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Abstract

We investigate the productivity effects of the single largest use of time–sleep. Us-

ing time use diaries from the United States, we demonstrate that later sunset time

reduces worker sleep and wages. Sunset time one hour later decreases short-run wages

by 0.5% and long-run wages by 4.5%. After investigating this relationship and ruling

out alternative hypotheses, we implement an instrumental variables specification that

provides the first causal estimates of the impact of sleep on wages. A one-hour increase

in average weekly sleep increases wages by 1.5% in the short run and by 4.9% in the

long run. (JEL No. J22,J24,J31)
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1 Introduction

Economists have long been interested in determinants of productivity. The question

of what makes workers more effective is fundamental to economics, important for both

individual decisions and public policy. While there are traditions of research in human

capital (Becker, 1962, 1964) and health (Leibenstein, 1957; Mushkin, 1962), less atten-

tion has been paid to the influence of time use on worker productivity. Many types of

time use, from reading to vacationing, plausibly impact productivity on the job. In this

study we examine one of the most important influences on human performance—the

time a worker spends sleeping.

Evidence from medical research indicates sleep may play an important part in

determining worker productivity. Tired doctors make more mistakes (Ulmer et al.,

2009). Tired students perform worse on tests (Taras and Potts-Datema, 2005). Poor

sleep impairs health (Cappuccio et al., 2010). These results suggest inadequate sleep

lowers productivity, impedes the development of human capital, and imposes large

direct costs on society. Moreover for the average individual, sleep takes up more time

than any other activity. Despite the manifest importance of sleep, economists have

largely treated it as a biological phenomenon outside their purview. We investigate an

important question that has been overlooked almost entirely in economics: what are

the effects of sleep on wages?

Answering this question poses substantial challenges. First, a pioneering study by

Biddle and Hamermesh (1990) shows that higher wages raise the opportunity cost of

sleep time, leading individuals to decrease their sleep. This result demonstrates that

causal relationships between sleep and wages may run in both directions. Additionally,

sleep may be correlated with unobservable worker characteristics that also influence

wages. Finally, because sleep is a large portion of the time budget and potentially

complementary to almost all human activity, it is difficult to isolate exogenous variation

in sleep.

Motivated by medical research on circadian rhythm, we resolve this endogeneity

by using sunset time as a source of exogenous variation. In general the first-stage

relationship is straightforward: earlier sunset causes workers to begin sleeping earlier,

and because work and school start times do not respond as strongly to solar cues

(Hamermesh et al., 2008), this earlier bed time translates into more sleep. In fact,

sunset timing provides two types of variation, short-run and long-run. In the short

run, within a location, earlier sunset in winter induces longer sleep duration. In the
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long run, comparing two locations in the same time zone, the location farther east will

experience earlier average sunset than the location farther west. As a consequence,

residents of the eastern location will sleep longer. These two sources of sunset variation

provide two instruments for sleep.

Before proceeding to instrumental variables estimates, we investigate the reduced-

form effect of sunset time on wages. Consistent with our sleep hypothesis, we find that

later sunset times decrease wages. Intra-annually, a one-hour increase in sunset time

decreases worker wages by 0.5%, while a one-hour difference in long-run average sunset

time decreases worker wages by 4.5%. Using alternative econometric specifications,

we rule out a number of other, non-sleep hypotheses and obtain similar results in

two different data sets. These results suggest that the exclusion restriction required

for instrumental variables estimates—that the effect of sunset time on wages operates

only through sleep—is reasonable. Conditional on this assumption, we exploit sunset-

induced sleep changes to identify both short and long-run wage effects.

To implement our empirical strategy, we geocode observations from the American

Time Use Survey (ATUS). ATUS provides rich labor market information about indi-

viduals, a wealth of control variables, and detailed time use data from daily diaries.

Using the diary date and location, we assign each observation a diary-date sunset time

and an annual-average sunset time. We then use these sunset time instruments to esti-

mate the short and long-run causal effects of sleep on wages, controlling—in the case of

the short-run estimates—for fixed location characteristics, year effects, and individual

characteristics, and—in the case of the long-run estimates—for geographic character-

istics (distance to the coast, latitude) and location-level demographic characteristics.

Our results show that a short-run, one-hour increase in average weekly sleep in-

creases worker wages by 1.5%. A permanent one-hour increase in weekly average sleep

increases average wage by 4.9%. These are, to our knowledge, the first causal estimates

of how sleep affects wages.1 Because our identification relies on location-level variation,

these estimates should not be interpreted as individual effects. Both short and long-

run estimates potentially include productivity spillovers across workers. In addition,

our long-run estimate may include general-equilibrium effects induced by exogenously

higher worker productivity. We also investigate whether this marginal effect exhibits

discernible nonlinearity. Although we are limited in the range of sleep variation identi-

1Biddle and Hamermesh (1990) includes a regression with wages on the left-hand side and sleep on the
right and finds a negative relationship. This is consistent with reverse causality and highlights the difficulty
of isolating quasi-experimental variation in sleep.
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fiable with our instrument, we find no evidence of non-monotonicity. Because sleep is

time-intensive, however, the relationship between sleep and income remains inherently

nonlinear.

We buttress our empirical work with a theoretical model of optimal time use based

on classical assumptions. This illustrates the simultaneous determination of wages

and sleep that biases näıve OLS estimates and clarifies how sunset time changes time

allocation for an optimizing worker. Under an assumption on parameter magnitudes,

the average worker will respond to later sunset time by increasing leisure. The model

predicts, however, that two particular types of worker will respond to later sunset time

by decreasing leisure and increasing work, and we test this prediction in our data.

Our study demonstrates that sleep is not just an economic curiosity but rather a

vital determinant of productivity. A one-hour increase in a location’s weekly mean

sleep raises wages by roughly half as much as a one-year increase in education for

all workers (Psacharopoulos and Patrinos, 2004).2 These results point to the large

impact that non-labor market activities can have on labor market performance. They

suggest governments and schools must account for the productivity impacts of sleep

to design optimal scheduling and time-use policies. By examining the largest use of

human time, our study contributes to the time-use literature following Becker (1965).

It complements the important work on the evolution of leisure time by Aguiar and

Hurst (2007). We also contribute to the growing literature on how environmental forces

influence worker productivity (Zivin and Neidell, 2012) and to the broader productivity

literature on factors like information technology (Bloom et al., 2012) and workplace

practices (Black and Lynch, 2001). Future work should extend these results to compare

them to non-time intensive changes in leisure or lifestyle attributes.

The rest of the paper proceeds as follows: Section 2 presents a time use model with

sleep as a choice variable, illustrating identification challenges, and discusses related

literature. Section 3 presents the estimating equations and discusses our identification

strategy. Section E describes the data used in the study. Section F reports the main

results. We first show the effect of sunset on sleep and wages, then perform robustness

checks and investigate the validity of using sunset as an instrument for sleep. Next we

test model predictions. Finally we show instrumental variable estimates of the effect of

sleep on wages and conduct tests of whether the relationship between sleep and wages

is nonlinear. Section 4 concludes.

2While the effect of increasing wages for all workers in a location might differ from the partial-equilibrium
estimate of (Psacharopoulos and Patrinos, 2004), the latter nonetheless provides an instructive benchmark.
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2 Identifying the effect of sleep on productivity and wages

2.1 Previous research

Existing studies of the relationship between sleep and wages in economics are few

and are largely concerned with addressing the question of whether sleep should be

treated as a choice variable rather than simply a biological necessity. Biddle and

Hamermesh (1990) is the first paper to provide empirical evidence on this issue and

remains one of the only empirical investigations of labor market impacts of sleep.

The authors lay out a model with agents optimizing over sleep, work, and leisure

time in an otherwise standard setting. While their theoretical model allows sleep

to affect productivity, Biddle and Hamermesh do not focus on this relationship in

their empirical work. Instead they emphasize the causal mechanism operating in the

opposite direction, modeling sleep as a function of instrumented wage (see, for instance,

Biddle and Hamermesh (1990) Table 6). Brochu et al. (2012) and Szalontai (2006) also

estimate the impact of changes in wage on sleep using more recent data from Canada

and South Africa. Finally, Bonke (2012) has examined the impact of two chronotypes—

whether the individual is a “morning” or “evening” person—on income. That study

provides evidence on the related question of whether sleep quality impacts labor market

outcomes.

Daylight savings time (DST) has been used in a variety of settings in economics as

a proxy for sleep changes. For example, Smith (2014) finds the spring DST transition

results in more automobile accidents and attributes the change to sleepiness behind the

wheel. However, the short-term nature of any sleep change induced by DST limits its

use in studying slower-moving outcomes like wages. Moreover, examination of ATUS

data shows that the relationship between DST and sleep is complex. Transition into

DST reduces sleep by 40 minutes on the day of the change, but transition out of DST

is not associated with a noticeable change in sleep time (Barnes and Wagner, 2009).

Medical studies concerned with the effect of long term differences in sleep on health

or mortality3 are closest to our study in terms of time horizon. In recent years, a series

of papers starting with Mckenna et al. (2007) have assessed the impact of short-term

sleep loss on laboratory tasks. These studies provide suggestive insight into how sleep

might impact work performance.

[Table 1 about here.]

3For instance Cappuccio et al. (2010) and Krueger and Friedman (2009).

5



Van Dongen et al. (2003) conducted the longest laboratory-controlled study on

the relationship between sleep levels and cognitive performance. The researchers kept

subjects in the lab for two weeks, placing them into groups receiving 4, 6, and 8 hours

of sleep. The subjects were given daily tests of attention, memory, and cognition.

The research found that the groups subjected to 4 and 6 hours of sleep performed

progressively worse on all three tests, relative to the 8-hour group. Intriguingly, the

subjects’ subjective assessments followed a different pattern, declining for a few days

and then leveling off. Observed cumulative effects quickly achieved large magnitudes:

after one week, subjects in the 6-hour group performed as badly as subjects who were

deprived of sleep entirely for one night. This indicates that small sleep reductions over

long periods of time can have very large effects.

We review the evidence from Van Dongen et al. (2003) and similar medium-term

causal studies in Table D4. Each study manipulated sleep duration by one to four

hours per night, over periods of one to three weeks. In almost every case they find

very large effects. The typical elasticity of task performance with respect to sleep

duration is approximately four. Although these studies provide evidence that a positive

relationship between sleep and work productivity is plausible, the question of external

validity remains. Laboratory elasticities sometimes come from error rates or reaction

times, and the relationship between such measures and real-world task performance is

unknown. Moreover medical studies typically limit subjects’ scope for adaptation, often

prohibiting caffeine use and requiring subjects to undergo assessments at particular

times.

2.2 A productive sleep model

The following analytical model, adapted from Biddle and Hamermesh (1990), illus-

trates the trade-offs between consumption, leisure, and sleep when sleep affects wages.

It also demonstrates the reverse causality from wages to sleep that makes identifica-

tion difficult and clarifies how we think about our instrument. Consider a consumer

optimizing over sleep time TS and a composite leisure good Z, which requires inputs

of both time Tz and goods X such that Tz = bZ and X = aZ.4 The good X trades

at the exogenous price P . The consumer has non-labor income I and time endowment

T ∗. Denote work time Tw. Let an individual’s market wage wm depend on sleep as

4Allowing Z to be a flexible function of Tz and X does not change the qualitative predictions of our
model. We impose a functional form assumption here, while allowing a more flexible relationship between
sleep and wages, for clarity of exposition.
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follows

wm = w1 + f (TS) , (1)

with w1 > 0, f ′ (TS) > 0, and f ′′ (TS) < 0.

Note that this theoretical model could easily be adapted to study other non-work

time uses, but the function linking wage to time use would likely be different. We

assume that a function of sleep, αTS , enters the utility function, where α is the relative

utility enjoyed by the individual per hour of sleep.5 The parameter α provides a

convenient link between our analytical model and our instrumental variables estimation

strategy, as discussed below. The worker optimizes over sleep and composite leisure,

subject to time and income constraints, as follows.

max
Z,TS ,λ

U (Z,αTS) + λ (I + (w1 + f (TS)) (T ∗ − TS − bZ)− aPZ)

Combining first-order conditions yields a two by two system of equations that implicitly

describe the worker’s optimal choice.

U1wm − U1f
′ (TS)Tw − αU2 (aP + bwm) = 0

and

I + (w1 + f (TS)) (T ∗ − TS − bZ)− aPZ = 0

Applying the implicit function theorem, we can evaluate several interesting deriva-

tives. First, consider the effect of an exogenous wage increase on sleep time.

∂TS
∂w1

= (aP + bwm) (U1 − αU2b)D
−1 + Tw

∂TS
∂I

In the previous expression, D−1 < 0 equals the negative of the Jacobian. This is a

variant of the usual Slutsky equation. The first term captures the substitution effect,

which differs from the typical form in that it includes −αU2b. When α = 1 the value

(U1 − αU2b) > 0 and the first term is negative. Increased wages raise the opportunity

cost of sleep, decreasing optimal sleep. This means that a näıve regression of wages on

sleep will not recover causal effects.

To motivate our later use of sunset time as an instrument for sleep, consider the

5Our predictions are qualitatively unchanged if we assume that sleep does not enter the utility function
directly, but rather as an input to the production of the composite leisure good Z.
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effects of an exogenous increase in α. Since α controls the relative attractiveness of

sleep, an increase in the parameter will induce agents to want to consume more sleep.

∂TS
∂α

= U2 (aP + bwm)2 (−D)−1 > 0

The effect on leisure can operate in either direction.

∂Tz
∂α

= bU2 (aP + bwm)
(
f ′ (TS − wm)Tw

)
(−D)−1 ≶ 0 (2)

The ambiguous sign comes from the expression (f ′ (TS − wm)Tw), which is the op-

portunity cost of an additional leisure hour. More specifically, this expression is the

gross opportunity cost of an additional leisure hour, −wm, adjusted for the additional

income generated by increased sleep, f ′ (TS)Tw (recall that TS increases in response to

an increase in α). Individuals with low wages (low w1), or a combination of high work

hours and low sleep hours, will tend to decrease leisure time in response to decreased

α. This is because the income effect dominates the substitution effect and income is a

complement of leisure time. For low-wage workers, the substitution effect is small. For

high-work, low-sleep workers, the income effect is large; any change in wage applies to

many hours. We test these theoretical predictions in Section 3.4.

3 Empirical strategy

3.1 Estimating equations

We would like to recover the relationship between sleep and wages as in Equation (1),

where ∂f/∂TS > 0 would provide evidence for productivity-enhancing sleep. Given

the reverse causality between wages and sleep, however, we might erroneously find

∂f/∂TS < 0.6 To avoid this problem and to account for the wide variety of other

6The general form is given in the model above, but we can also illustrate the issue with a simple two
equation system that will prove useful below. Let the sleep-wage relationship be given by

w = TSβ + ε

TS = wθ + ν

where ε and ν are error terms, E[ε · ν] = 0, E[TS · ε] = 0, and E[w · ν] = 0. Then if θ < 0 as is argued by
the previous literature, the bias from OLS estimation can be signed as follows:

plim β̂ = β + θ
E[εw]

E[T 2
S ]︸ ︷︷ ︸

<0
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omitted variables that might co-vary with sleep and wages, we predict sleep using two

instruments based on local sunset time, then use the instrumented values of sleep to

estimate wage impacts.

The first instrument uses daily variation in sunset within a given location. Because

this instrument varies on a daily basis, it will identify short-run variation in sleep

(Frazis and Stewart, 2012). Thus, we can use it to estimate a short-run first stage

TS,ijt = α1sunsetjt + γ1,j + x′itδ1 + η1,ijt (3)

and reduced form

ln(wijt) = α2sunsetjt + γ2,j + x′itδ2 + η2,ijt (4)

where TS,ijt is nighttime sleep for individual i in location j on date t, sunsetjt is the

sunset time on that date in that location, γj is a location fixed effect, xit is a vector

of individual level controls, wijt is a measure of wages or earnings observed at time

t, and ηk,ijt is the error term for the first stage (k = 1) and reduced form (k = 2).

Controls are four race indicators; age and age squared; a full-time indicator; a gender

indicator; indicators for holidays, day of week, and year; and detailed occupation code

indicators. More details on these control variables can be found in the data discussion

in Section E. Following the suggestions of Winship and Radbill (1994) and Solon et al.

(2013), we do not weight observations, but we do control for weekends since they are

over-sampled in our dataset.

If seasonal sunset time is a valid instrument for sleep, then this first stage and

reduced form can be used to construct causal estimates of the effect of sleep on wages

by taking the ratio of α2 to α1. In practice, we will calculate the instrumental variables

estimator using two-stage least squares. We denote this estimate βSR, or the effect of

sleep on wages in the short run.

In addition to instrument validity concerns, there is an important caveat to the

interpretation of this coefficient, which is that the rate of adjustment of the wage

variable influences the magnitude of the reduced form and two-stage least squares

estimates. In Section D.1 we discuss this issue in more depth and provide bounds on

the potential bias.

So plim β̂ < β. Naive OLS will tend to understate the effect of sleep on wages if this is the dominant source
of bias.
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The second instrument is annual average sunset. This instrument exploits spatial

differences in sunset time within and across time zones. Because this is a fixed feature of

a location, it will identify long-run differences in sleep (Frazis and Stewart, 2012). For

estimation, we collapse the ATUS data to the location level and estimate the following

first stage

TS,j = ϕ1sunsetj + x′jζ1 + ε1,j (5)

and reduced form

ln(wj) = ϕ2sunsetj + x′jζ2 + ε2,j (6)

where TS,j is average nighttime sleep in location j, sunsetj is the average sunset time

in that location, xj is a vector of controls, wj is average wage in that location, and εk,j

is an error term for k ∈ {1, 2}. We control for both geographic characteristics (coastal

distance and latitude) and demographics (gender, age, race, and occupation shares,

plus population density).

Following the recommendation in Solon et al. (2013), we weight location-level ob-

servations using counts of the underlying individual ATUS observations to correct for

heteroskedasticity. Appendix Table D13 provides evidence of heteroskedasticity from

a modified Breusch-Pagan test and Appendix Table D14 presents unweighted results.

Again, if average sunset time is a valid instrument, the causal effect of long-run

changes in sleep on wages can be found by taking the ratio of ϕ2 to ϕ1. We denote this

coefficient βLR and estimate it by two-stage least squares. Although the control vari-

ables primarily serve to reduce residual variance, as discussed in Section F, we do find

evidence that average sunset is not unconditionally exogenous with respect to coastal

distance and population density. Therefore the identifying assumption underlying our

long-run IV estimates is one of conditional exogeneity, as discussed in Sections D.0.2

and 3.3.2.

3.2 Local sunset time instruments

3.2.1 Relevance of sunset to sleep

The relevance of sunset time as an instrument for sleep stems from the biological rela-

tionship between sleep patterns and daylight. Human circadian rhythm is synchronized

with the rising and setting of the sun through a process known as entrainment. This

force is powerful, with Roenneberg et al. (2007) showing that “the human circadian

clock is predominantly entrained by sun time rather than by social time.” Using data

from Germany, the authors demonstrate that living in a location with a later sunset
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induces individuals to begin sleep later. The detailed ATUS files enable us reproduce

this result: workers experiencing a later sunset go to bed later and this causal con-

nection between sunset and bedtime persists even if the worker goes to bed well after

dark. In a vacuum, a later sunset time might cause workers to go to bed later and also

rise later, leaving sleep duration unchanged. But workers face morning coordination

constraints due to work and school scheduling (Hamermesh et al., 2008), so later sunset

and later bedtime decrease sleep duration. This relationship between annual average

sunset time in a location and mean weekly sleep duration is the basis for the relevance

of our long-run instrument.

Intra-annual changes in sunlight also influence human sleep patterns through a

similar process of entrainment (Hubert et al., 1998), combined with fixed constraints

on wake-up time. Therefore, we expect that both long-run average sunset and daily

changes in sunset time will affect the sleep of workers. We verify these hypotheses

in Section F.1. The evidence bearing on validity of sunset time as an instrument is

different for the two variables and we discuss them separately below.

3.2.2 Short-run validity

For our short-run estimates of the effect of sleep on wage, validity requires that other

wage determinants not consistently co-vary with daily sunset time within a location.

The primary threat to this assumption is seasonally varying wage determinants, since

sunset time exhibits a regular seasonal pattern, as shown in Figure 1 for all ATUS

observations. One can see that sunset time is generally described by cosine wave with

a period of one year. This wave is phase shifted by roughly 10 days relative to the

calendar year. The amplitude of the wave is determined by the latitude of the location,

and vertical translations are due to within-time zone variation, which we use for our

long-run estimate. The final important features of sunset time are the prominent jumps

in the spring and fall caused by daylight savings time. The timing of daylight savings

time observance changed in 2005, causing these jumps to not be sharp in the figure.7

[Figure 1 about here.]

To arrive at the figure, we first residualize log wage and average sunset time using

a control set similar to our preferred ATUS cross-sectional specification. Controls are

time zone indicators, interactions of those indicators with coastal distance for the Pa-

cific and Eastern time zones, a linear spline in latitude, median age, percent female,

7For more discussion of solar mechanics, see Section A.
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percent black, and percent white. We plot a separate kernel regression of the rela-

tionship between this residualized wage and residualized average sunset time for each

time zone. For all four time zones, locations with the earliest average sunset time have

higher wages than locations with the latest sunset time. The relationship is largely

linear, and the average relationship is similar across time zones—particularly for for

the three widest US time zones where identifying power is highest. The linear regres-

sion version of these results is reported in Appendix Table D19, and the relationship

between within-time zone longitude and wage is shown in Appendix Figure 12.

In summary, sunset time affects sleep duration for American workers both intra-

annually and in the long-run. There is also a detectable, practically large sunset-wage

gradient in both ATUS and QCEW data.

3.3 Robustness

3.3.1 Short-run robustness

We now test the sensitivity of our short-run results. Table D5 presents six of the

most important short-run robustness checks. Each entry in the table, demarcated by

a descriptive title, is a version of the reduced form estimate from Table D2, with a

change to sample, control set, or standard error calculation. For brevity, we do not

report any first-stage robustness checks because the estimates (available upon request)

are exceptionally stable.

The first robustness check re-estimates the reduced-form relationship without any

control variables or fixed effects. The estimate is similar in magnitude to the baseline

estimate, but with slightly lower precision. This specification indicates that the short-

run variation in sunset time may be unconditionally exogenous.

[Table 2 about here.]

The next specification controls for a quadratic in usual hours worked and returns

estimates very similar to our primary short-run results. We deliberately do not include

usual hours worked as a control variable in the main specification to allow workers to

take additional sleep time out of either work time or other (non-work, non-sleep) time.

By controlling for work time, we would be forcing all changes in sleep to come out of

other time, which might bias our estimates if, as theory predicts, sunset time responses

co-vary with unobserved earnings determinants. Nonetheless the robustness of our

result to this control is encouraging and helps address concerns like those raised in

Borjas (1980) about the use of constructed wage measures. Finally, in the first column
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we cluster standard errors at the state for all observations and find that inference does

not change.

We next conduct several checks aimed at possible seasonal confounding—a crucial

issue for the validity of any instrumental variables interpretation of our results. The

first check adds quarter fixed effects, showing that the estimated effect is, if anything,

stronger in this case. The next removes the holiday season (Thanksgiving through

January 15th), again finding little change. The last adds a daily temperature control.

The estimate does not change, but the precision diminishes. In further results found in

the appendix, we also show that dropping the entire first and fourth quarters does not

substantially change inference. Indeed, in unreported results, the estimate is robust to

dropping any two quarters from the sample.8 Further robustness checks of this form

are reported in Appendix Section C.1.

Although these checks show our results are robust to some forms of seaonality,

it remains true that any variable with a seasonal pattern that perfectly matches the

frequency and phase of sunset time cannot readily be identified separately from daily

sunset time.9 On the other hand, a seasonal variable with a very different phase or

frequency poses no omitted variable problem, because the correlation with sunset time

will be low. At the extreme, a variable with the same frequency but phase shifted by

one-quarter wavelength will have zero expected correlation with daily sunset time.

In between these two extremes, a non-zero amount of confounding can occur. We

can characterize this potential bias by including seasonal control variables that mirror

the sinusoidal pattern of daily sunset time: xθ,ϕ = − cos[(360/365)(d+10+θ)ϕ], where

θ ∈ R is the phase shift relative to sunset time and ϕ > 0 is the frequency relative to

sunset time. We focus first on the set of variables where the relative frequency is the

same (ϕ = 1) and the phase shift, θ, ranges over the set of natural numbers less than

183.10 We then, one at a time, include these variables as additional covariates when

estimating Equation (4). The black curve in Figure 4a shows the resulting coefficients

on sunset time from these regressions along with the 95% confidence interval in dashed

lines. The red horizontal line shows the reduced form coefficient reported in the baseline

8Dropping three quarters removes too much data for precise inference, but the point estimates are similar.
9The one exception, discussed in Section 3.2.2 is that daylight savings time breaks the smooth sinusoidal

pattern of sunset time. As discussed above, however, daylight savings time does not, by itself, induce enough
variation in sleep to credibly estimate wage effects in a sample of our size.

10Since sunset time has a period of one year, this set of phase shifted variables will cover the full range of
possible correlations with sunset time. In theory, we can let θ range over R+, but our highest data frequency
is daily.
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results in Table D2.

[Figure 2 about here.]

One can see that over a wide range of seasonal controls, the reduced form estimate

is essentially indistinguishable from the baseline. Indeed, at no point in the space can

the baseline value be rejected. For controls that are close to sunset time (phase shifted

less than 18 days or more than 174 days), the sign of the point estimate changes and the

confidence interval widens considerably. Overall, our estimate is robust to sign error

for a seasonal pattern that peaks or troughs between January 28th and December 23rd.

Figure 4b shows the same result, but now for a set of regressions that include

covariates with different relative frequencies (θ = 0 and ϕ ∈ (0, 3)). Here, one can see

that the reduced form estimate is highly robust to seasonal patterns with alternative

frequencies. Outside of a narrow band of relative frequencies between 0.96 and 1.09,

the estimate has the expected sign.

In principle we cannot rule out the possibility that the short-run estimates are the

result of a spurious correlation between an unrelated seasonal pattern in wages that

closely matches the frequency and phase of sunset time. Practically, however, Figure 4

suggests that such a variable would need to exhibit a pattern that is strongly similar to

sunset time to introduce large bias. Moreover the corroborating results we recover using

the orthogonal identification provided by long-run sunset further mitigate confounding

concerns.

As a final note on seasonality, even if the seasonal pattern in wages is due to sleep,

one might worry about confounding trends in sample composition, for example the rate

and composition of employment. Appendix Figure 9a shows that occupation shares in

our sample are constant over the months of the year, and Appendix Figure 9b shows

that the share of ATUS respondents reporting a positive wage is likewise constant over

the year. Together, these figures reassure us that such selection bias is not driving our

results.

3.3.2 Long-run robustness

We now test the sensitivity of our long-run reduced form estimate. Again, the first

stage estimates are very stable across specifications and are omitted. Table D6 shows

estimates of the reduced form equation (6) with variations in controls, sample, and

clustering. First, we report estimates using only geographic controls, without any

other covariates. Although the exclusion restriction for the validity of our instrumental
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variable estimate is based on the error term for the full model, it is reassuring to see

that the coefficient from this minimal specification is just over one standard error

away from our preferred estimate. The additional demographic controls do make the

coefficient estimate more precise, however, as can be seen by comparing standard errors

between the main result and robustness check. This result implies that sunset time is

not highly correlated with the demographic covariates in the main specification, which

also provides initial evidence against sorting on sunset time. Next, a linear control for

longitude does not change the estimate substantially. Clustering standard errors at the

state level for all observations does not change the results of our hypothesis tests.

[Table 3 about here.]

The next robustness checks mimic the specification estimated using QCEW data

and reported in Figure 3. We drop counties at border longitudes where time zones

overlap, as such counties might have selected into a time zone based on economic

considerations. Again the results are not statistically distinguishable from our preferred

estimates. Adding time zone indicators produces a similar result.

Next, we directly test for spatial confounding by excluding the wealthier, denser

Eastern time zone, then excluding selected high-wage cities. Both of these models

return similar estimates to our baseline model, reiterating the result from the QCEW

sample that this effect is not restricted to a single time zone or portion of each time zone.

Finally, to test whether long-run average sunset time co-varies with local amenities,

we include a control for the state-level quality-of-life index from Albouy (2008). Again

the change in the coefficient is less than one standard error and it remains significant

at the ten percent level.

These robustness checks emphasize possible spatial confounding because our long-

run estimates rely on spatial variation. Individual sorting is one of the primary po-

tential threats to this identification. The robustness checks above offer initial evidence

against this hypothesis. Before we consider further evidence, however, it will be helpful

to consider a few theoretical points. First, for sorting to threaten identification, work-

ers would have to sort based on the timing of daylight. Sorting on daylight duration

would not bias our estimates, as average sunset time is independent of daylight dura-

tion. Second, a worker who decides to sleep more need not move to another location;

she can simply sleep more. Third, an optimizing worker responds to real, not nominal,

income. If home prices in more productive (higher sleep) locations adjust to offset

wage gains, workers will not have a financial incentive to move. This is exactly the
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prediction of a sorting model like Roback (1982). With perfect worker and firm mo-

bility, the gains from a productive location-specific amenity accrue to owners of land,

the fixed factor. Such a model predicts that locations with earlier average sunset times

will have higher rents and house prices, even without worker sorting on ability. Using

county-level Census data from 2010, Table D7 provides evidence that this is indeed so.

We regress log median county home value on average sunset time and a set of controls

similar to our long-run ATUS specification.

ln(median home value)j = βsunsetj + x′iγ + εj

A county experiencing sunset one hour earlier will have, on average, a median home

value approximately 6% higher. This result is statistically significant at the 1% level.

In levels, the estimated effect on median home value is approximately $7,900 to $8,800.

Based on the discussion following Table D10, a worker’s annual income gain from

moving to a location where sunset is an hour earlier is approximately $1,570.

Thus the capitalization of sunset time into home prices reflects the present dis-

counted value of wage gains from approximately 8 to 9 years of work (assuming a five

percent discount rate). This result is roughly consistent with the prediction of the

Roback model: a substantial fraction of the wage gains from earlier sunset and addi-

tional sleep in a location accrue to landowners, not workers. This blunts the incentive

of workers to sort on sunset time. In Appendix Table D18 we show this estimate is

robust to additional controls.

[Table 4 about here.]

To buttress the hedonic results, we also conduct direct sorting tests: first, we

examine historical population growth patterns in response to time zone creation in

1883 and alteration in 1918. We do not see any population change consistent with

sorting on sunset time. Second, we examine the relationship between current county-

level characteristics and sunset time. Aside from population density, we do not find

significant confounding relationships between average sunset time and any variable. To

account for population density we employ a spline in this variable as a control.

3.4 Time shifting and model-implied heterogeneity

[Table 5 about here.]
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Motivated by the model presented in Section 2.2, we now investigate heterogeneity

in the relationship between sunset time and time uses other than sleep. Recall that

in the model, we found that the sign of the derivative ∂Tz/∂α, the change in leisure

time with respect to sunset time, depends on wage and hours worked. We can test this

model prediction using variations on our first stage estimating equation.

For comparison, first consider the average effect of sunset time on non-sleep time

in the full sample, reported in Table D11. These results show that when faced with an

earlier sunset, workers allocate about a tenth of an hour per week less time to work

in the short run and 0.7 hours more in the long run. Investigation reveals that the

difference in these estimates is partly due to non-work days in the short-run sample.

Excluding days with zero reported work hours makes the short-run estimate zero to

the third significant digit, while estimating with usual work hours as the dependent

variable returns a small, positive coefficient. These modified short-run estimates are

not statistically distinguishable from the long-run estimate.

[Table 6 about here.]

By adding the two coefficients from panel B and then comparing them to the first

stage coefficient in Table D3, one can see that in the long run, work and non-work

waking time account for essentially all of the change in sleep time induced by sunset.

In the short run, the excluded time category—daytime sleep—accounts for a substan-

tial amount of the time use change, offsetting about 0.18 hours per week of the sleep

change observed in the first stage of Table D2. Thus, naps appear to be an important

adaptation strategy in the short run but not in the long run. Medical evidence (Van

Dongen and Dinges, 2005) indicates the effect of naps on task performance is ambigu-

ous: performance typically declines immediately after the nap, but then recovers to

well above pre-nap levels. The effect of a nap on full-day productivity thus may depend

on the timing and duration of the nap, among other factors.

In both the short and long run, a sunset one hour later causes workers to increase

non-work, non-sleep time by about 20 minutes per week. Together these results suggest

that in the short-run, workers mainly trade off sleep with leisure time and daytime sleep,

while in the long run they trade off sleep with work and leisure.

In contrast, the model predicts that for low-wage workers and high-work, low-sleep

workers, the effect of sunset time on leisure time should be smaller than for the full

sample. To test this prediction, we estimate separate regressions for these groups and

report them in Table D9. Consistent with our theoretical predictions, both short- and
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long-run estimates for these groups are smaller than the corresponding results for all

workers. Three of four are negative, in contrast to our overall positive results. The

estimates are not statistically distinguishable from zero, although in the case of the

high work hour sample, the short-run coefficient is distinguishable from the coefficient

for the full sample.

3.5 IV estimates of the effect of sleep on wages

Having clarified the assumed exclusion restrictions, we present our instrumental vari-

ables estimates of the effect of sleep on wages in Table D10. A one-hour increase in

short-run mean weekly sleep in a location increases wages by 1.5%. A one-hour in-

crease in long-run mean weekly sleep in a location increases wages by 4.9%.11 The

larger long-run effect may reflect several factors, including greater long-run wage flex-

ibility and long-run effects from labor-capital complementarity. Together these results

demonstrate that exogenous location-level sleep changes have important wage effects.

[Table 7 about here.]

In the short-run model, the first-stage F statistic of 91.4 well exceeds the relevant

Stock-Yogo critical value of 16.38, so we reject the null hypothesis of weak instruments,

where “weak” is defined as true size greater than 10% for a nominal 5% test (Stock

and Yogo, 2002). This reassures us that the result of our t-test is reasonable. In the

long-run model, the first-stage F statistic of 10.66 falls short of the Stock-Yogo critical

value for true size of 10%, but exceeds the critical value of 8.96 for true size of 15%.

The result of our long-run t-test should be thus be viewed with more skepticism, but

we can rule out gross failures of size control.

Our estimates reflect location-level local average treatment effects, so it is important

not to generalize too much from them, and several nuances of interpretation warrant

discussion. First, all workers in a location experience the same sunset time. While

we do not know if sunset-induced sleep differences generate productivity spillovers

across workers, Moretti (2004) finds evidence that human capital does. In such a case

our estimated β will capture not the effect of increasing individual sleep, but rather

the effect of increasing mean sleep in a location. Second, managers might set wages

based on average productivity in a location rather than individual worker productivity.

Under this assumption, an increase in sleep by an individual would have no effect on

11The long-run instrumental variables estimate is quite close to the reduced-form estimate because the
first-stage change in mean weekly sleep is close to 1.
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her wage, as it would not appreciably change average productivity. In a case like this,

our estimate will capture the effect of increased sleep by all workers on average wages,

rather than an individual-level effect. Finally, it is possible our instrument influences

both sleep duration and sleep quality. This is true, however, of any exogenous variation

in sleep, even in a laboratory setting. In such a case our estimates are still consistent

for the effect of an exogenous sleep change, but the interpretation changes slightly.

Our analysis demonstrates that workers experiencing an earlier sunset get more

sleep. As discussed in Section 3.4, in the short run the additional sleep largely comes

at the expense of leisure, while in the long run it comes at the expense of both work

and leisure. Insofar as these changes in other time uses impact worker productivity, our

instrumental variables estimate of the effect of sleep on wages will also contain those

effects. While this might seem undesirable at first glance, it is unavoidable. An agent’s

time constraint always binds with perfect equality. Even in a laboratory setting, it is

not possible to change the time use of interest without also changing at least one other

time use.

Expressed as an elasticity, our short-run estimate is 0.84 and our long-run estimate

is 2.6. These magnitudes are consistent with the experimental evidence summarized

in Table D4. Medical researchers have typically found elasticities of task performance

with respect to sleep duration of approximately four. If wages are equal to a worker’s

marginal physical product multiplied by output price, we expect such performance

effects to produce equally large wage effects. The smaller magnitudes of our estimates,

relative to the medical literature, may reflect differences between laboratory tasks

and actual work tasks or the broader scope for adaptation (for instance the use of

stimulants like coffee) outside the lab. The larger magnitude elasticity in the long-run

is also consistent with the attenuation bounds calculated in Section D.1.

Unaided intuition might suggest smaller effects of sleep on performance, but intu-

ition provides a poor sense of this relationship: Van Dongen et al. (2003) showed that

subjects’ self-reported fatigue quickly stabilized after a few days of sleep reduction,

even as their performance continued to decline. Van Dongen et al. (2003) also found

that several days of two–hour sleep reductions reduced performance by as much as a

night of complete sleep deprivation. This study implies that working after a completely

sleepless night likely provides a better visceral sense of the performance effects from

moderate sleep deprivation than does reflection on one’s own long-term experience.

Taking average values for earnings and assuming 50 work weeks per year, one can

calculate the annual income effects implied by our long-run estimates. If mean weekly
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sleep in a location increased by one hour and work time remained unchanged, mean

annual income would rise by about $2,350. In reality, extra sleep comes out of both

work and non-work time. If workers took roughly 70% of the extra sleep hour out of

work time, as we find in Table D11, then a one-hour increase in weekly mean sleep in

a location would increase mean annual income by about $1,570. If extra sleep came

solely at the expense of work time, the income increase would be $1,250.

Figures of this magnitude naturally lead one to ask why workers don’t work less

and sleep more. Perhaps the most direct answer is that increased income need not

imply increased utility. (For example, the increased utility from greater income might

be offset by decreased utility from foregone leisure.) Another possible explanation lies

in the spillovers and general-equilibrium effects our estimate incorporates. Because

our estimates are based on location-level variation, they likely overstate the effects an

individual worker would experience from changing her sleep in isolation. It is also con-

ceivable that observed sleep reflects optimization failure by workers, as hypothesized by

Mullainathan (2014). Such failure could occur even under classical assumptions. For

example, the inaccurate self-perceptions of fatigue found by Van Dongen et al. (2003)

could lead to sleep below the utility-optimizing level even if workers are behaving op-

timally, conditional on their information set. Such sub-optimal sleep could, in turn,

contribute to the type of time-use poverty trap analyzed by Banerjee and Mullainathan

(2008).12 On the other hand, sub-optimal sleep could arise from behavioral consider-

ations like time inconsistency or constraints on cognitive resources (see for example

Mani et al. (2013)). This type of mechanism could also generate a poverty trap. While

optimization failure and its possible mechanisms are beyond this scope of the current

paper, we are exploring them in ongoing experimental work.

3.6 Nonlinear effect of sleep on wages

Although our setting is not ideally suited to study nonlinear effects of sleep on earn-

ings, it is a question of natural interest due to the routine reporting of such relation-

ships in medical research.13 Nonlinearity in the sleep-wage relationship is intuitively

appealing—at the extremes, a worker cannot work if she sleeps all day, and this logic

would likely extend to shorter sleep durations that still impinge on work hours. Over

more moderate sleep durations, however, the question of whether the marginal effect

12While the authors interpret their work as a model of inattention, they note, ”In fact, our model is
formally identical to a rational time allocation model, if we think of comfort goods as time saving devices.”

13See, for instance Cappuccio et al. (2010) and Leng et al. (2015) on mortality or Taheri et al. (2004) on
BMI.
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of sleep on wages is non-monotonic has important implications, and the answer is not

obvious. For instance, in contrast to the above cited studies, Van Dongen et al. (2003)

shows that the marginal effect of sleep on attention is linear over a wide range of

sleep durations. Moreover, the reverse causality discussion that prefaced the analysis

of this paper suggests that workers have an incentive to sleep moderate amounts even

if sleep is productivity enhancing Thus, selection into working as well as other forces

might lead one to erroneously conclude that long, in addition to short sleep, is bad for

productivity, health, and other outcomes.

We can empirically examine this question to some degree in our setting. We are

limited by the small changes in sleep induced by sunset time relative to many lab-

oratory studies, but we benefit from much larger sample sizes and the fact that the

nonlinearity—if the medical research is correct—should be most apparent near mean

sleep levels where our identifying variation exists.

We use a variety of methods to investigate nonlinearity. Appendix Figure 7 reports

the results of two of these methods: a kernel regression of residual log earnings on resid-

ual sleep instrumented by daily sunset time and a control function-based estimate using

techniques from Kim and Petrin (2013). For details about the construction of these

estimates, see the appendix. Both approaches estimate a semi-parametric relationship

between sleep and earnings. Visually, for the short-run sample, this relationship is

linear over the identified range. The Kim and Petrin (2013) estimates allow us to con-

duct a hypothesis test on higher order polynomial terms, and if anything, these terms

suggest that the relationship is convex—more sleep has a slightly increasing marginal

effect on earnings. In the long-run case, the kernel regression suggests slight concavity

of the sleep-earnings relationship, but hypothesis testing of the Kim and Petrin (2013)

estimates fails to reject linearity.

A formal test of monotonicity based on Gutknecht (2013) also fails to reject mono-

tonicity of effect in both the short and long-run estimates, but this test is conservative.

Even though we do not find evidence for a nonlinear sleep-wage relationship, the time-

intensiveness of sleep means that there is an inherent nonlinearity in the relationship

between sleep and income.

4 Conclusion

Although time use is entangled in a causal web with labor market outcomes, economists

have paid little attention to these relationships. In particular, the profession has

scarcely examined sleep. Our results demonstrate that sleep has a powerful impact
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on labor market outcomes and should be considered an integral part of a worker’s

utility maximization problem. Using individual time-use diaries matched with labor

market variables from ATUS, we show that increasing short-run weekly average sleep

in a location by one hour increases worker wages by 1%. Increasing long-run weekly

average sleep in a location by one hour increases wages by 4.5%. Our use of instrumen-

tal variables techniques addresses the reverse-causality and omitted variable problems

that would bias näıve estimates. We buttress this finding with a battery of short and

long-run robustness checks, and a hedonic model of home prices showing that long-run

wage increases are partially capitalized into housing.

Our results suggest that sleep is a crucial determinant of productivity, rivaling abil-

ity and human capital in importance. These findings have significant implications for

individuals, firms, schools, and governments. A worker who desires higher wages might

be able to obtain them by increasing sleep. Firms might be able to increase profit by

altering start times, providing workers with incentives to sleep more, or with informa-

tion interventions (e.g. information on how to improve sleep quality or consistency).

Governments conducting cost-benefit analyses of policies that change sleep time, for ex-

ample daylight savings time, should consider the productivity effects to design efficient

policies. Countries spanning a wide range of longitudes might benefit from abolishing

time zones and adopting a single standard time, preserving ease of coordination while

allowing firms and schools to set schedules optimally with respect to local solar cues.

Further attention should be paid to industries characterized by chronic sleep short-

ages. In addition to wages, optimal sleep plausibly depends on other factors like leisure

complementarities, direct sleep utility, and health optimization. Each of these trade-

offs suggests an interesting research question. More broadly, our results demonstrate

that non-labor time uses can have first-order effects on labor outcomes—effects that

warrant further investigation in future work.
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A Solar mechanics

Here, we provide a brief summary of how sunset time is calculated and a glossary

of terms. For a detailed glossary, see NOAA’s ESRL website. We calculate sunset,

sunrise, solar declination, and sunlight duration each day using the algorithm of Meeus

(1991) as implemented by NOAA’s Earth Systems Research Laboratory (ESRL). The

calculator takes as inputs the date, time zone offset, latitude, and longitude. It outputs

the solar declination, right ascension, sunrise time, sunset time, and sunlight duration.

The Stata code that we used for calculation is available on Github.

Solar declination is the angle of a line segment from the sun to the earth relative to a

plane projected from the equator of the Earth. The solar declination is a function only

of the day of year and time zone offset (to compute fractional days for high-resolution

local time sunset), and changes in solar declination correspond to the average seasonal

movement of the sun. The highest solar declination, 23.44◦ occurs on the summer

solstice, and the lowest solar declination, -23.44◦, occurs on the winter solstice. On the

equinox, solar declination is 0◦. A rough calculation of solar declination, which we use

as the basis of our seasonal control variable in Section 3.3.1, can be calculated as

−23.44 cos

(
360

365
(d+ 10)

)
where d is the day of the year.

Sunset and sunrise time are both calculated assuming 0.833◦ of atmospheric refrac-

tion, or the bending of the path of light as it passes through the Earth’s atmosphere.

A more precise refraction correction would need to incorporate information on air

pressure and humidity. Also, we calculate sunset assuming an observer with a zero-

elevation change view of the horizon (not to be confused with the assumption of being

at 0 elevation). These two variables take latitude as an additional input, reflecting the

location-specific amplitude of sunlight changes.

Sunlight duration is simply calculated as the difference between sunrise and sunset

time for a location on a given day. We do not utilize right ascension in this study.

B Measurement error in short-run estimates

Here we derive expressions for the expected bias in our short-run estimates. The final

expression and degree of bias is reported in Section D.1. Estimation results subject to

these calculations are reported in Sections F.1 and 3.5. Although we state the results
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in terms of wages and sleep, the model applies equally well to estimates of the reduced

form equation (4).

Assume that for a given individual i surveyed on day t, wages are equal to the

average of D past sleep observations plus random noise. Therefore the true model

relating sleep to wages is

wit,τ = β

(
D−1i

τ−1∑
k=τ−T

TS,ik

)
+ εiτ (7)

= βT ∗S,iτ + εiτ (8)

Thus, we are assuming that earnings change for this individual every D days, and

sleep only matters during the earnings determination period. The subscript τ indexes

the day that these earnings start to be observed in the data. Because of the fixed

earnings change frequency for a given individual, these earnings will be observed for

days τ through D + τ − 1. To be concrete, consider the case of D = 2. Then we, the

researchers, can only sample the individual on either the day after they received an

earnings change or 2 days after, so τ will be equal to t or t− 1.

We further assume that τ is uniformly distributed across the year (a person has an

equal probability of receiving an earnings change on any given day). This is a strong

assumption, but the best available evidence from Barattieri et al. (2010) suggests that

it is not broadly incorrect. Of course, for a given year, there will be weekend or holiday

effects, but asyptotically, these become less relevant. Moreover, we do not have any

information on when a given individual in our sample last experienced an earnings

change, so this uniform assumption is a non-dogmatic baseline.

Finally, we assume that the researcher has isolated exogenous variation in sleep so

that ETS,tετ = 0 for all t and τ .

If we observed past sleep and knew the earnings change frequency, we could estimate

Equation (7) and return the correct estimate. Instead, We observe wages and sleep on

date t ≥ τ , with which we estimate

wit,τ = β1TS,it + εiτ

We wish to know the relationship between β1 and β.

We will exploit the wage setting structure given above and the functional form for

the time series of sunset time from Section A to calculate this relationship. First, given
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the results from Frazis and Stewart (2012) we can use sunset time to both isolate daily,

exogenous variation in sleep and to predict daily sleep for any day of the year, even

though we only observe sleep on one day. This individual time series of sleep will have

a similar functional form to the instrument, namely

TS,it = A cos (θt)

where A is the population coefficient on the unconditional version of the first stage

Equation (3) and where we drop an ignorable, uncorrelated error term. The value

θ = 360/365 scales the wavelength to one year, so we make an additional simplification

by assuming that a year is 360 days long so that this term can be ignored. Alternatively,

one could, as we do when we analytically calculate the bias, rescale t to incorporate

the term. Thus

TS,it = A cos(t) = A cos(τ + j) (9)

where j = t − τ is the number of days since the latest earnings change for this obser-

vation.

We apply Lagrange’s identity to rewrite earnings-relevant sleep.

T ∗S,iτ = D−1i

Di∑
k=1

A cos(τ) =
A

Di2 sin(1/2)
(cos(τ −Di + (π − 1)/2)− cos(τ + (π − 1)/2))

The two cosine functions are simply phase shifts of each other, so we apply phasor

addition to reduce this to

T ∗S,iτ = AB1 cos(τ + ω) (10)

where

B2
1 =

(cos((π − 1)/2−Di) + cos((π − 1)/2))2 + (sin((π − 1)/2−Di) + sin((π − 1)/2))2

2Di sin(1/2)

ω = arctan(cot((Di + 1)/2))

This form is convenient because observed sleep can now be written as a phase shift of

earnings-relevant sleep and thus suggests that a version of the error-in-variables formula

will apply in this setting since we can linearly relate observed sleep to earnings-relevant
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sleep plus a correlated error term.

Now note that the only individual heterogeneity is in terms of the frequency of

earnings changes, so without loss of generality, we can replace the Di index with just

D. Then, applying the usual variance-covariance formula for the OLS estimator of a

single coefficient, we have that our estimator relative to the true coefficient is given

by14

plim β̂1,D =
Cov(wD, TS,D)

Var(TS,D)
(11)

= β
Cov(T ∗S,D, TS,D)

Var(TS,D)
(12)

Where we have dropped the time subscripts based on the calculations below.

To derive closed-form expressions for Equation (12) observe that since seasonal

sleep is mean zero, and, for all D, we are equally likely to observe sleep on any day of

the year, then by the double angle formula and Lagrange’s identity, the denominator

is

Var(TS,D) = lim
T→∞

T−1
T∑
t=0

A2 cos2(t)

=
A2

2
+ lim
T→∞

A2 csc(1) sin(2T + 1) + 3

T
=
A2

2

Where T (not sleep time, TS) is the total number of time observations and the last

equality follows from the boundedness of sine.

The numerator is, by application of the product-to-sum and Lagrange identities

Cov(T ∗S,D, TS,D) = D−2
D∑
k=1

D∑
j=1

lim
T→∞

T−1
T∑
τ=0

A2 cos(τ − k) cos(τ + j)

= D−2
D∑
k=1

D∑
j=0

lim
T→∞

T−1
T∑
τ=0

A2 cos(τ − k) cos(τ + j)

=
A2

2D2

D∑
k=1

D∑
j=0

cos(k + j)

Taking the ratio of these two values gives the relative bias of the short-run estimate

14We loosely call this attenuation even though in practice the estimate can be negative even when the true
coefficient is positive.
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with respect to the true estimate for a given D.

β̂1,D
p→ β

D−2 D∑
k=1

D−1∑
j=0

cos(k + j)

 (13)

Figure 5 shows this value for all frequencies of earnings changes less than a year.

[Figure 3 about here.]

This shape is the result of two factors. First, for any two of the same sinosoidal

functions that are phase shifted from each other by less than a quarter or more than

three-quarters of a wavelength, the product will be positive because the two functions

are “in phase enough”. For a phase shift greater than one-quarter but less than three-

quarters of a wavelength, the product will be negative. The attenuation of the estimate

is an average of these products, so for frequent earnings changes (small D), we are

largely averaging sleep that is less than a quarter wavelength off from the truth. For

intermediate values of D, we are averaging in sleep that is phase shifted enough to flip

the sign on the estimate. For D near a year, however, we have “crossed the hump”

again and are averaging in sleep values that are phase shifted so much that they are

back to the beginning of the cosine wave. Beyond D = 365, the estimate remains

nearly fully attenuated, with slight oscillations around 0.

The expected attenuation for the full population will depend, therefore, only on

the distribution of the frequency of earnings changes. Assuming that the frequency of

earnings changes, D, is a discrete random variable, this expectation can be calculated

by a sum over D, weighted by the probability of observing that frequency.

β̂1
p→ β

∑
D

D−2
D∑
k=1

D−1∑
j=0

cos(k + j) Pr(D) (14)

Barattieri et al. (2010) provide estimates of this density function (derived from Figures

12 and 13), with which we can calculate Equation (14). We discuss the measures

provided by these authors in Section D.1, ultimately concluding that the degree of

attenuation will be between 75 to 100%.

Finally, a note on alternative assumptions about the earnings determination process

(Equation (7)): if earnings are based more on recent productivity rather than historical

productivity (for instance if the manager is myopic when writing wage contracts), then

our estimate will be closer to the true coefficient because we will be more likely to
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average together observed sleep that is less than a quarter-wavelength phase-shifted

from the truth. If earnings are based on longer-term sleep or productivity patterns (for

instance, the manager is very slow to update the wage contract and needs two earnings

change cycles to fully incorporate current productivity changes), then our estimate will

either be more biased or will be more likely to be attenuated all the way to zero.

C Additional ATUS results

[Figure 4 about here.]

[Table 8 about here.]

[Figure 5 about here.]

For the top two panels of Figure 7, in a first stage, we regress log earnings and sleep on

all controls from Equation (4). We then predict the sleep residuals using daily sunset

time. Finally, we fit a kernel regression through the resulting values. Under similar logic

to the calculation of linear regression by fitting a line through conditional expectation

functions, this figure provides a simple, semi-parametric method for showing the causal

relationship between wages and sleep without imposing linearity. Note that a causal

interpretation of this plot requires strong exogeneity (zero expectation of the error of

log earnings conditional on sunset time) to rule out nonlinear dependence, as is typical

of any nonlinear causal inference method.

The bottom two panels use the control function approach of Kim and Petrin (2013),

which extends the nonparametric IV methods initially proposed by Newey et al. (1999).

We allow sleep to enter as a quadratic, controlling for a quadratic in the first-stage

residuals and the interaction of that quadratic with our instruments. The quadratic is

chosen by an information criterion.

C.1 Additional short-run ATUS results

[Figure 6 about here.]

[Table 9 about here.]

[Figure 7 about here.]
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C.2 Additional long-run ATUS results

[Figure 8 about here.]

Per the recommendation in Solon et al. (2013), we conduct a modified Breusch-

Pagan test for heteroskedasticity of the residuals from the unweighted 2SLS model.

The results in Table D13 show that location-level observations with smaller underlying

counts of ATUS observations exhibit higher variance, as expected, and the relation-

ship is statistically significant at the one percent level. While the constant term is

statistically significant, it is an order of magnitude smaller. This suggests that the

common error component within location is minimal, so weighting will likely result in

an efficiency improvement, and indeed that is what we see in Table D14.

[Table 10 about here.]

Table D14 reproduces our long-run results from Table D3 above their unweighted

counterparts. Weighting does indeed improve efficiency, reducing the standard errors

in both the first stage and reduced form models. It does not appreciably alter the

first-stage coefficient on sleep, but it does increase the magnitude of the reduced-form

estimate. This suggests the presence of heterogeneity in the marginal effect of sleep on

wages. High-skill urban workers have greater influence on the estimates in the weighted

model, so the pattern of results below is consistent with larger marginal effects for such

workers.

[Table 11 about here.]

We have also performed a variety of additional robustness checks with little or no

change in estimates. We list them here without full tables, but all results are available

upon request. 0.2% of the sample has topcoded wages. A tobit accounting for this

does not change the results. Likewise, accounting for the truncation of sleep does not

change inference. We have also estimated the models on only the sub-sample that is

geocoded at the county or CBSA level. All of these robustness checks do not change

inference.

In Table D15 we report estimates of county level characteristics as functions of

average sunset time. We find a large and statistically significant relationship with

population density, which motivates our use of a flexible control for this variable in

estimating long-run effects. We also see a statistically significant relationship with

unemployment, consistent with our estimated long-run wage effect.
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[Table 12 about here.]

We report additional long-run ATUS robustness checks in Table D16. First, we

remove all weekend diary observations. ATUS oversamples weekends so that roughly

half of the total observations are from weekend dates (see Table D1). We test the

sensitivity of our results to this by dropping the weekend diary entries entirely. The

estimate is similar to baseline, albeit less precise. While the number of location-level

observations is the same, this specification drops roughly half of the underlying ATUS

sample. Second, we add education controls, and finally we add industry controls.

[Table 13 about here.]
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C.2.1 Historical sorting

Figure 11 shows the county-level growth patterns around the dates of the 1883 and

1918 time zone implementations. For both figures, the 10% of counties that are closest

to the eastern or western time zone boundary are considered to be on the eastern

or western side, respectively. The dashed lines show median population growth rates

(inter-census) for eastern side counties, and the solid lines show the same for western

side counties. The composition of these groups differs between the two panels due to

changes in the location of the 1883 versus 1918 time zones.

[Figure 9 about here.]

If gross sorting were occurring, one would expect eastern side counties to grow faster

than western side counties after time zone implementation. Indeed, one might even

expect the incentive to sort with respect to the 1883 time zones to be stronger than in

the present day due to the lack of electrification. Instead, one can see that there is no

evidence of gross sorting in response to the 1883 time zone. After implementation, the

two regions of the time zones grow at almost identical rates. Growth rates around the

1918 law are more volatile but tell a similar story. Western side counties experience a

slightly larger drop in growth rates after 1918 compared to eastern side counties, but

the difference in changes between the two groups is not significant.

D Additional hedonic and QCEW results

[Table 14 about here.]

[Table 15 about here.]

[Table 16 about here.]

Within a time zone, average sunset time is a linear function of longitude.15 To

illustrate what the controls are doing in the QCEW estimates and to provide intuition

for the sunset time instrument, we investigate the unconditional relationship between

log wage and longitude within each time zone in Figure 12. Approaching the data in

this way allows for an intuitive, map-like presentation, with the Pacific time zone at the

left of the figure and the Eastern time zone at the right. For each time zone, we estimate

15Ignoring legal changes to the timing of daylight savings time, which did occur once during our sample
period.
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a separate linear kernel regression between longitude (and, implicitly, average sunset

time) and log wage. Gray regions represent 95 percent confidence intervals. This

figure strongly suggests that average sunset time is not unconditionally exogenous.

Wages spike near the Pacific and Atlantic coasts. At inland time zone boundaries,

where sorting is a concern (as discussed in Section 3.2) and labor markets may be

integrated, the fitted relationships tend to intersect. To address these potential sources

of endogeneity, we residualize log wages using time zone dummies, and interactions of

the time zone dummy with coastal distance in the Pacific and Eastern time zones. This

controls for the well-known gradients in population and home prices near the coast.

We also exclude longitudes at which time zones overlap. Figure 12 plots a local linear

relationship between residualized wage and longitude for each time zone. The pattern

of results is striking, with similar linear relationships and upward slopes for all four

time zones. Conditional on this parsimonious control set, western locations earn less

on average than eastern locations within the same time zone.

[Figure 10 about here.]
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Figure 1: Sunset time for the ATUS sample

Note: Each point shows the sunset time for an ATUS observation on the
day of the year of that observation.

Knowing the particular pattern followed by sunset time allows us to character-
ize the degree of potential confounding that results from other seasonal variables
in a precise way. These calculations are given in Section 3.3.1. Because of day-
light savings time and the phase shift relative to the calendar, we can show that
our estimates are robust to a wide range of seasonal confounders. Moreover,
these features allow us to clearly disentangle short-run variation in sunset from
calendar features like the December shopping season.

There is one identification issue we cannot address: seasonal variation in sun-
set time is almost perfectly correlated with seasonal variation in sunrise time and
daylight duration.16 Therefore in purely statistical terms, all short-run results
could be recast in terms of either of these other variables. Our estimates are in-
consistent with a causal story based solely on daylight duration, however. Note
that our sleep model predicts higher wages in winter, when sleep is high and day-
light duration is low. If low daylight duration leads to poor mood and reduced
productivity, this will bias our specifications against finding positive wage effects
from sleep. We choose to focus on sunset time rather than sunrise time because
it is emphasized by existing medical literature and because it appears to be the
driver of long-run differences in sleep, as discussed in the next section.

16Only changes in daylight savings time break this linkage.
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D.0.2 Long-run validity

Figure 2 illustrates the source of our long-run variation in sunset time across
locations. As the sun sets, eastern locations grow dark earlier than western
locations, leading residents in more easterly locations go to bed earlier and sleep
longer. By design, the maximum difference in sunset time within a U.S. time
zone is approximately one hour.

Figure 2: Average sunset in the United States

Note: Map shows sunset time at the vernal equinox
for the continental United States in 2012, which is a
close approximation to average sunset time. Darker
red indicates later sunset, lighter red indicates earlier.
The time zone boundaries are given by bold black lines.

The difference in average sunset time between two locations over the year is
plausibly unrelated to other factors influencing the labor market, making average
sunset time a potentially valid instrument. In particular, time zone boundaries
break the link between average sunset time and longitude. Average sunset time
is also, by construction, orthogonal to latitude. All locations on earth experience
the same average daylight duration over the year, so this is not an omitted
variable in our long-run analysis.

The design of US time zones derived primarily from scientific, rather than com-
mercial, considerations. Railroads implemented the first US time zones, called
Standard Railroad Time (SRT), on November 18, 1883. They replaced a patch-
work of railroad time standards and were quickly adopted by the US government
and Western Union (Allen, 1883; Anonymous, 1883). While railroads were the
first adopters, the primary impetus for standard time and the zone plan itself
came from scientists concerned with problems like simultaneous observation of
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the aurora borealis at different points across the US (Bartky, 1989). The width
of a zone, 15 degrees of longitude, was chosen to correspond with a one-hour dif-
ference in solar time (of Congress, 2010). Ultimately, US time zones derive from
the speed at which the earth rotates and the historical accident that drew the
Prime Meridian through Greenwich, England: King Charles II chose Greenwich
as the site for the Royal Observatory in 1675.

Endogenous modifications to time zone borders could have undermined this
initial randomization. Indeed, state and local governments may petition the
Department of Transportation to switch time zones, which has resulted in a long-
run westward movement of boundaries (USNO, 2014). This movement means
that the precise location of the boundary is endogenous and research designs
based on comparing nearby communities on opposite sides of the boundary might
be biased. Note, however, that the westward movement of boundaries is the
opposite of what we expect if counties are choosing their time zone based on sleep-
driven productivity considerations. Switching from being on the eastern side of a
time zone to the western side (which is what has happened to shift the time zone
boundaries) moves the county from getting the “best” average sunset treatment
to getting the “worst” in terms of sleep duration. Moreover, our design does
not depend on the exact location of the boundary, but on the relative longitudes
of cities within a time zone; the distance between the easternmost city in our
data and the border is common to all observations in the time zone and does not
contribute to our coefficients of interest. (In Table D6 we show our results are
robust to the exclusion of all counties on time zone borders.) To avoid potential
endogeneity, we drop locations that do not observe daylight saving time. Finally,
while time zone borders often coincide with state borders, they frequently do
not, and twelve of the lower 48 US states span multiple time zones (Hamermesh
et al., 2008).

Current or past worker sorting on sunset time would also threaten the valid-
ity of our average sunset time instrument, but we find no evidence for this type
of sorting in either historical or contemporary datasets. We do find a statisti-
cally significant relationship between average sunset time and population density,
which motivates our use of a flexible control for this variable. Within a time zone,
long-run average sunset time is a linear function of longitude and thus also cor-
related with coastal distance. Table D6 suggests coastal distance is indeed an
important potential confounder, and we control flexibly for it in all our specifi-
cations. Thus the identifying assumption in our long-run models is exogeneity
of average sunset time conditional on population density and coastal distance
controls.

Firms might also sort on average sunset time, but simple firm optimization
theory suggests they do not have strong incentives to do so. If a firm pays its
workers their marginal product, managers may be indifferent to whether that
marginal product is slightly higher or lower. Nonetheless this sorting is a theo-
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retical possibility, and we test for it by regressing total wage bill in a county on
sunset time and find no effect. In contrast, per-capita weekly wage bill is influ-
enced by sunset time, as shown in Figure 3. Other possible channels for failure
of our exclusion restriction are discussed below, and for issues that are amenable
to empirical investigation, results are shown in Section 3.3.2.

D.1 Wage setting and measurement error

Our wage measure is the answer to a question about “usual weekly earnings”
rather than wages on the day of the interview. Thus, even in the case where we
correctly isolate exogenous changes in short-run sleep using daily sunset time,
there is an additional identification issue inherent in studying wages rather than
productivity: timing mismatch between observations of sleep and wages com-
bined with a potentially low frequency relationship between wages and produc-
tivity. These issues mean that our short-run estimates of both the reduced form
Equation 4 and the resulting two-stage least squares estimator will necessarily
be biased.

For the survey day, we observe that day’s sleep and the earnings reported
by the individual. But if sleep is productive and earnings are a function of
productivity, then the wage we observe is actually based on past sleep, not the
contemporaneous sleep that we see. Luckily, using daily sunset to predict sleep
provides us, under an assumption about the function that relates productivity
to earnings, with an analytical expression for the relationship between observed
sleep and earnings-relevant sleep.17 We exploit this relationship to get bounds
on the expected bias.18

This bias is present in all of our short-run estimates, but can be relatively be-
nign. Consider, for instance, a piece-rate worker paid each day. Our observation
of this worker’s earnings could be based on yesterday’s earnings and therefore
sleep the previous night. We observe tonight’s sleep, however, so the timing of
our sleep observation is off by one night. Since daily sunset time is highly auto-
correlated, the error in our estimate will be slight because we are using almost
the correct variable.

In general, however, earnings change more slowly. To calculate the bias in
these cases, note that the equation for the seasonal component of sunset time is
known. We can use this function to find the bias in the reduced form and—since
daily sunset time will induce a similar pattern in sleep in the first stage—in the
instrumental variables estimates. In the Appendix we show that if earnings are
a linear function of average productivity, then the estimated seasonal coefficient
has an asymptotic bias that depends only on the distribution of D, the frequency

17We also treat a worker’s observable characteristics on date t as the correct observables at the time of wage
setting. Since many such characteristics are fixed or vary extremely slowly (for example race, occupation,
and gender), we believe this assumption is benign.

18Details on the derivation can be found in Appendix Section B.
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of earnings changes in the population, and a known trigonometric function. In
particular

β̂
p→ β

(
∞∑
d=1

d−2
d∑

k=1

d−1∑
j=0

cos(k + j) Pr(D = d)

)
(15)

where β̂ is one of our short-run estimates (from either the reduced form Equation
4 or the instrumental variables estimate based on Equations 3 and 4).

Barattieri et al. (2010, Figures 12 and 13) provide estimates of the density
function for D, allowing us to evaluate this expression. The authors provide
two sets of estimates: one based on raw, reported earnings (what we use in
this study) and another based on earnings that have been cleaned to remove
measurement error. For a given individual, reported earnings can vary over time
due to contractual wage changes, changes in real take-home pay unrelated to
wage (like overtime or commission), and measurement error. Using this measure,
Equation (15) evaluates to 0.25, indicating that our estimate will be one-quarter
the size of the true coefficient.

Ideally, we would like to calculate the distribution of D using only contrac-
tual wage changes and other changes in take-home income caused by productivity
changes, but due to the presence of measurement error, we view 0.25 as a lower
bound on the attenuation of our estimate, with one important caveat. Since
Barattieri et al. (2010) provide estimates of earnings changes only at 4 month in-
tervals, this bound could overstate attenuation because it under-weights changes
that occur in less than 4 months (D ≤ 120). From Figure 5, one can see that
underweighting these high-frequency changes could substantially increase the ex-
pected bias.

Using the cleaned series from Barattieri et al. (2010), Equation (14) evaluates
to -0.006, indicating that our estimate would be fully attenuated. The cleaned
series removes measurement error but also likely removes real take-home pay
changes, which would raise the frequency of earnings changes. Thus, we view
this as a upper bound on the degree of attenuation. In conclusion, we expect,
a priori that our short-run estimates should be between 0 and one-quarter of
the true parameter value. The long-run estimator captures permanent shifts in
sunset time and sleep, and it is thus unaffected by this source of bias. If the
same structural model relates long and short-run sunset to wages, then we also
expect that the short-run estimates will be less than one-quarter the size of the
long-run estimates.

E Data

The most recent and largest data set from the United States containing both
sleep time and wage information is the American Time Use Survey, which asks
a subset of Current Population Survey (CPS) participants to fill out a time use
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diary for one day. ATUS began in 2003 and the most recent data are for 2013.
For this study, we use the sample of individuals between the ages of age 18 and
65 who report receiving positive weekly wages from a primary or secondary job
and who work full time. We exclude individuals in locations that do not observe
daylight savings time, as local sunset time is potentially a choice variable in such
locations. Summary statistics for variables of interest, broken down by sunset
time, are given in Table D1. The table shows values for all individuals who report
earning a weekly wage.

Table D1: ATUS Summary Statistics

Early sunset Late sunset
Mean/(SD) Mean/(SD) Diff./(SE) Total obs.

Weekly earnings ($/week) 964.9 949.6 15.3*** 61368
(629.3) (618.2) (5.04)

Hourly wage ($/week) 16.6 16.3 0.21** 31053
(9.40) (9.10) (0.10)

Sleep (hour/week) 58.4 57.6 0.83*** 61368
(14.4) (14.0) (0.11)

Sunset time (24 hr) 17.6 20.1 -2.47*** 61368
(0.76) (0.52) (0.0052)

Work (hour/week) 31.1 30.8 0.28 61368
(30.9) (31.0) (0.25)

Female (0/1) 0.48 0.48 0.0049 61368
(0.50) (0.50) (0.0040)

Age (years) 42.2 42.1 0.14 61368
(11.5) (11.7) (0.094)

Race, white (0/1) 0.82 0.82 -0.0031 61368
(0.39) (0.38) (0.0031)

Race, black (0/1) 0.13 0.13 0.0013 61368
(0.33) (0.33) (0.0027)

Weekend (0/1) 0.51 0.51 0.0053 61368
(0.50) (0.50) (0.0040)

HS or less (0/1) 0.31 0.32 -0.0087** 61368
(0.46) (0.47) (0.0038)

Some college (0/1) 0.28 0.29 -0.0037 61368
(0.45) (0.45) (0.0036)

College (0/1) 0.25 0.25 0.0046 61368
(0.43) (0.43) (0.0035)

Number of children 0.96 0.95 0.0032 61368
(1.11) (1.12) (0.0090)

Ever married (0/1) 0.77 0.77 0.0014 61368
(0.42) (0.42) (0.0034)

Note: Summary statistics for two sub-samples from ATUS are shown. Early sunset is
defined as having a sunset time earlier than the median, and late sunset time is later
than the median. Significance is determined from a t-test on the difference between
means. Total observations are given in the far right column. The early and late sunset
time groups each have half of the stated observations.
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Aside from giving basic information on the sample, Table D1 also provides
initial evidence in support of our main results. One can see that early sunset
observations have significantly higher wages and sleep duration than observations
with later sunset times. In contrast, other individual characteristics are well
balanced across the two groups. Out of 11 other tests, only one difference is
significant—the fraction of the population with a high school degree or less. This
difference works in the direction of explaining the difference in wages in the
two groups, but other (insignificant) differences work in the opposite direction.
Note that dividing sunset time in this way conflates short and long-run variation.
Results controlling for individual characteristics and broken down by short- versus
long-run sunset time are reported in Section F.

To assign locations to individuals in ATUS, we began by merging all ATUS
data with the corresponding CPS data. For a given individual, the CPS data of-
ten contain location at the county level. This variable is censored for individuals
living in counties with fewer than 100, 000 residents. When county is available,
we assign the county centroid as an individual’s location. We have county lo-
cation for approximately 44% of ATUS observations. For an additional 28% of
observations, we observe location at the level of Census CBSA, a small group of
counties in the same metropolitan area. In total, we are able to geocode 72% of
observations at the sub-state level. For the remaining 28% of observations, ATUS
contains location at the state level. We assign the 2010 population-weighted state
centroid (computed by the Census) as the location for these individuals. In all
cases where we refer to Federal Information Processing Standards (FIPS) codes,
we are referring to either the county (FIPS 6-4) or CBSA-level code, if available,
or the state level code (FIPS 5-2) where more detailed location is unavailable.

Nighttime sleep is our primary sleep measure. We remove any sleep that starts
and ends during daylight hours on the date of diary entry. This will exclude
naps, which might be an adaptation strategy for some short sleepers, however
it also removes night-shift workers, for whom the sunset instrument should not
be relevant. Empirically, our point estimates are practically unchanged by the
exclusion of daytime sleep, but precision increases substantially. ATUS gathers
data on all sleep during the course of a single 24 hour period for each individual,
so there are potentially other ways to calculate naps, and our results are robust
to alternative definitions.

Our primary wage measure is “usual weekly earnings” as reported in ATUS.
This variable is defined for all respondents who have positive labor income and
are not self-employed. It is top-coded above $2,884.61. We also estimate a
version of our model including only workers who receive an hourly wage, “hourly
earnings at main job” as reported in ATUS. This variable is likewise top-coded
at the level such that hourly earnings multiplied by usual weekly hours equals
$2,884.61. Some control variables (e.g. occupation codes) appear in both ATUS
and CPS files. Where possible we use ATUS variables, which are more recent.
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Our preferred regression specifications include a set of 22 occupation dummies or
shares based on the ATUS “trdtocc1” variable, which categorizes the respondent’s
main job. Examples include “education, training, and library occupations” and
“food preparation and serving related occupations.”

The main shortcoming of ATUS is that it asks a new cross section of indi-
viduals for time use diaries each year, so we cannot construct an individual-level
panel. In addition, the sample is not balanced over the year within a location.
To address this potential problem in our long-run analysis, we collapse ATUS
to a cross section in locations. For a more detailed description of ATUS, see
Hamermesh et al. (2005). Importantly, ATUS also releases the exact date that
the survey was conducted. Using this date and respondent location, we are able
to determine sunset time for each individual in the dataset using solar mechan-
ics algorithms from Meeus (1991). We compute annual average sunset time by
computing sunset for each day in an individual’s location, then calculating the
mean over days of the year.

The Quarterly Census of Employment and Wages (QCEW), collected by the
US Bureau of Labor Statistics, includes information on wages and employment
(workers, not hours) at the county level. We collapse a county-level panel (1990-
2013) to a cross section in order to investigate the reduced-form effects of our
long-run instrument. Appendix Table D17 presents summary statistics.

Various robustness checks employ additional datasets. We merge temperature
data from the NCEP/NCAR reanalysis produced by Kalnay et al. (1996) at the
day-location level to test for seasonal confounding. The data is available on a
two-by-two degree latitude-longitude grid. We use the daily average temperature
from the nearest grid point for estimation.

F Results

F.1 Effect of sunset on sleep and earnings

We begin by presenting the effect of sunset time on sleep and earnings. Table D2
shows results from estimating Equations (3) and (4) on daily ATUS data. The
first column shows that the sun setting one hour later within a location reduces
nighttime sleep by roughly 20 minutes per week, which is statistically significant
at the 1% level. We observe about 5 hours of variation in daily sunset time across
our sample, meaning that we identify 1.9 hours per week of intra-annual sleep
variation. Practically, this represents a substantial change in time use—roughly
equal in magnitude to the 2.1 weekly work hours lost by the average individual
during the most recent recession (Aguiar et al., 2013).19 The second column of
Table D2 shows that daily sunset time also affects earnings in a location. A

19Our results suggest that the sunset time influences sleep across the sample, while recession-induced work
time changes are concentrated among those who lose their jobs, so individual responses to these two shocks
will likely differ even if the averages are the same.
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sunset time one hour later reduces earnings by 0.5%, on average. This effect is
also statistically significant at the 1% level.

Table D2: Short-run effects of sunset on sleep and wages from ATUS

(1) (2)
First stage Reduced form

Sleep ln(earnings)
Daily sunset time -0.38*** -0.0051***

(0.042) (0.0017)
Individual controls Yes Yes
Time controls Yes Yes
Location FEs Yes Yes
Observations 61368 61368
Adjusted R2 0.12 0.31

Note: The table shows results from estimating Equation (3) (first
column) and Equation (4) (second column) on ATUS data. The
dependent variable is indicated at the top of each column. Earn-
ings refers to “usual weekly earnings”. Sleep is measured in hours
per week and sunset time in hours. Controls are discussed in
Section 3.1 and are location fixed effects; race indicators; age in-
dicators; a gender indicator; indicators for holiday, day of week,
and year; and occupation indicators. Standard errors, clustered
at the FIPS code (location) level, are reported in parentheses.
Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Both estimates include individual controls for race (indicators for white, black,
Asian, and other), age, age squared, a gender indicator, and detailed occupation
code indicators (23 categories). Time controls are an indicator for holidays, sepa-
rate indicators for each day of the week, and year fixed effects. The location fixed
effects are at the most disaggregated FIPS code level available for each observa-
tion (county, CBSA, or state). The fixed effects absorb any spatial differences
in sunset time, leaving only the seasonal component with which to identify the
coefficient of interest.

We cluster standard errors at the FIPS code level. This clustering reflects
that the exogenous variation is at the group rather than the individual level and
varies by location. As shown in the robustness checks below, clustering at higher
levels does not change the inference. Other robustness checks related to concerns
about seasonal confounders are located in Section 3.3.1.

Table D3 presents estimates of the long-run effects of sunset on sleep (Equa-
tion 5) and earnings (Equation 6) using a cross-section in locations from ATUS.
Column 1 shows that average weekly sleep falls by approximately one hour in
a location where the sun sets one hour later. In the US, time zones create just
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over an hour of variation in long-run sunset time across locations. Thus average
sunset induces about one hour per week of sleep variation, roughly half the vari-
ation induced by the short-run instrument. The second column shows that for a
location where average sunset is one hour later, earnings are more than 4% lower
on average.

Table D3: Long-run effects of sunset on sleep and wages from ATUS

(1) (2)
First stage Reduced form

Sleep ln(earnings)
Avg. sunset time -0.93*** -0.045***

(0.28) (0.017)
Geographic controls Yes Yes
Demographic controls Yes Yes
Observations 529 529
Adjusted R2 0.125 0.811

Note: The table shows results from estimating Equation (5) (first
column) and Equation (6) (second column) on ATUS data. The
dependent variable is indicated at the top of each column. Earn-
ings refers to “usual weekly earnings”. Sleep is measured in hours
per week and sunset time in hours. Controls are discussed in
Section 3.1 and are: an indicator for coastal county, coastal dis-
tance, and their interaction; a ten-piece linear spline in latitude;
mean age and mean squared age; percent female; race and occu-
pation shares; and a five-piece linear spline in population density.
White heteroskedasticity-robust standard errors are reported in
parentheses. Significance indicated by: *** p<0.01, ** p<0.05, *
p<0.1.

We report heteroskedasticity-robust standard errors (White, 1980). We do
not cluster because annual average sunset varies exogenously across locations,
however we show in Section 3.3.2 that our results are robust to clustering standard
errors at the state level. Section 3.3.2 also presents general robustness, along with
a more focused discussion of robustness to potential spatial confounders.

Comparing the two reduced form estimates, one can see that the short-run
estimate is about 10% the size of the long-run estimate. This is within the 0
to 25% range suggested by the measurement error analysis performed in Section
D.1. We find further evidence that timing mismatch attenuates our short-run
results when we estimate using the subsample of workers who receive hourly wages
(reported in Appendix Table D12). Barattieri et al. (2010) show that workers
who receive an hourly wage have a lower earnings change frequency than salaried
workers. Evaluating the attenuation Equation (15) using the uncorrected series
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from Barattieri et al, we would expect the non-hourly worker estimate to be 1.4
times the size of the hourly worker estimate. Indeed, when we compare estimates
from these two sub-samples, the non-hourly worker reduced form estimate is 1.5
times larger.20

Our ATUS results pool locations from all four continental U.S. time zones.
If our hypothesized causal relationships between sunset, sleep, and wages hold,
however, we would expect to find similar results within each time zone. The in-
complete geographic coverage of ATUS limits our ability to explore within time
zones, so we turn instead to the QCEW, which includes all U.S. counties. The
added spatial richness of QCEW also allows us to calculate semi-parametric esti-
mates of the reduced form relationship between average sunset time and wages,
shown in Figure 3. The figure shows a locally-weighted kernel regression of resid-
ual log earnings on residual average sunset time within each time zone.

Figure 3: Long-run effects of sunset on wages in QCEW
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Note: Underlying wage data are a cross-section in locations from
QCEW, 1990-2013. The figure shows the relationship between
residualized log average wage and residualized sunset time for
counties in the Eastern, Central, Mountain, and Pacific time
zones. Time zone borders, defined as longitudes at which multi-
ple time zones overlap, are excluded for the reasons discussed in
Section D.0.2. Residualization is with respect to coastal distance,
latitude, median age, percent female, percent black, and percent
white. Demographic controls are from 2010 Census data.

20This result has further implications for the amount of measurement error in CPS wage variables that is
beyond the scope of this paper.
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Figure 4: Robustness of short-run ATUS reduced form to seasonal controls
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Note: Panel 4a shows estimates of the coefficient on sunset time in the reduced form Equation
(4) when a phase-shifted seasonal control variable is included. The degree of phase shifting is
indicated on the x-axis. Panel 4b shows estimates of the same coefficient when seasonal control
variables with differing relative frequency are included. 95% confidence intervals are shown by
dashed lines and the baseline reduced form estimate is given in red.
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Figure 5: Short-Run estimate versus true estimate
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Note: The figure shows the ratio of the probability limit of the short-run estimate to the true estimate on
the y-axis for a range of possible frequencies of earnings changes on the x-axis. A value of 1 on the y-axis
indicates no bias, while a negative value indicates that the estimated coefficient has the wrong sign.
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Figure 6: ATUS county-level geocoding

Note: The map shows, in blue, locations in the continental United States where we are able to geocode
ATUS records at the county level.
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Figure 7: Non-parametric causal relationship between wages and sleep
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(c) Short-run control function
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(d) Long-run control function
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Note: The top two panels shows two kernel regressions of residual log wage on sleep instrumented
by daily sunset time. Both regressions use an Epanechnikov kernel. The left panel uses the short-
run ATUS sample and a bandwidth of 0.29, and the right panel uses the long-run ATUS sample
and a bandwidth of 0.14. The bottom two panels show control function estimates based on Kim
and Petrin (2013). The left panel again uses the short-run ATUS sample, and the right panel uses
the long-run ATUS sample.
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Figure 8: Short-run estimates of the conditional expectation function

(a) First stage
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(b) Reduced form

6.64

6.65

6.66

6.67

6.68

6.69

R
es

id
ua

liz
ed

 lo
g 

ea
rn

in
gs

-2 -1 0 1 2

Residualized daily sunset time

Note: Created using binscatter. Sunset time is divided into 20 bins by quantile and means for the y-axis
variables are computed within each. Sample and controls are the same as in Table D3, so the fitted line
(dashed) which is estimated using OLS, corresponds to the estimates presented in that table.

54



Figure 9: ATUS occupations do not exhibit seasonality

(a) Occupation shares by month
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(b) Employment rate by month
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Note: Panel (a) Lines show average values of our 23 occupation dummies by month, pooled over the period
2003-2013 for our estimation sample. The occupation exhibiting a modest summer dip in the upper-right
panel is “Arts, design, entertainment, sports, and media occupations.” Excluding this occupation does not
change our results. Panel (b) Line shows average value of dummy that equals 1 if the respondent reports a
non-zero weekly or hourly wage, by month, pooled over the period 2003-2013 for all ATUS respondents.
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Figure 10: Long-run estimates of the conditional expectation function

(a) First stage
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Note: Created using binscatter. Sunset time is divided into 20 bins by quantile and means for the y-axis
variables are computed within each. Sample and controls are the same as in Table D2, so the fitted line
(dashed) which is estimated using OLS, corresponds to the estimates presented in that table.
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Figure 11: Historical time zone sorting
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Note: The figure shows median growth rates between censuses in counties on the eastern and western edges
of the 1883 (left panel) and 1918 (right panel) time zones. Eastern counties are represented by the dashed
line and western counties are the solid line. All data are from Haines and Inter-university Consortium for
Political and Social Research (2010).
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Figure 12: Long-run effects of longitude on wages in QCEW

(a) Raw data
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(b) Residual wage
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Note: The figures show kernel regressions of the log earnings on longitude within time zone. The shaded area
represents a 95% confidence interval around the local linear fit. While the shaded regions for the Pacific and
Mountain time zones intersect, the fitted lines do not have any common support. The gap between Pacific
and Mountain fitted lines is smaller than for the Mountain-Central and Central-Eastern borders because the
Pacific and Mountain zones share fewer common longitudes.
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Table D4: Causal medical studies of sleep and performance

Study Sleep change Study duration Outcome Elasticities

(hr/day) (days) (abs. value)

Belenky et al. (2003) -4, -2, -1, +1 7 PVT speed .7, .5, .7, 0

Cohen et al. (2010) -2.5 21 PVT reaction time 18

Dinges et al. (1997) -2.4 7 PVT lapses 6

Landrigan et al. (2004) +.82 21 Serious medical errors 4.5

Lockley et al. (2004) +.82 21 Attention failures 4

Van Dongen et al. (2003) -4, -2 14 Memory task 3.3, 2.2

Vgontzas et al. (2004) -2 7 PVT lapses 2.9

Mean magnitude 3.9

Note: Table includes all studies that experimentally manipulated sleep for at least 7 days, drawing on reviews
by Van Dongen and Dinges (2005) and Banks and Dinges (2007). Studies of complete sleep deprivation were
excluded. PVT stands for psycho-motor vigilance test, described in Section 2.1.
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Table D5: Robustness of ATUS short-run reduced form estimate

ln(earnings)
No controls

Daily sunset -0.0080***(0.0022)
Work hours quadratic

Daily sunset -0.0049***(0.0016)
State clustering

Daily sunset -0.0051***(0.0019)

ln(earnings)
Quarter FEs

Daily sunset -0.0090***(0.0033)
No holiday season

Daily sunset -0.0060***(0.0020)
Observations 53,053

Temperature control
Daily sunset -0.0063***(0.0024)

Note: The table shows results from estimating Equation (4). Dependent variable is indicated at
the top of each column. Unless otherwise noted, controls, number of observations, and standard
errors are the same as in Table D2. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.
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Table D6: Robustness of long-run estimates

ln(earnings)
Only geographic controls

Avg. sunset time -0.075 (0.049)
Longitude control

Avg. sunset time -0.042** (0.018)
State clustering

Avg. sunset time -0.045***(0.015)
No time zone border counties

Avg. sunset time -0.037 (0.024)
Observations 450

ln(earnings)
Time zone indicators

Avg. sunset time -0.043* (0.023)
No Eastern time zone

Avg. sunset time -0.049* (0.029)
Observations 244

No high-wage cities
Avg. sunset time -0.033* (0.019)
Observations 474

Albouy QOL control
Avg. sunset time -0.032* (0.019)

Note: The table shows results from estimating Equation (6). Dependent variable is the log of
average earnings. Unless otherwise noted, controls, number of observations, and standard errors
are the same as in Table D3. Results reported under “No high-wage cities” exclude workers in San
Francisco, Los Angeles, Chicago, Boston, and New York. Significance indicated by: *** p<0.01,
** p<0.05, * p<0.1.
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Table D7: Effects on log median home value

Log value Log value
Sunset time -0.0640*** -0.0574***

(0.0232) (0.0191)
Geographic controls Yes Yes
Demographic controls No Yes
Observations 2824 2824
Adjusted R2 0.399 0.617

Note: White’s heteroskedasticity-robust standard errors
are reported in parentheses. Significance indicated by: ***
p<0.01, ** p<0.05, * p<0.1. Data are 2010 5-year ACS es-
timates. Sunset time is the average for a given county. Ge-
ographic controls include coastal distance and a ten-piece
linear spline in latitude. Demographic controls include per-
cent female, percent in four race categories, occupation
shares, and a five-piece linear spline in population density.
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Table D8: Waking time use as a function of sunset time

Work time Non-work time
Panel A: Short run
Daily sunset time -0.14** 0.34***

(0.064) (0.066)
Panel B: Long run
Avg. sunset time 0.71 0.27

(0.62) (0.57)

Note: Data are from ATUS. The table shows results from
estimating the first stage Equation (3) (Panel A) and Equa-
tion (5) (Panel B), replacing sleep time with either work
time or waking non-work time as the dependent variable.
Dependent variable is indicated at the top of each column.
Controls, number of observations, and standard errors for
Panel A are the same as in Table D2 and for Panel B are
the same as in Table D3. Significance indicated by: ***
p<0.01, ** p<0.05, * p<0.1.
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Table D9: Waking non-work hours as a function of sunset time, selected groups

Non-work time for
High work hours Low wage earners

Panel A: Short run
Daily sunset -0.054 0.13

(0.18) (0.24)
Observations 3,851 5,930

Panel B: Long run
Avg. sunset -0.38 -1.85

(1.24) (2.92)
Observations 495 433

Note: Data are from ATUS. The table shows results from estimat-
ing the first stage Equation (3), replacing sleep time with waking
non-work time as the dependent variable. In columns 1 and 3 the
sample is workers who work more than 8 hrs on the diary date
(7th percentile) and sleep less than 6 hrs (10th percentile). In
columns 2 and 4 the sample is workers with log wages below 5.66
(10th percentile). Dependent variable is indicated at the top of
each column. Unless otherwise noted, controls, number of obser-
vations, and standard error clustering are the same as in Tables
D2 and D3. Significance indicated by: *** p<0.01, ** p<0.05, *
p<0.1.
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Table D10: IV estimates of the effect of sleep on wages

(1) (2)
Short-run Long-run

ln(earnings) ln(earnings)
Sleep 0.013*** 0.049**

(0.0049) (0.024)
Short-run controls Yes No
Long-run controls No Yes
Observations 61,368 529
Adjusted R2 0.21 0.70
F-stat on IV 94.96 10.66
Elasticity 0.82 2.58

Note: The table shows instrumental variables estimates us-
ing ATUS data and based on the first stage and reduced
form Equations (3) and (4) (column 1) and Equations (5)
and (6) (column 2). The dependent variable is the log of
usual weekly earnings. Controls for column 1 are the same
as in Table D2 and for column 2 are the same as in Table
D3. Significance indicated by: *** p<0.01, ** p<0.05, *
p<0.1.
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Table D11: Bedtime and wake time

(1) (2)
Bedtime Wake time

Panel A: Short-run
Daily sunset time 0.12*** -0.034***

(0.0049) (0.0042)
Panel B: Long-run
Avg. sunset time 0.46*** 0.31***

(0.039) (0.035)

Note: Dependent variable is given at the top of the column. Controls, number of observations, and standard
errors are the same as in Table D2 (Panel A) and Table D3 (Panel B). Significance indicated by: *** p<0.01,
** p<0.05, * p<0.1.
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Table D12: Additional short-run robustness checks

ln(earnings)
Only time controls and location FEs
Daily sunset -0.0066*** (0.0021)

No weekends
Daily sunset -0.0054** (0.0023)
Observations 30169

Education controls
Daily sunset -0.0034** (0.0016)

ln(earnings)
No occupation codes

Daily sunset -0.0046** (0.0019)

Hourly workers only
Daily sunset time -0.0028* (0.0016)
Observations 32192

No 4th or 1st quarter
Daily sunset -0.021***(0.0061)
Observations 30065

Note: The table shows results from estimating Equation (4). Dependent variable is indicated at the top of
each column. Unless otherwise noted, controls, number of observations, and standard errors are the same as
in Table D2. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.
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Table D13: Modified Breusch-Pagan heteroskedasticity test

Residuals2

1/Observations 0.10***
(0.020)

Constant 0.011***
(0.0014)

Observations 529
Adjusted R2 0.045

Note: The dependent variable is the squared residual from estimating the unweighted version of (6). The
variable “1/Observations” is the reciprocal of the number of ATUS interviews underlying a given location-
level observation. Because the modified Breusch-Pagan test relies on the assumption of homokurtosis, we
compute unmodified OLS standard errors. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.
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Table D14: Long-run effects, weighted and unweighted

Panel A: Weighted
First stage Reduced form 2SLS

Sleep ln(earnings) ln(earnings)
Avg. sunset time -0.93*** -0.045***

(0.28) (0.017)
Sleep 0.048**

(0.023)
Observations 529 529 529
Adjusted R2 0.125 0.811 0.699
F-stat on IV 11.22

Panel B: Unweighted
First stage Reduced form 2SLS

Sleep ln(earnings) ln(earnings)
Avg. sunset time -0.86** -0.0013

(0.44) (0.022)
Sleep 0.0015

(0.025)
Observations 529 529 529
Adjusted R2 0.119 0.648 0.650
F-stat on IV 3.86

Note: The table shows results from estimating Equation (6). In Panel A location-level observations are
weighted by the count of underlying ATUS respondents, while in Panel B they are unweighted. The depen-
dent variable is indicated at the top of each column. Earnings refers to “usual weekly earnings”. Controls are
as reported below Table D3. White’s robust standard errors reported in parentheses. Significance indicated
by: *** p<0.01, ** p<0.05, * p<0.1.
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Table D15: Robustness: County characteristics

Log pop. density Pop. change frac. Net migration frac.
Sunset time -0.642*** -0.000931 -0.000980*

(0.110) (0.000814) (0.000533)
Observations 3104 3104 3104
Adjusted R2 0.012 0.000 0.001

Log poverty rate Labor force change Unemployment rate
Sunset time 0.0157 0.00184 -1.412***

(0.0221) (0.00342) (0.169)
Observations 3103 3103 3103
Adjusted R2 -0.000 -0.000 0.023

Note: Dependent variable is indicated at the top of each column. All data are from the Census and
observations are at the county level. Population, net migration, and unemployment rate are all 2012 values.
Poverty is from 2011. Labor force change is from 2000 to 2010. White heteroskedasticity-robust standard
errors are reported in parentheses. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.
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Table D16: Additional robustness of long-run estimates

Reduced form
ln(earnings)

No weekend diaries
Avg. sunset time -0.054** (0.022)
Observations 527
Education controls
Avg. sunset time -0.035** (0.015)
Industry controls
Avg. sunset time -0.050***(0.018)
Hourly workers only
Avg. sunset time -0.061***(0.020)
Region indicators
Avg. sunset time -0.049** (0.019)

Note: The table shows results from estimating Equation (6). Dependent variable is the log of average
earnings. Unless otherwise noted, controls, number of observations, and standard errors are the same as in
Table D3. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.
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Table D17: QCEW summary statistics

Variable Mean Std. Dev.
Weekly wage 492.37 171.88
Weekly wage - goods 609.35 240.53
Weekly wage - services 431.84 161.19
Sunset time 18.38 .94
Observations 285,680

Note: All data are from the Quarterly Census of Employment and Wages at the county level from 1990-2013.
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Table D18: Hedonic robustness

Log value Log value Log value Log value
Sunset time -0.0574*** -0.0599*** -0.0432*** -0.0536***

(0.0191) (0.0154) (0.0162) (0.0188)
Base controls Yes Yes Yes Yes
Industry shares No Yes No No
Educational attainment No No Yes No
Longitude No No No Yes
Observations 2824 2824 2824 2824
Adjusted R2 0.617 0.769 0.740 0.621

Note: The table shows robustness checks for the hedonic results. White heteroskedasticity-robust standard
errors are reported in parentheses. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1. Data are
2010 5-year ACS estimates. Sunset time is the average for a given county. Column 1 reproduces the final
column of our preferred results from Table D7 and “Base controls” denotes the controls from that model.
Additional controls employed in this table are a 3-piece linear spline in coastal distance, 13 industry shares,
and longitude.
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Table D19: QCEW reduced form estimates

ln(avg. wage) ln(avg. wage) ln(avg. wage) ln(avg. wage)
Sunset time -0.203*** -0.159***

(0.0213) (0.0225)
Pacific×sunset -0.779*** -0.630***

(0.164) (0.150)
Mountain×sunset -0.115 -0.189**

(0.0829) (0.0813)
Central×sunset -0.140*** -0.0828***

(0.0267) (0.0289)
Eastern×sunset -0.290*** -0.247***

(0.0380) (0.0442)
TZ dummies Yes Yes Yes Yes
Coastal distance Yes Yes Yes Yes
Demographic controls No Yes No Yes
Observations 2,409 2,409 2,409 2,409

Note: The table shows the linear regression analogue of Figure 3. Heteroskedasticity-robust standard errors
are reported in parentheses. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1. Data are from the
BLS Quarterly Census of Employment and Wages 1990-2013. Sunset time is the quarterly county average.
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