional figures.

Figure 13 plots PDFs and CDFs for constant rates and fed put and fed call with normalized

support (dividing by η∗). Fed put provides most stable economy, followed by low constant rates

and high constant rates, and the fed call is the least stable economy.

Figure 14 plots the effects of leaning against the wind. Rates are zero below ηP = 2.75% and

i = 4,5,6% above. With LAW, welfare decreases, leverage is mostly unchanged, though higher

for low η , asset price volatility drops, and the economy is slightly more stable, adjusting for the

stochastic stead state.

Figure 15 plots the changes in the asset price and bank value. With the fed put, prices are higher

in bad times and lower in good times, but the highest effectiveness to raise bad-time prices occurs

for low strike puts. Banks always like the fed put. In the model, banks are owned by households, so

there is no conflict of interest regarding how households would value the fed put relative to a policy

of constant rates. However, household welfare is not everywhere higher with the fed put (because

the asset price falls), and so if households and banks had competing interests, banks would lobby

for a fed put.

We first illustrate how inflation costs can affect welfare by looking at a simple example. Figure

16 plots welfare with high and low constant rates and with a fed put, incorporating two sets of

inflation costs with επ = 40 and επ = 20 and supposing that the baseline rate is ī = 4%. Hence,

welfare with rates at constant 4% is always the same since this is the case without inflation losses.

To give a sense of the quantitative significance, with επ = 20, as a fraction of the welfare level

without inflation losses, the welfare losses from inflation with constant rates of 0% are roughly

3.5% (i.e., L(η)/V (η) ≈ 3.5%). In contrast, the fed put policy leads to relative inflation losses

varying from 2-3% (highest when calculated starting at very low η).

With low inflation costs, welfare is still highest with it = 0% (consistent with the Friedman

Rule) and hence welfare is maximized for zero interest rates whenever επ ≤ 20. However, for

επ = 40, the fed put delivers highest welfare, and the lowest welfare occurs when rates are constant

at zero. With costs at this level, the inflation loss from setting rates at zero outweigh the benefits
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from higher asset prices. With inflation cost επ ≥ 40, welfare is highest for constant rates at 4%

(i.e., no deviations in policy and therefore no inflation losses).

Figure 17 plots the changes in the asset price and bank value. The marginal impact of increasing

prices varies over the state space similarly to the effect of “forward guidance” in Drechsler et al.

(2018). Additionally, for low η , the marginal impact on the asset price is greatest when the central

bank policy occurs for low ηP. However, the marginal impact on bank value is always greater

when the central bank policy occurs for low ηP. When the central bank cuts rates at a high ηP, the

marginal impact of extending the rate cut has almost no effect on bank value, and even decreases

bank value in the lowest-capitalized states. In essence, the effectiveness of monetary policy to

support the economy (including bank values) wears off in this case, and extending the range of

easing means that monetary policy becomes ineffective more quickly.

Figure 18 plots the marginal impacts on inflation loss (since it plots a ratio, the figure applies

for all επ > 0).
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(a) Interest rate rules (b) Leverage

(c) Sharpe ratio
(d) Distribution (PDF) of η

(e) Q (f) Bank value

(g) Price volatility (h) η evolution

Figure 11: Marginal impact of extending fed put.
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Figure 12: Equilibrium with high and low constant interest rates.
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Figure 13: Stability (normalized) with constant rates or fed put/call policies.
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Figure 14: Equilibrium and leaning against the wind.
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Figure 15: Effect of fed put on asset price and bank value.
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(a) Change in Q (b) Change in bank value

Figure 17: Marginal impacts of extending low interest rates on asset price and bank value.

Figure 18: Marginal impact on inflation costs of extending low rates.
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