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Abstract

We provide a model of boundedly-rational, multidimensional learning and characterize

when beliefs will converge to the truth. Agents maintain beliefs as marginal probabilities

rather than joint probabilities, and agents’ information is of lower dimension than the model.

As a result, for some observations agents may face an identification problem affecting the role

of data in inference. Beliefs converge to the truth when these observations are rare, but beliefs

diverge when observations presenting an identification problem are frequent. Robustly, two

agents with differing priors who observe identical, unambiguous information may disagree

forever, with stronger disagreement the more information received.
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1 Introduction

People disagree and sometimes in big, persistent ways: people disagree about which policies best

achieve outcomes, there is substantial disagreement among professional forecasters and central

bankers regarding outlooks for macroeconomic variables,1 and many patterns in financial mar-

kets strongly suggest investor disagreement (Hong and Stein, 2007). Furthermore, disagreements

sometimes grow as people see the same information and continue to disagree. There is ample em-

pirical evidence that people sometimes interpret evidence differently, whether they are Bayesian

updaters or otherwise. 2 And yet, in many cases disagreements do not grow, and people appear to

perceive evidence in similar ways (Gerber and Green, 1999). In this paper, we provide a model of

multidimensional learning that can explain why disagreements can persist or even grow as agents

observe identical information. Specifically, an agent’s beliefs may differ from the true probabil-

ities even after observing arbitrarily large amounts of information, and what beliefs converge to

may depend on an agent’s initial beliefs. As a result, observing common information can lead to

permanent divergence in beliefs given arbitrarily small initial disagreements.

Our analysis requires two ingredients. First, agents sometimes face an identification problem

for doing inference. We consider a multidimensional learning problem in which the world is of

higher dimensionality than the signals (or information) people observe. In the sense of Benoı̂t and

Dubra (2018), some signals are “equivocal,” meaning that the same signal can rationally be used

to update beliefs in different ways depending on people’s priors. Second, agents update beliefs

about marginal probabilities, not the full joint-distribution. Because of the high dimensionality

of the problem, boundedly-rational agents reduce the dimensionality of their learning problem

by maintaining beliefs over marginal distributions and reconstructing joint distributions from the

marginals using a fixed correlation (namely, independence).
1Andrade et al. (2016) find that disagreements among FOMC members about projections for the Fed Funds Rate

and other variables are even greater than the disagreements among forecasters in the Survey of Primary Dealers.
The point is not that central bankers and professional forecasters disagree, but that there is disagreement even within
category (in which presumably there are similar information sets and objectives). Furthermore, economists rarely
switch from hawks to doves (Malmendier et al., 2017).

2 For example, Hirshleifer and Teoh (2003) document how the presentation of accounting information affects its
interpretation, and Malmendier et al. (2017) show that personal experiences of inflation strongly influence the hawkish
or dovish leanings of central bankers, which is evidence that priors influence how FOMC members interpret the same
information. See Benoı̂t and Dubra (2018) for a thorough discussion of the literature.
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Our modification is driven by the observation that in multidimensional environments, main-

taining a full joint prior distribution may be cognitively taxing. Fully rational agents would use

Bayes’ rule to update the joint distribution over the full state space rather than just considering the

marginals and multiplying appropriately to form a joint distribution. Hence, beliefs about states

would rarely be independent even if the underlying states are. Indeed, developing and maintaining

a prior over the whole joint distribution of states of the world may be regarded as extremely compu-

tationally expensive, as suggested by Kominers et al. (2016). Additionally, Enke and Zimmermann

(2017) provide strong experimental evidence that many people effectively ignore the need to up-

date correlation when updating beliefs, and this effect is driven by complexity in the environment

rather than the computational skills of the agents.

These two ingredients interact in important ways and we discuss them in turn. First, equivocal

observations may lead to greater disagreement because agents use their current beliefs to update

marginal beliefs. How might this mechanism look in reality? Consider two examples:

(i) A liberal and a conservative are watching the news together under a conservative government.

After several reports that the country is weakening, the liberal says, “The government is

failing us.” The conservative, responds, “No, more evidence of the media’s liberal bias.”

(ii) Two economists, a Keynesian and a Neoclassical, are discussing the results of a recent stim-

ulus package. The new GDP results are sluggish. The Neoclassical says, “Goes to show that

stimulus doesn’t work.” The Keynesian replies, “Oh no, goes to show that the economy is

much worse than we thought” (perhaps later adding that the stimulus was poorly designed).

In these cases, there are a number of underlying factors that contribute to the observed signals,

but the signals are of lower dimensionality than the world. For the liberal and the conservative,

the politics of news reflect the state of the country and how credibly that is reported. For the

economists, GDP is a function of the fundamental strength of the economy, the effectiveness of

stimulus, and potentially how well designed that stimulus was. But the observations do not identify

those underlying variables. In each case, the exact same signal is interpreted in completely different

ways, but the observers are not rejecting the information, nor is the information ambiguous or

unclear: they are simply using the evidence in different, rational ways. Each observer uses the
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information to make inference about different underlying variables. The Keynesian infers that

weak GDP means something about the economy, while the Neoclassical infers that weak GDP

means the fiscal multiplier is low.

As we formalize below, the previous examples illustrate how agents reason when updating

marginal, not joint, probabilities. The news-watchers are (together) correct that the news reports

suggest either that “country weak+media truthful” or “country strong+media biased.” But agents

updating marginal beliefs effectively consider changing only one “dimension” of their beliefs at a

time. So the liberal, believing “weak+truthful”, would compare that belief to “one-dimensional

perturbations”—namely, “strong+truthful” and “weak+biased.” The liberal rightly concludes that

these beliefs are bad explanations of the news reports and thus chooses to stick with and even

reinforce the initial belief. But the conservative, starting with different priors, would reason in

precisely the same way to reach the opposite conclusion! However, if the two people instead

considered the joint distribution, they would recognize that their beliefs about the country and

the media should be correlated: the reporting suggests “weak+true” or “strong+biased.” If they

recognized this correlation and focused on only these two states, then they would have a chance of

reaching agreement.

Second, agents would be justified in maintaining only marginal beliefs if there were no identifi-

cation problems (i.e., if the signal space was sufficiently rich). If agents received signals separately

for each dimension, then they could consider beliefs about each of those dimensions separately.

However, when agents face identification problems then inference requires use of a joint distribu-

tion, which must somehow be reconstructed from marginals. As we discuss in greater detail below,

one can think of misspecified learning as using the wrong method (i.e., copula) to reconstruct the

joint distribution from marginals. In general, correctly reconstructing joint probabilities requires

updating the method (i.e., copula) in light of new information.

Whether disagreements can persist depends on the extent to which agents can use the same

observations to draw inference about different variables. Since agents may update beliefs differ-

ently when observing equivocal observations, the likelihood that disagreements persist depends

on the severity of the identification problem and differences in their initial priors. When signals
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sufficiently identify the model, beliefs converge to the truth. But when identification problems are

sufficiently severe, with many observations updated beliefs may converge but not necessarily to

the true values (i.e., divergence). When divergence occurs, beliefs are likely to converge to values

confirming initial beliefs whether those beliefs are correct or not. Thus, agents with heterogeneous

priors may have beliefs diverge in light of common information, and agents with common priors

may have beliefs converge to something other than the truth.

The rest of the paper is structured as follows. The remainder of this section discusses the

related literature. Section 2 presents the baseline binary, two-state model, with theoretical results

to characterize the limiting properties of beliefs. Section 3 presents a general version of this simple

model and shows that the same intuitions hold in a more general setting. Section 4 discusses the

setup and our results. Section 5 concludes.

Related Literature

Several papers have considered how observing a small number of signals can increase belief dis-

agreement. Benoı̂t and Dubra (2018) show that an equivocal signal will lead to population po-

larization, which is more systematic than pairwise polarization. We use equivocal signals as a

primary ingredient and show that polarization results may hold asymptotically when people update

marginal beliefs and equivocal observations are sufficiently frequent. Also in this literature, Baliga

et al. (2013) show that polarization can occur as an optimal response to ambiguity aversion, and

Andreoni and Mylovanov (2012) consider polarization about optimal actions when agents receive

two-dimensional information to form a one-dimensional opinion. Generally, disagreements in-

crease for signals with intermediate values but not for extreme values, which are more informative

of the underlying structure. Similar observations are made by Dixit and Weibull (2007) and Jern

et al. (2014).

Several papers study disagreement in Bayesian or boundedly rational settings. In Acemoglu

et al. (2016), agents face an identification problem regarding how to interpret signals because

agents do not know the noisiness of signals. In their model agents believe they will learn the

true state asymptotically but not that they will agree asymptotically (the likelihood ratios of their
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beliefs need not converge). In our model agents need not learn the truth asymptotically, and agree-

ment may not follow even when learning does. Fryer et al. (2018) consider when agents may

receive “ambiguous” signals, which are interpreted in light of current priors (as in our model)

and “stored” as an unambiguous signal. In our model signals are perfectly clear, but equivocal

signals may be interpreted as evidence for several states of the world depending on current prior

beliefs (i.e., dimensionality provides an explanation for why some signals may appear ambiguous).

Finally, Baumeister and Hamilton (2015) consider VAR estimation in which sign restrictions par-

tially identify the model (set identification). They show that Bayesian inference may continue to

depend on priors even on identified sets and with arbitrarily large samples.

A critical ingredient in our model is that agents store only a fraction of the information in the

joint distribution (see for example Gabaix (2014)). Any joint distribution can be decomposed into

marginal probabilities together with a linking function (i.e., a copula) determining how to recon-

struct joint probabilities from marginals. However, to correctly track the information in a joint

distribution requires updating the parameters of the copula following observations. Thus, misspec-

ification in our paper is that agents use a fixed, or static, copula, whereas a fully specified learning

process would allow for a flexible, time-varying copula. Within this marginals-copula structure,

our model features a boundedly-rational application of Bayes’ Rule with common, exogenously

determined observations. Other papers provide theories of inconsistent learning with a behavioral

assumption (i.e., confirmatory bias, overconfidence, etc.), social learning, or endogenous signals.3

Finally, models allowing for asymptotic disagreement where Bayes’ rule is used classically

require carefully selected prior beliefs (disjoint support): agents that put belief zero on the truth will

never learn the truth (see Esponda and Pouzo (2016) for a recent economic treatment of Bayesian

learning with a misspecified prior). In our model, divergence is driven by the severity of the

identification problem, which is a property of the fundamental state (not the coincidence of initial

priors), and our model allows us to say when agents are guaranteed to learn the truth regardless of

their priors.

3See for example Rabin and Schrag (1999), Eyster and Rabin (2010), Eyster et al. (2014), Schwartzstein (2014),
Sundaresan and Turban (2014), Heidhues et al. (2015), Ortoleva and Snowberg (2015), and Sethi and Yildiz (2016).
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2 A Simple 2×2 Model

This section provides a binary, 2-state model and characterizes asymptotic properties of boundedly

rational multidimensional learning. This section illustrates the essential intuitions for our results

in the general N-dimensional discrete model, which is presented in Section 3.

2.1 Setup

Time is indexed by n = 1,2, .... We suppress time subscripts when doing so does not create confu-

sion.

Environment In each period, there are two random variables tn and sn that can each take values

in {0,1} (e.g., “failure” or “success” for each variable). The random variables are independently

distributed, with distributions parameterized by two underlying state variables θ and σ : θ deter-

mines the frequency of success pθ for tn, σ determines the frequency of success qσ for sn, and

realizations are independent across time. The state variables θ and σ also take binary values in

{H,L} (think “high” or “low” success rates). In particular, t-successes (t = 1) occur with higher

probability when θ = H, and s-successes occur with higher probability when σ = H. We denote

the higher probabilities by pH and qH , and the lower probabilities by pL and qL. Thus,

Pr(t = 1|θ = H) = pH > pL = Pr(t = 1|θ = L),

Pr(s = 1|σ = H) = qH > qL = Pr(s = 1|σ = L).

All probabilities pH , pL,qH ,qL lie strictly between zero and one.

The random variables t and s jointly determine a signal Yn = y(tn,sn). Specifically,

y(t,s) = t + s.

In period n an agent observes Yn only but not the values of tn and sn. Clearly, a realization of Y = 2

or Y = 0 reveals the values of the random variables (i.e., both 1 or both 0). But a signal of Y = 1 is
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“equivocal” in the sense of Benoı̂t and Dubra (2018): such an observation yields an identification

problem since there are two possible combinations of random variables t and s that would provide

that signal.

Hence, the state variables θ and σ determine the frequency of observations Yn ∈{0,1,2}. Com-

paring relative frequencies across states: when (θ ,σ) = (H,H), then observations are relatively

more likely to be twos and less likely to be zeroes; when (L,L), zeroes are relatively likely and

twos unlikely; when (L,H) or (H,L), ones are comparatively likely, and these two states may differ

from each other.

Beliefs An agent holds initial beliefs P0 = Pr(θ = H) and Q0 = Pr(σ = H) and initial beliefs

about θ and σ are independent. Agents may disagree about the likelihood of θ and σ , but not

about how those states translate into realizations of t, s, or Y . In other words, the mapping from θ

and σ to t and s is common knowledge.

Agents are boundedly rational in the following way. Rather than keeping track of the joint

distribution of (θ ,σ), which is a 2× 2 matrix, agents store only the marginal probabilities P and

Q. Given marginal beliefs, agents then reconstruct a joint distribution by assuming that the beliefs

about the two states are independent. Hence, an agent believes the probability of (θ ,σ) = (H,H)

is PQ and the probability of (θ ,σ) = (H,L) is P(1−Q).

Note that keeping track of the full joint distribution requires three numbers: either the proba-

bilities of three of the (θ ,σ) states, or the two marginal probabilities together with the correlation

coefficient to determine how marginal probabilities determine joint probabilities. Our boundedly

rational agents keep track of only two values (the marginals) and neglect the correlation coefficient

(keep it fixed). As we will discuss, even though the values of the aggregate states θ and σ are

independent, that need not mean that an agent’s beliefs about the states remain independent after

receiving observations.

Belief Updating Storing beliefs in this way, agents use Bayes’ Rule to sequentially update their

marginal beliefs about the two states variables, using only the current observation and the current

prior but not the complete history of observations. Thus, Pn and Qn depend on Yn, Pn−1, and Qn−1,
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with joint probabilities determined by multiplying marginals appropriately.

It is convenient to derive the evolution of beliefs using odds ratios OP = P
1−P and OQ = Q

1−Q .

Let OP(Y ) and OQ(Y ) denote the updated odds ratios after observing Y . For observations Y = 2

and Y = 0, Bayes’ Theorem applied to the marginal probability P yields

OP
n+1(2) =

pH

pL
OP

n and OP
n+1(0) =

1− pH

1− pL
OP

n ,

and symmetric (with qH and qL) for Q. Hence, for these observations, agents update beliefs using

the same likelihood function, becoming more optimistic/pessimistic about the aggregate states at

the same time. Figure 1 (not drawn to scale) shows how beliefs move together in these cases. The

figures plot beliefs in (P,Q) space with arrows indicating the (rough) directions that agents update

beliefs. All agents update posteriors toward the same target, as standard learning models suggest,

though posteriors will still differ because priors differ.

(0,0)

(0,1)

(1,0)

(1,1)

P

Q

Updating marginals after Y = 2.

(0,0)

(0,1)

(1,0)

(1,1)

P

Q

Updating marginals after Y = 0.

Figure 1: Updating marginal beliefs after Y = 2 or Y = 0. All agents become more opti-
mistic/pessimistic about both states θ and σ , regardless of initial beliefs, jointly moving toward
(H,H) for Y = 2 and to (L,L) for Y = 0.
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However for the equivocal signal Y = 1, Bayes’ Theorem yields

OP
n+1(1) =

(
pH(1−qn)+(1− pH)qn
pL(1−qn)+(1− pL)qn

)
OP

n , OQ
n+1(1) =

(
qH(1− pn)+(1−qH)pn

qL(1− pn)+(1−qL)pn

)
OQ

n ,

where (subscripts suppressed) p = PpH + (1−P)pL and q = QqH + (1−Q)qL are the ex-ante

expected realizations of t and s in a period, given beliefs P and Q and assuming that beliefs about

the aggregate states θ and σ are independent. Crucially, the likelihood ratios in this case depend on

beliefs P and Q, and as a result equivocal realizations can lead to divergent posteriors (i.e., beliefs

moving farther apart) when initial beliefs are sufficiently divergent (see Benoı̂t and Dubra, 2018).

Figure 2 (not drawn to scale) illustrates how beliefs diverge after observing Y = 1 depending on

initial beliefs. As an example, when pH = qH and pL = qL, then for P > Q, after observing Y = 1

the agent will increase P and decrease Q, but the opposite will occur when Q > P, and when P = Q

beliefs will not change. More generally, if pH 6= qH and pL 6= qL then there exists a “divergence

curve” such that beliefs “near” (L,H) update toward (L,H), and similar for beliefs near (H,L).

(0,0)

(0,1)

(1,0)

(1,1)

P

Q

Figure 2: Updating marginal beliefs after Y = 1. Change in optimism/pessimism about each state
depends on initial beliefs. Initial relative beliefs about P,Q get reinforced, moving either toward
(H,L) or toward (L,H); pH = qH and pL = qL.

Divergent updating in light of Y = 1, an example of the result in Benoı̂t and Dubra (2018),

should not be surprising. When Y = 1, agents cannot identify the underlying values of t and s but

instead use their beliefs to infer which values of t and s are most likely. When P = Q and states
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are symmetric, an agent believes t = 1 or s = 1 are equally likely, and so Y = 1 provides no infor-

mation about the relative likelihood of θ and σ . Crucially, however, for a classical joint-updating

Bayesian, Y = 1 does provide information about the joint distribution of (θ ,σ). In particular, the

states (L,H) and (H,L) would be relatively more likely than (H,H) and (L,L), since these states

are relatively more likely to generate two (or zero) successes than just one.

Contrast with Classic Bayesian Updating Before proceeding to the asymptotic results, it is

worth contrasting how learning works if agents maintain the full joint distribution and update

using Bayes in the classical way (i.e., “joint-updating”). With joint-updating, beliefs converge to

the truth whether agents update sequentially or using the full history. To simplify, suppose for

now that the aggregate states θ and σ are nearly symmetric, so that pH ≈ qH and pL ≈ qL. (The

following reasoning carries over if the states are asymmetric, with some slight complications.)

Now consider how beliefs would rationally update after a string of observations. If many ob-

servations are Y = 0, then beliefs would update so that the most likely state is (L,L), the least likely

state is (H,H), and both (L,H) and (1,0) may remain somewhat likely (though with enough obser-

vations they would not be). Similarly, if many observations are Y = 2, then beliefs would update

so that (H,H) would be very likely and (L,L) would be unlikely. Figure 3 illustrates the changes

in beliefs of the joint distribution following these observations, where each box corresponds to the

probability of the state in its unique corner (e.g., the top-right box is Pr(H,H) and the lower-right

box is Pr(H,L)). Notice that in both of these cases, beliefs about θ and σ would become positively

correlated with joint-updating. Importantly, the belief that Pr(H,H) is higher and Pr(L,L) is lower

can be approximated by letting P and Q each be higher (or lower). Indeed, this is how marginals-

updating would work in light of these observations. Hence, the joint distributions in these cases

can be nearly reconstructed using independent beliefs together with appropriate marginals.

In contrast, a string with many Y = 1 would make the intermediate states (L,H) and (H,L)

most likely, because in these states success for one variable together with failure for the other is

likely. Similarly, the beliefs about states (L,L) and (H,H) would be low. In this case, beliefs about

θ and σ would be negatively correlated, as illustrated in Figure 4. However, marginals-updating

would move beliefs strictly toward either (L,H) or (H,L), depending on beliefs. When P > Q,
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σ = H - ↑
σ = L ↓ -

Pr(θ ,σ) θ = L θ = H

Updating beliefs after Y = 2.

σ = H - ↓
σ = L ↑ -

Pr(θ ,σ) θ = L θ = H

Updating beliefs after Y = 0.

Figure 3: Joint-updating beliefs become positively correlated after observing Y = 2 or Y = 0.
Beliefs move in same direction as marginals-updating beliefs.

then beliefs would move toward (H,L), as illustrated in the figure.

σ = H ↑ ↓
σ = L ↓ ↑

Pr(θ ,σ) θ = L θ = H

Joint-updating beliefs.

σ = H ↓ −
σ = L − ↑

Pr(θ ,σ) θ = L θ = H

Marginals-updating with P > Q.

Figure 4: Joint-updating beliefs become negatively correlated after observing Y = 1. Marginals-
updating beliefs move strictly toward (H,L), reinforcing initial beliefs.

Crucially, with independent beliefs over θ and σ (zero correlation) no changes in marginal

probabilities are able to replicate this change in the joint distribution. With independent beliefs,

the probability of either (H,L) or of (L,H) can be high, but both cannot be high at the same time

without the probabilities of (H,H) and (L,L) also being high. Thus, a marginals-updating agent

is not able to focus on the combination of states which are observationally similar, namely when

θ 6= σ . If pH 6= qH and pL 6= qL, then a rational, joint-updating Bayesian will “quickly” learn that

θ 6= σ , since 1’s are prevalent. Once the joint-updating agent has narrowed the states down to these

two, the agent will be able to learn the difference between them over time by observing any slight

difference in the frequencies of Y arising from differences among pH , pL, qH , and qL. As we will

discuss, a boundedly rational, marginals-updating Bayesian, who assumes a constant correlation

of beliefs, does not update beliefs in this way.

This example illustrates a key difference between joint- and marginals-updating. Marginals-

updating agents consider changes in only one dimension of beliefs at a time rather than jointly

considering how to update P and Q together. Accordingly, beliefs are restricted in how they can
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update: correlation is fixed but should update, and so belief updates are effectively limited to “local

perturbations.” In contrast, joint-updating agents consider how the probability of each state ought

to change, and so marginal probabilities change in a correlated manner.

2.2 Theoretical Results in the Simple Model

In this section we characterize when beliefs are guaranteed to be consistent (i.e., they converge to

the truth), and when inconsistent learning is possible (i.e., beliefs need not converge to the truth).

2.2.1 Consistent Learning

First, agents’ beliefs converge to the correct beliefs whenever θ = σ .

Proposition 1. If (θ ,σ) = (H,H) or (L,L), then (respectively) Pn,Qn
a.s.→ 1 and Pn,Qn

a.s.→ 0.

In these cases, unequivocal observations (Y = 2 or Y = 0) are relatively most likely. The states

(H,H) and (L,L) are not observationally similar to any other state. Thus, the (relatively) most

frequent observations provide clear indication of the state. Since the likelihood functions for Y = 0

and Y = 2 do not depend on beliefs, and because these observations are relatively frequent, beliefs

will drift toward the true state regardless of initial beliefs.

However, there is a second observation to be made that will be critical to the analysis in the

general model: when θ = σ , even “local” perturbations of a belief will dominate the prior. Con-

sider many observations of Y = 2 and how an agent would “reason” about the likelihood of the

different states. Suppose the agent first considered the state (L,L) and in light of the evidence asks,

“Are any adjacent states more likely?” or in other words, “Can I change just one dimension and do

better?” Compared to (L,L), both (H,L) and (L,H) appear more likely after many Y = 2 (since

both are more likely to produce successes). Thus, a belief that increases only one of P or Q would

better explain the data. From there the agent may ask the same question starting from (H,L) or

(L,H), and would now be willing to move toward (H,H), since doing so explains the data still

better.

Thus, even if belief updating were restricted to these “local perturbations,” beliefs would nev-

ertheless update toward the true state since these local changes move marginal beliefs in the right
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direction. Even though observations of Y = 2 or Y = 0 should induce positive correlation in beliefs,

an agent will want to update marginals in the same (i.e., correlated) direction, and so marginals-

updating agents will learn the truth even when the correlation of beliefs is fixed.

Even when learning is asymptotically consistent, that need not mean that agents learn at the

same rate (this result is similar to the result in Acemoglu et al. (2016)). When θ = σ , both P and Q

converge to the truth but agents starting with different priors will continue to hold different relative

beliefs about P and Q asymptotically—and those relative beliefs will diverge—even as marginal

beliefs converge to the truth (see Lemma 8).

2.2.2 Inconsistent Learning

In contrast, when equivocal observations Y = 1 are relatively likely, as occurs when θ 6= σ , beliefs

needs not converge to the truth. Divergence may occur when the states (H,L) and (L,H) produce

outcomes that are observationally similar, even if not identical. Thus, in cases when a classical,

joint-updating Bayesian would be able to learn the true state, a boundedly rational, marginals-

updating agent may not learn the truth. Individuals can converge asymptotically to false beliefs

even when states are asymmetric.

Proposition 2. There is a positive measure set of parameters such that for any priors 0 ≤ Q0 <

P0 ≤ 1, with positive probability beliefs do not converge to the true state when θ 6= σ .

Proposition 2 states that robustly there is no guarantee of marginals-updating converging to the

truth. In particular, (i) there exist parameters such that there exist priors such that almost surely

beliefs converge to the wrong values; (ii) there exist parameters such that any priors will converge

to the wrong values with positive probability; (iii) there exist parameters such that some priors are

guaranteed to converge to the wrong values with positive probability.

In light of the consistency result in Proposition 1, what is the intuition for why belief divergence

occurs in this case? First, when θ 6=σ equivocal observations are relatively most frequent, and thus

how agents update beliefs will frequently be determined by their current beliefs and (as discussed

above) will reinforce those beliefs. Second, “local” perturbations of beliefs do not necessarily

dominate a given prior. If an agent believes that (L,H) is likely, neither (L,L) or (H,H) need to
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appear as better explanations of the observed data, in which 1’s are relatively frequent. Thus, an

agent considering (L,H) and restricted to only update one belief dimension at a time would not

choose to do so. Choosing (H,L) over (L,H) requires making two changes to marginal beliefs.

However, if an agent were only considering the two states (L,H) and (H,L) (ruling out the others,

as a classical, joint-updating Bayesian would), then an agent would be willing to update beliefs in

the direction of the state that better explains the observed data (namely, the true state). But since

agents update only marginals, maintaining fixed correlation of beliefs, a belief that (L,H) is likely

may be locally dominant.Thus, marginals may update to make (L,H) more likely and (H,L) less

likely.

These theoretical results are expanded in Appendix A, and in Appendix C we provide simula-

tion evidence indicating that divergence is most likely to occur in a neighborhood of parameters

around symmetry, when the states (H,L) and (L,H) are observationally more similar. Indeed,

divergence is guaranteed when the states are exactly symmetric.

Corollary 1 (Asymptotic belief divergence). Let pH = qH and pL = qL. Suppose θ 6=σ . If P0 >Q0,

then Pn
a.s.→ 1 and Qn

a.s.→ 0 (vice versa if P0 < Q0). Furthermore, suppose one agent holds prior

beliefs with P0 > Q0 and the other has priors with P0 < Q0. Then if θ 6= σ , with probability

1 agents’ beliefs will asymptotically diverge to complete polarization, the first with Pn
a.s.→ 1 and

Qn
a.s.→ 0, and the reverse for the other.

In the perfectly symmetric case, a joint-updating Bayesian would learn that θ 6= σ (those joint

probabilities would sum to 1), but beliefs would not converge toward one state or the other because

they are observationally equivalent—the data are not rich enough to distinguish. In contrast, a

marginals-updating agent will converge to certainty, with posterior beliefs confirming initial rela-

tive priors (i.e., complete polarization occurs asymptotically).

3 General Model

This section describes a general multivariate model with dimension d ≥ 2. As in the simpler

model, the model we describe here is almost identical to typical Bayesian inference with the only
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modification being that our agents do not retain a joint distribution over a multidimensional state

space but store only marginals.

3.1 Setup

Let there be a multivariate state of the world θ = (θ1, . . . ,θd) taking values in a discrete set Θ =

∏
d
i=1 Θi. Let Yn ∈ R be the period n signal and Fθ be its distribution function when the state of

the world is θ ; we suppose that Yn is drawn independently from Fθ in every period. Let fθ denote

the corresponding density of Yn. We assume that a true state θ ∗ ∈ Θ is randomly chosen ex-ante

from a product probability distribution P = P1×·· ·×Pd on Θ = Θ1×·· ·×Θd . Initial priors W i
0

are fixed and define a product probability distribution over Θ.

As before, in every period the agent updates the marginal probabilities for each θi and retains

only those marginals, not the full joint distribution. Let W i
n(θ̂i) ≡Wn(θi = θ̂i) denote the agent’s

period-n belief that θi = θ̂i and W i
n the resulting marginal measure over Θi. These will be the objects

which are updated in every period. Applying Bayes? theorem requires a joint distribution, so the

agent attempts to construct the joint distribution using some choice of copula Ψ, which we define

to be a function mapping d marginal prior distributions W 1
n , . . . ,W

d
n to a joint prior distribution:

Wn(θ = (θ̂1, . . . , θ̂d)) = Ψ
(
W 1

n , . . . ,W
d
n
)
(θ̂1, . . . , θ̂d). (1)

We suppose the agent uses the independence copula to reconstruct a joint distribution; hence,

Wn≡∏
d
i=1W i

n is the induced product probability measure over Θ (i.e., the agent multiplies marginal

probabilities). Let Wn+1(θ̂i) ≡Wn+1(θ̂i|Yn+1) denote the agent’s updated prior upon observing

signal Yn+1 with prior Wn. In place of standard probability notation, we use Wn to denote the

agent’s beliefs over marginals and as an induced probability measure on the space Θ. More pre-

cisely, for every n, Wn is a measure on Θ reflecting the agent’s prior over Θ given the sequence

of observations Yn,Yn−1, . . .. It is derived along Bayesian updating rules, but for the restriction

that agents update marginal beliefs in every period using some function (i.e., copula), repre-

sented here by Ψ, to reconstruct the joint prior. We use standard probability notation for W , e.g.
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Wn(θi = θ̂i) ≡Wn(
{

θ ∈Θ : θi = θ̂i
}
). Appendix B provides derivations as well as a motivation

for storing marginal probabilities and using the independence copula as a result of scarce memory

(Remark 1).

3.2 Theoretical Results in the General Model

In the general model, we now consider situations under which the learning problem enables the

agent to learn the true state, and those in which learning fails. Statements of “almost surely” are

to be interpreted as with respect to the resulting probability distribution over the space of possible

signal sequences {Yn}∞
n=1.

3.2.1 Consistent Learning

We have seen in the 2×2 model that agents would learn the true state whenever the state is either

(L,L) or (H,H) (i.e., learning is asymptotically consistent). We discussed two characteristics of

these states that made learning with marginals-updating possible: (i) the states were observation-

ally distinct from other states (i.e., the identification problem was not severe because equivocal

signals were relatively rare), and (ii) even local perturbations of beliefs would lead agents to prefer

the true state regardless of what beliefs they start with. In this general setting, marginals-updating

agents will learn the true state when these two conditions, formally defined, are met for that state.

In order for agents to learn a state θ ∗ thus requires the following conditions. First, we require

that the identification problem not be severe for the state. Extreme values of Y must be strong

evidence for the state θ ∗ in terms of the likelihood ratio. In the 2×2 model, observations of 2 were

strong evidence in favor of the state (H,H), and observations of 0 in favor of the state (L,L).

A1: For the state θ ∗ = (θ ∗1 , . . . ,θ
∗
d ) the likelihood ratio fθ∗(y)

fθ (y)
is non-decreasing in y for all θ ∈Θ,

and W0(θ
∗) = ∏

d
i=1W i

0(θ
∗
i )> 0.

Condition A1 is the condition that the state is observationally distinct from other states (i.e., the

identification problem is not severe). The condition implies that the state θ ∗ is easy to learn in the

sense that higher (or lower) observations of Y provide a stronger signal that the true state is θ ∗, and
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θ ∗ generates a relatively high frequency of high (or low) observations of Y . The assumption also

requires that the agent’s initial prior places positive mass on θ ∗.

Second, we require that for any belief, even local perturbations of beliefs will favor the state

θ ∗ in the sense of being better explanations of the distribution of observations Y .

A2: For any θ = (θ1, . . . ,θd), let Ti(θ) = (θ1, . . . ,θ
∗
i , . . . ,θd) be θ with the ith coordinate replaced

by θ ∗i . Then FTi(θ)(y) first-order stochastically dominates Fθ (y) for all θ and i.

Condition A2 states that switching a single dimension θi to its true value θ ∗i implies a better

statistical explanation of the signals. In the 2× 2 case, we said that when the true state is (H,H)

then a local perturbation of the belief (L,L) would provide a better explanation of the observed

data, as would local perturbations of (H,L) and (L,H). This condition is the multidimensional,

generalized version of that insight.

Finally, to guarantee learning in these cases requires an innocuous but technical regularity

condition bounding the distribution of signals, which we discuss further in Appendix B.2:

A3: |Θ| < ∞. There is a set A ⊂ R satisfying Pr(y ∈ A|θ = θ ∗) > 0 such that for all y ∈ A,

i ∈ {1, . . . ,d}, and θ ∈Θ,

fTi(θ)(y)
fθ (y)

≥ 1 and
fθ∗(y)
fϑ (y)

> 1 for all ϑ 6= θ
∗.

Given these conditions, agents will learn the true state θ ∗ asymptotically. States satisfying these

conditions are sufficiently observationally different from other states so that updating marginal

probabilities with a fixed copula is sufficient to distinguish these states from other states.

Theorem 1 (Consistency). Suppose that fθ is continuously differentiable for every θ , agents up-

date marginals Wn according to the independence cupola, and the true state is θ ∗. If A1 and A2

hold then almost surely limn→∞Wn(θ
∗
i ) exists and is strictly positive. If A3 also holds then for

every i, Wn(θi = θ ∗i )
a.s.→ 1.

The conditions for consistent learning are more restrictive than the conditions for the incon-

sistency argument below (Theorem 2). This might indicate that when updating occurs along
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marginals, with a fixed copula, asymptotic inconsistency is more common than consistency of

beliefs. However there is one situation in which the conditions arise naturally, which is when the

aggregate signal Y is a sum of d random variables Xi for which the distribution of Xi under θ ∗i first-

order stochastically dominates the distribution under other θi, for all i = 1, . . . ,d. The following is

a simple subcase of Theorem 1 which arises when the distribution of Y is a convolution of the Xi

distributions:

Corollary 2. Let Xi∼Gθi for every i where Gθi has continuously differentiable density gθi . Suppose

that y = ∑
d
i=1 Xi (with corresponding density fθ = gθ1 ∗ · · · ∗ gθd ) and for all i, θi ∈ Θi, the ratio

gθ∗i
(xi)

gθi(xi)
is weakly increasing. Then Wn(θ

∗
i ) is a submartingale for every i which converges almost

surely in (0,1].

This result is illustrated in the 2×2 case by Proposition 1.

3.2.2 Inconsistent Learning

Consistent learning required that the identification problem not be severe and that local perturba-

tions of beliefs around any state would favor the truth. Inconsistent learning, thus, may arise if

there is an identification problem and if local perturbations of beliefs around some states are not

guaranteed to favor the true state.

First, we require that there is no observation of Y that would perfectly identify any state θ :

B1: Densities are relatively bounded:

sup
y,θ ,θ ′

fθ (y)
fθ ′(y)

< ∞. (2)

Condition B1 merely states that no aggregate state is perfectly identified by any observation Y .

This is a very general restriction. The underlying random variables X may be perfectly revealed by

Y , but that is not the same as perfectly identifying the underlying state θ . In the 2×2 model, no Y

perfectly identified (θ ,σ) even though Y = 2 and Y = 0 perfectly reveal the values of the random

variables t and s. Importantly Condition A1 and condition B1 can both hold at the same time.

19



Second, recall that an agent’s beliefs may converge to the wrong state θ̂ if local perturbations

of a belief vector near θ̂ (moving only a single dimension of a belief at a time) do not provide a

better explanation of the data. The true state θ ∗ would provide the best explanation of the data,

but moving beliefs to θ ∗ from θ̂ would require changing multiple dimensions in the belief vector.

This is the essence of Condition B2, which requires defining some objects before we can state it

formally. Importantly, Condition B2 will impose properties on the behavior of beliefs around θ̂

when the true state is θ ∗.

Consider neighborhoods of a state θ̂ ∈Θ that may be obtained by changing one of its elements

at a time (i.e., “local perturbations”). For every i = 1, . . . ,d, we set

Gi(θ̂) = {θ ∈Θ : θ−i = θ̂−i,θi 6= θ−i},

i.e., for all θ ∈ Gi(θ̂), θ j = θ̂ j for every j 6= i. Given probability densities f , g on a set X with

dominating measure µ , the Kullback-Leibler divergence of f and g is given by

DKL ( f ||g ) =
∫

X
f (x) log

f (x)
g(x)

dµ.

The Kullback-Leibler divergence (relative entropy) is a weighted sum of the log-likelihood ratios

for two distributions, weighted by the frequency of observations, and is a standard measure of

information loss.4 Given these definitions, we can now formally define local dominance.

B2: The belief θ̂ is locally dominant for i:

DKL
(

fθ∗
∣∣∣∣ f

θ̂

)
< inf

f∈co({ fθ :θ∈Gi(θ̂)})
DKL ( fθ∗ || f ) . (3)

where co(·) denotes the convex hull.

Condition B2 then says that when the true state is θ ∗, the state θ̂ does a better job describing

the distribution of X compared to every local perturbation of θ̂ (and including distributions in the

convex hull of the perturbations). The the divergence of f
θ̂

from fθ∗ measures how much worse θ̂

4See Esponda and Pouzo (2016) for an application of Kullback-Leibler divergence in Berk-Nash equilibria.
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does at describing the distribution of random variables X compared to the actual distribution. Then

condition requires considering the probability distributions associated with all local perturbations

of θ̂ by considering all states θ̂ ′ that agree with θ̂ at all but one coordinate.

Importantly, θ̂ need not be the best explanation of the world globally (indeed, θ ∗ is), but

locally θ̂ is the best when considering changes in only one coordinate at a time (θ̂ makes more

sense than local perturbations of θ̂ ). Thus, a state θ̂ is locally dominant if the divergence of f
θ̂

from fθ∗ is smaller than the divergence of f from fθ∗ for all local perturbations. Since equivocal

observations are those whose likelihood ratios depend on the current beliefs, and thus the local

nature of marginals-updating becomes salient, one way to interpret Condition B2 is that it provides

a measure of the frequency of equivocal observations and how heavily those observations get

weighed at a particular state θ̂ . We give a sufficient condition for B2 in Lemma 11 in the appendix.

Given these conditions, beliefs need not converge asymptotically to the true state (i.e., learning

may be inconsistent). A marginals-updating agent can be made to have arbitrarily high probability

of asymptotically believing θ̂ is true by shifting the agent’s initial beliefs very close to θ̂ . We say

that a state θ̂ ∈Θ may be attracting if, when prior beliefs are sufficiently close to θ̂ , then posterior

beliefs will converge to θ̂ . While we focus on neighborhoods around θ̂ that in the limit converge

to θ̂ almost surely, when the convergence probability is continuous then beliefs near θ̂ will with

positive probability converge to θ̂ . Lemma 7 provides conditions for continuity in the 2×2 model.

Theorem 2. Let θ ∗ be the true state of the world and assume B1. Consider θ̂ ∈ Θ such that for

all i B2 holds. Then for every ε > 0, there exists a c > 0 such that if W0
(
θi = θ̂i

)
≥ 1− c for all i,

then Pr
(
Wn
(
θi = θ̂i

)
→ 1

)
≥ 1− ε .

In other words, a state (θ1, . . . ,θd) is attracting if perturbing one of the θi’s into θ ′i while

keeping the rest of the θ−i static results in a very poor explanation of the world. In the 2× 2

model, the state (L,H) could be attracting when the true state is (H,L) because (H,H) and (L,L),

both one dimensional perturbations of (L,H), may not provide better explanations of the data.

Furthermore, agents can use general copulas to combine marginal beliefs so long as the copula

chosen is fixed or static (i.e., the correlation matrix does not update) and not sufficiently different

from the independence copula (see the Appendix, assumption B3), giving the Theorem 2 a degree
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of robustness to the type of updating procedure used.

The basic premise of our inconsistency result Theorem 2 is that a state θ̂ only needs to be a

better explanation for the real world than one-dimensional perturbations of θ̂ in order to be locally

attracting. The following corollary then is a straightforward consequence of Gibb’s inequality,

stating that the true state of the world θ ∗ will have the local attraction property (an important

sanity check):

Corollary 3. Suppose also fθ∗ 6∈ co({ fθ : θ ∈ Gi(θ0)}), as well as |Θi| < ∞ for all i: then the

belief θ = θ ∗ is locally attracting in the sense of Theorem 2.

Corollary 3 implies that an agent who mistakenly updates only along marginals may overcome

this oversight by beginning with a prior which is close enough to the truth. In other words, if the

beliefs about the state are close enough to correct, then the model with the misspecified copula

is also close enough to correct so that the misspecification does not interfere with learning. This

parallels a finding of Bohren and Hauser (2017) (Theorems 2 and 3), who find that, when agents

have misspecified beliefs about the signal distribution, learning generally occurs so long as beliefs

are “close enough” to the true probability.

4 Discussion and Implications

Our results show that whenever beliefs are multidimensional and subject to correlation neglect, and

when information is not sufficiently rich to completely identify the model, belief heterogeneity is

likely to persist or grow. We discuss the setup of our model and the interpretation of the results.

The reader may wonder about the simplicity of the model and whether our results are robust

to more general setups. Our results are completely driven by the following assumptions: (i) a

multidimensional model, with observations that do not completely identify the model, and (ii)

rational, sequential updating of marginal beliefs but not the full joint distribution of beliefs. Our

model is silent about where prior beliefs come from; perhaps there are behavioral or generational

explanations for priors (see Bénabou and Tirole (2016) for an overview of belief production).

We have deliberately chosen the simplest model to illustrate that partial identification can lead

22



to beliefs diverging from the truth—in fact, if anything the simplicity of our model and the set of

signals make learning the truth more likely. There are many reasons to believe that the identifi-

cation problem in a higher dimensional model with a richer signal-space would be more severe,

making divergent learning even more likely, since equivocal observations would be even more

common. Also, our agents can only possibly disagree about initial priors; as others have shown

(e.g., Bohren and Hauser 2017) divergence would be even more likely if agents also disagreed

about the model parameters.

A critical driver of our results is that agents update their marginal beliefs whenever they get

new information. Learning is more likely to occur if information is more informative. Hence,

“patient” agents who update their marginal priors only when m ≥ 2 signals are observed in a row

and together interpreted as one composite-signal are less susceptible to asymptotic inconsistency.

In reality people may desire to know the underlying state variables for reasons beyond (just)

being able to predict future observations Yn. For example, people may want to take actions whose

payoffs depend on the values of θ and σ separately. Or there may be an additional variable whose

realization will be made known in the far future, whose value could simply equal θ or σ . Thus,

even if knowing θ +σ is sufficient to predict the distribution of Yn (as is exactly true when the

states are symmetric), knowledge of θ and σ separately would still matter. Nonetheless, marginal-

updating agents need not converge to the same θ +σ . Our simulation results presented in Appendix

C show that when θ 6= σ , beliefs may with positive probability converge to either (L,L) or (H,H)

even though these are not the “symmetric” states.

Our model predicts that in some cases divergence may be unavoidable when initial beliefs are

different. Initial heterogeneity can lead to complete polarization (in the sense of divergent beliefs),

and more information worsens this outcome. One way to avoid divergence is for researchers to

find ways to alleviate identification problems. However, if researchers produce only a handful of

well-designed natural experiments or instrumental variables to relieve an identification problem,

the people may nonetheless continue to hold divergent beliefs so long as there are plenty of cases

in which a model leaves room for multiple interpretations.5

5We acknowledge Bruce Sacerdote for this observation.
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5 Conclusion

The world is multidimensional—there are a number of factors that contribute to what we see—but

the data we see are often lower dimensional than the world. Therefore we live with identification

problems. It is also plausible that, rather than maintain a huge and costly joint distribution, people

retain and update only marginal beliefs on the many variables which shape the signals people

receive. However, Bayesian updating of marginal probabilities need not converge to the truth. We

have characterized the limiting properties of beliefs for a simple model in which some observations

do not identify the underlying parameters. Our main result is that when such observations are

relatively more frequent, then asymptotically initial beliefs are likely to become reinforced. In

particular, agents with differing priors may have posteriors diverge forever, with greater divergence

the more common information received. However, if observations clearly identifying the model are

relatively likely, beliefs converge to the truth with probability one, and divergence will not occur.
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Appendix for Online Publication

A Proofs for the Simple Model

In the following lemma, for a sequence ω ∈ {0,1,2}N, let ωn denote the nth element of ω:

Lemma 1. If limn→∞ Pn exists in [0,1] almost everywhere and pH , pL ∈ (0,1), then

Pr
(

lim
n→∞

Pn ∈ (0,1)
)
= 0. (4)
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Proof. Let Ω = {0,1,2,}N denote the set of all possible sequences of Y signals. Then Pn ≡ Pn(ω)

can be written as a function of points ω ∈ Ω. Ω is endowed with the natural probability measure

over signal observations and the σ -algebra generated by Pn(ω),Qn(ω). We claim that any point

ω such that limn→∞ Pn(ω) ∈ (0,1) has ωn ∈ {0,2} for only finitely many indices n. This is easy

to see for ωn = 2: assume to the contrary that infinitely many (nm) ⊂ N satisfy ωnm = 2, and let

limn→∞ pn(ω) = c ∈ (0,1). Then taking such m arbitrarily high, (Pnm+1)→ cpH
cpH+(1−c)pL

> c, a

contradiction. The proof when ωn = 0 infinitely often is similar. (4) follows immediately by the

Second Borel-Cantelli Lemma.

Proof of Proposition 1. We prove for Pn (the proof for Qn is similar). Suppose that θ = σ = H.

The discrete version of Corollary 2, using summation by parts instead of integration by parts in

Theorem 1, establishes that Pn converges almost surely in (0,1]. Lemma 1 then implies that Pn
a.s.→ 1.

The proof when θ = σ = L is similar.

Proofs of Continuity Results

Consider the function f (p,q) giving the probability of convergence of (Pn,Qn) to (H,L) if P0 = p,

Q0 = q given pH , pL,qH ,qL. This function has some nice properties. Suppose that θ = L,σ = H.

First,

f (p,q) =pLqH f
(
P′((p,q),2),Q′((p,q),2)

)
+(1− pL)(1−qH)

(
P′((p,q),0),Q′((p,q),0)

)
+
(

pL(1−qH)+(1− pL)qH

)
f
(
P′((p,q),1),Q′((p,q),1)

)
.

Furthermore, observe that for a fixed q, f (p,q) is monotonically increasing in p:

Lemma 2. For p′ ≥ p and q′ ≤ q, f (p′,q′) ≥ f (p,q). Therefore, f (·,q) is continuous almost

everywhere at any fixed q.

Proof. Fix a history ω ∈Ω. Let Pn(ω),Qn(ω) correspond to initial condition (p,q) and P′n(ω),Q′n(ω)

be defined to correspond to (p′,q′). The claim can be verified by on the hypothesis that in each n,
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we have

P′n(ω)≥ Pn(ω), Q′n(ω)≤ Qn(ω). (5)

The argument is accomplished with the observation that (i) If Yn(ω) = 0,2, the ordering is pre-

served by monotonicity of the relevant functions. (ii) If Yn(ω) = 1, then a smaller value of Qn

corresponds with a larger increase in Pn. Conversely, a larger value of Pn corresponds with a

smaller increase (larger decrease) in Qn. This can be easily verified by noting that the odds ratio

OP
n+1 increases by more when Yn = 1 and Qn is smaller. Conversely, OQ

n+1 increases by less when

Yn = 1 and Pn is larger. Because OP
n+1 ≥OP′

n+1 if and only if Pn+1 ≥ P′n+1, the inequalities in (5) are

indeed preserved.

In the Internet Appendix we provide a proof of more general features of continuity which builds

on these results. In the proof, we discuss the relevance of the random dynamical theory of cocycles

to our model. Lemma 7 is detailed in the internet appendix and shown to hold on a larger set of

random dynamical systems with a Bernoulli shift as a random component. (Schenk-Hoppé and

Schmalfuß, 2001) expands on our discussion of random dynamical systems via cocycles.

Proof of Proposition 2

There is a robust set of parameters such that beliefs diverge. Throughout suppose θ = L and σ =H.

(By symmetry all results also hold for θ = H and σ = L.) First, we can characterize conditions

on beliefs P,Q such that beliefs converge incorrectly almost surely. Ignoring a (measurably) small

set of parameter values, we obtain a classification result for the asymptotic behavior of (Pn,Qn).

Lemma 3 states conditions on parameters that guarantee when priors exists such that beliefs will

asymptotically converge to the endpoints (zero or one) with positive probability. Specifically, the

proposition states that the asymptotic behavior of (Pn,Qn) behavior can be stated in terms of the ex-

pectation of the transition function (i.e., the log odds ratio) in neighborhoods of the extremal points

of [pL, pH ]× [qL,qH ], because asymptotically individuals will accumulate in these neighborhoods

with positive probability.
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Lemma 3. The following hold:

1. If E
[
∆ logOP

n+1(qL)
]
> 0 and E

[
∆ logOQ

n+1(pH)
]
< 0, then there exist (P0,Q0) such that

Pn→ 1 and Qn→ 0 with positive probability tending to 1 as Q0→ 0 and P0→ 1

2. If E
[
∆ logOP

n+1(qL)
]
< 0, then P a.s.→ 0; if additionally E

[
∆ logOQ

n+1(pL)
]
< 0 then Q a.s.→ 0,

whereas if E
[
∆ logOQ

n+1(pL)
]
> 0 then Q a.s.→ 1.

3. If E
[
∆ logOQ

n+1(pH)
]
> 0, then Q a.s.→ 1; if additionally E

[
∆ logOP

n+1(qL)
]
< 0 then P a.s.→ 0,

whereas if E
[
∆ logOP

n+1(qL)
]
> 0 then P a.s.→ 1.

Most importantly, if parameters satisfy condition 1 of Lemma 3 then there exist priors such

that beliefs will diverge with positive probability. Numerically evaluating over all combinations

(pH , pL,qH ,qL) ∈ (0,1)4, together with ordering restrictions, approximately 27.26% (Lebesgue

measure) of parameters satisfy condition 1, meaning that for at least this many parameters there is

a positive probability of converging to the wrong values for some priors.

Proof of Lemma 3

Consider the log-odds ratios, for which we have the following recursions:

logOP
n+1(2) = log

pH

pL
+ logOP

n (6)

logOP
n+1(0) = log

1− pH

1− pL
+ logOP

n (7)

logOP
n+1(1) = log

pH(1−qn)+(1− pH)qn
pL(1−qn)+(1− pL)qn

+ logOP
n . (8)

Consider the random variable ∆ logOP
n+1(q) (and the analogous expression for Q), whose expected

value can be evaluated explicitly as:

E
[
∆ logOP

n+1(q)
]
=pLqH log

pH

pL
+(1− pL)(1−qH) log

1− pH

1− pL

+(pL(1−qH)+(1− pL)qH) log
pH(1−q)+(1− pH)q
pL(1−q)+(1− pL)q

.
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The restriction of the transition function to the interior of the set [pL, pH ]× [qL,qH ] often is less

relevant than its restriction to these endpoints.

We proceed in three lemmas, which deal with different cases in the parameters.

Lemma 4. Let θ = L and σ = H. If E
[
∆ logOP

n+1(qL)
]
> 0 and E

[
∆ logOQ

n+1(pH)
]
< 0, then

there exist (P0,Q0) such that P0→ 1 and Q0→ 0 with positive probability tending to 1 as Q0→ 0

and P0→ 1.

Proof. The proof of this lemma will follow from Theorem 2, which is proved below. Specifically,

the hypothesis of the lemma implies (3) holds with the true state of the world corresponding to

({θ = L},{σ = H}) and the false state t corresponding to ({θ = H},{σ = L}).

Lemma 5. If E
[
∆ logOP

n+1(qL)
]
< 0, then P a.s.→ 0, and if E

[
∆ logOP

n+1(pH)
]
> 0, then Q a.s.→ 1

Proof. The proof follows the method of Lemma 4 by setting Q∗ = 1 and P∗ = 0.

Lemma 6. Let E
[
∆ logOP

n+1(qL)
]
< 0. Then P a.s.→ 0, and if E

[
∆ logOQ

n+1(pL)
]
< 0 then Q a.s.→ 0,

whereas if E
[
∆ logOQ

n+1(pL)
]
> 0 then Q a.s.→ 1.

Alternately, if E
[
∆ logOQ

n+1(pH)
]
> 0, then Q a.s.→ 1 and if E

[
∆ logOP

n+1(qL)
]
< 0 then P a.s.→ 0,

whereas if E
[
∆ logOP

n+1(qL)
]
> 0 then P a.s.→ 1.

Proof. The convergence P a.s.→ 0 follows from Lemma 5. As for convergence of Q, if

E
[
∆ logOP

n+1(pL)
]
< 0, then E

[
∆ logOP

n+1(p)
]

is upper-bounded by a strictly negative number ev-

erywhere, and a law of large numbers argument suffices. On the other hand, if E
[
∆ logOP

n+1(pL)
]
>

0, then as P concentrates almost surely at 0, E
[
∆ logOQ

n+1

]
becomes lower bounded (for all suffi-

ciently high n) by a positive ε ∈ (0,E
[
∆ logOP

n+1(pL)
]
) almost surely, whence Q a.s.→ 1. An obvious

symmetry establishes the second claim.

Next, given parameters pH , pL,qH ,qL, let f (p,q) = Pr((Pn,Qn)→ (1,0)|P0 = p,Q0 = q) be

the probability of that beliefs converge to (H,L), which are the wrong beliefs. We have the follow-

ing important results, including a finding on continuity in Lemma 7 that extends to a broader class

of random dynamical systems with a Bernoulli Shift as a random component (see Proposition 1.6

in the Online Appendix).
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Lemma 7. If
log qH

qL
log pH

pL

6=
log 1−qH

1−qL

log 1−pH
1−pL

, then the convergence probability f (p,q) is continuous in priors

p,q.

The following Corollary is a related result which follows from Lemma 2.

Corollary 4. If

log qH
qL

log pH
pL

<
log 1−qH

1−qL

log 1−pH
1−pL

, (9)

then either f (p,q)> 0 for all (p,q) ∈ (0,1)× (0,1), or it vanishes for all (p,q).

Thus, if parameters satisfy condition 1 of Lemma 3 as well as equation (9), then for any (rightly

ordered) priors, beliefs will diverge with positive probability. The results of this section—namely,

guaranteed divergence for symmetry together with continuity of the divergence probability—

suggest that divergence is more likely to occur when the states (H,L) and (L,H) are more ob-

servationally similar (closer to symmetry). The more observationally similar are the states, the less

the data can distinguish between competing beliefs when agents update only marginals. With exact

observational equivalence, learning is guaranteed to converge to reinforce initial priors (this is also

true with perfect Bayesian learning).

In our simulation results, we find that divergence is most likely to occur close to symmetry and

decreases continuously. Compare these results to Fryer et al. (2018). In their model, there are two

symmetric states (a and b) and agents’ beliefs converge to one of these states to confirm their prior

when ambiguous signals are sufficiently frequent. In their model, the probability of polarization is

an increasing function of the probability of ambiguous signals. Our simulation results suggest that

in our model the probability of divergence is a function of how different are parameters for each

state. The more parameters differ, the easier it is to “statistically identify” observations of 1, which

are otherwise unidentifiable. In their model ambiguous signals are completely unidentified. Thus,

in our model, fundamentals determine the severity of the identification problem and the probabil-

ity of divergence, whereas in their model the severity of ambiguity determines the probability of

divergence. Furthermore, when states are not symmetric, posteriors can converge to values that

31



are not even “symmetric” with the truth (i.e., to (H,H) or (L,L). This result is important because

agents would not only disagree about the underlying values of θ ,σ , but they would have quite

different predictions for the distribution of Yn. One could argue that polarization truly refers to

agents disagreeing about the value of θ +σ , which is what would occur in this case.

By evaluating the set of parameters which meet the bounds presented in Corollary 4 as well

as those in Lemma 3, we find the our result. Approximately 8.33% (Lebesgue measure) of all

parameters satisfy both sets of conditions. The sets of parameters for which (i) any priors will

converge to (H,L) with positive probability, or for which (ii) some priors are guaranteed to converge

to (H,L) with positive probability, indicate that divergence is most likely to occur in a neighborhood

of parameters around symmetry.

Proof of Corollary 4. Note that

n log
pH

pL
+

⌈
−n

log qH
qL

log 1−qH
1−qL

+1

⌉
log

1− pH

1− pL
= n

(
log

pH

pL
+

(
−

log qH
qL

log 1−qH
1−qL

+o(1)

)
log

1− pH

1− pL

)

n log
qH

qL
+

⌈
−n

log qH
qL

log 1−qH
1−qL

+1

⌉
log

1−qH

1−qL
< 0.

Hence, there must exist positive integers n, m≈−n
log qH

qL

log 1−qH
1−qL

such that n log pH
pL

+m log 1−pH
1−pL

> 0, and

n log qH
qL

+m log 1−qH
1−qL

> 0. It follows that if Y = 2 for n` times and Y = 0 for m` times, as ` becomes

arbitrarily large, logOP
`(n+m) becomes arbitrarily large and logOQ

`(n+m)
becomes arbitrarily small

from any initial prior (P,Q). In particular, if f does not vanish for all (p,q), by Lemma 2, there is

a critical OP∗ and OQ∗ such that for all pairs (OP,OQ) with OP ≥ OP∗ and OQ ≤ OQ∗, there is a

positive probability that OP→ ∞. Because this critical threshold can be reached in a finite number

of steps from any prior, any prior has a positive probability of OP→∞. The second claim is proved

similarly by exchanging ‘P’ and ‘Q’.

Lemma 8. Let pH = qH and pL = qL. Then almost surely the ratio OP/OQ diverges to infinity if

P > Q and converges to zero if P < Q.

Proof of Lemma 8. First, since pH = qH and pL = qL, the likelihood ratios given observations
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Y = 0 and Y = 2 are equal:

LP
2 =

pH

pL
= LQ

2 , LP
0 =

1− pH

1− pL
= LQ

0 .

Thus, OP/OQ is unchanged after these observations.

Second, OP/OQ increases after Y = 1 whenever P > Q. Differentiating LP
1 (Q) with respect to

Q shows that it is decreasing in Q. By symmetry, if P > Q, then LP
1 (Q)/LQ

1 (P)> 1. Similarly, dif-

ferentiating and collecting terms, LP
1 (Q)/LQ

1 (P) is increasing in P. Thus, as P/Q grows, the ratio of

likelihoods grows and thus OP/OQ increases by more. Thus, LP
1 (Qn)/LQ

1 (Pn)≥ LP
1 (Q0)/LQ

1 (P0)>

1, and so LP
1 (Qn)/LQ

1 (Pn) is bounded below by a number strictly greater than 1. Since all prob-

abilities are strictly positive, by the Strong Law of Large Numbers asymptotically there will be

an infinite number of Y = 1 observations, and thus OP/OQ increases without bound. By similar

argument, if P < Q then OP/OQ decreases to zero. When pH 6= qH or pL 6= qL, the divergence of

OP/OQ can occur with positive probability, but it is not guaranteed.

Proof of Corollary 1. By Lemma 8 the ratio of the odds-ratios, OP/OQ converges to infinity almost

surely. This implies that Pn
a.s.→ 1 almost surely. Since OP/OQ→∞, at least one of Pn

a.s.→ 1 or Qn
a.s.→ 0.

However, if Q = 0 then the problem of Bayesian learning is isomorphic to learning whether σ = H

given P = 0. That is, there exists ε > 0 such that if Pn < ε , then Qn is a submartingale. By Doob’s

Martingale Convergence Theorem, this problem converges to the truth (Q = 1) almost surely (see

Berk (1966) and Diaconis and Freedman (1986)). By symmetry, if Qn < ε then Pn
a.s.→ 1.

The reader may wonder how much the 2×2 results depend on the specific form of the realiza-

tion function y(t,s). As stated, what matters for the possibility of inconsistency is the dimension-

ality of the realization function. Suppose instead that the function was: Y = 0 if t = 0 and s = 1;

Y = 2 if t = 1 and s = 0; Y = 1 if t and s are equal. Then Y = 1 is still equivocal, but which states

are difficult to learn have been “rotated.” It is easy to see in light of these results that agents would

learn the truth whenever θ 6= σ , but agents would not necessarily learn the truth when θ = σ .

The difficulty now is that to distinguish between (H,H) and (L,L) agents need to have positively

correlated beliefs, but beliefs are assumed to be independent.
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B The General Model

Any Wn induces a probability distribution over the signal space R whose density wn may be ex-

pressed as in the normal Bayesian case:

wn
(
Yn+1|θi = θ̂i

)
=

∑ϑ∈Θ:ϑi=θ̂i
Wn (θ = ϑ) fϑ (Yn+1)

∑ϑ∈Θ:ϑi=θ̂i
Wn (θ = ϑ)

, (10)

wn
(
Yn+1|θi 6= θ̂i

)
=

∑ϑ∈Θ:ϑi 6=θ̂i
Wn (θ = ϑ) fϑ (Yn+1)

∑ϑ∈Θ:ϑi 6=θ̂i
Wn (θ = ϑ)

. (11)

To update marginals, an agent reconstructs a joint distribution using the independence copula,

denoted by Ψ, (i.e., an agent multiplies marginal probabilities) and then updates marginal distribu-

tions applying Bayes rule to marginal beliefs using the reconstructed joint distribution. Rigorously,

Wn
(
θ = (θ̂1, . . . , θ̂d)

)
=Ψ
(
W 1

n , . . . ,W
d
n
)
(θ̂1, . . . , θ̂d)

Wn+1
(
θi = θ̂i

)
≡Wn+1

(
θi = θ̂i

∣∣Yn+1
)

=
Wn
(
θi = θ̂i

)
wn
(
Yn+1

∣∣θi = θ̂i
)

wn (Yn+1)

=
Wn
(
θi = θ̂i

)
wn
(
Yn+1

∣∣θi = θ̂i
)

Wn
(
θi = θ̂i

)
wn
(
Yn+1

∣∣θi = θ̂i
)
+Wn

(
θi 6= θ̂i

)
wn
(
Yn+1

∣∣θi 6= θ̂i
) ,

(recall that for every A ⊂ Θi we have specified Wn (θi ∈ A) = ∑θ̂i∈AWn
(
θi = θ̂i

)
). The notation is

used in lower-case with respect to Y to evoke that Y is continuously distributed with respect to a

density, whereas θ is discretely valued with a probability mass function. For convenience, we will

use W i
n(·) =Wn(θi = ·) interchangeably.

Note that the updating procedure implies

log
Wn+1

(
θi = θ̂i

)
1−Wn+1

(
θi = θ̂i

) = log
wn
(
Yn+1

∣∣θi = θ̂i
)

wn
(
Yn+1

∣∣θi 6= θ̂i
) + log

Wn
(
θi = θ̂i

)
1−Wn

(
θi = θ̂i

) . (12)

By our probability shorthand ∑ϑ∈Θ:θi=θ̂i
Wn(θ =ϑ)=Wn(θi = θ̂i) for every i. Thus, when ∑θ̂i∈Θi

W0(θi =

θ̂i) = 1, one can verify that ∑θ̂i∈Θi
Wn(θi = θ̂i) = 1 for every n, which is to say that we have a prob-

ability measure over marginals.
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B.1 Approximate Optimality of the Independence Copula

The belief process of agents is boundedly rational. For Doob’s well-known Bayesian consistency

result to apply, agents must sequentially update their priors over the entire state space by calculating

the joint posterior distribution after every observation. Our deviation from this benchmark can be

rationalized by a sparsity-based model of bounded rationality following Gabaix (2014).

Consider d state variables that can take on k values. Then regular Bayesian updating requires

storing kd real numbers in the joint distribution. In practice agents might only maintain and update

the marginal distributions over each dimension, thereby reducing the memory burden to kd real

numbers. To update the marginal distributions from their observations and knowledge of the data

generating process, the agents need to attempt to reconstruct the joint distribution of state variables.

In this section we assume that agents apply the independence copula; our main result will allow

agents substantially more latitude in the choice of a (fixed) copula.

Suppose that the agent is concerned with estimating a signal Yn ∈ Rd as accurately as possible

in the sense that he wishes to minimize a discounted square loss function

min
{ŷn}∞

n=1

E

[
∞

∑
n=1

δ
n−1|Yn− ŷn|2

]
.

The major behavioral assumption of this paper is that agents retain only their marginal beliefs

W i
n, i = 1, . . . ,d from period n. In the next period, in order to obtain W i

n+1, the agents must recon-

struct the joint distribution Wn =Wn(θ = (θ̂1, . . . , θ̂d)) using some choice of copula which we have

denoted Ψ. It is straightforward to see that the independence copula, given by

Wn(θ = (θ̂1, . . . , θ̂d)) = Ψ
(
W 1

n , . . . ,W
d
n
)
(θ̂1, . . . , θ̂d) =

d

∏
i=1

W i
n(θ̂i), (13)

correctly sets the initial joint prior W0 equal to P, the distribution from which θ ∗ was sampled

ex-ante. Hence, it is approximately optimal in the following sense:

Remark 1. Suppose that Yn ∈ K ⊂ Rd a.s., where K is a compact set. Let ŷ∗n = E [y|W ∗n ], where

W ∗n is generated by application of the independence copula (13) in every period. Then for every
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ε > 0, there is a δ ∈ (0,1) such that for δ ≤ δ ,

E

[
∞

∑
n=1

δ
n−1|Yn− ŷ∗n|2

]
≤ inf
{ŷn}∞

n=1⊂K
E

[
∞

∑
n=1

δ
n−1|Yn− ŷn|2

]
+ ε.

Thus, for a sufficiently impatient agent, the strategy of retaining only marginals and reconstructing

joint distributions via multiplication may be arbitrarily close to optimal.

Proof of Remark 1. First, note that in period n = 1, ŷ∗n = E [y], where the expectation is over the

prior probability distribution Q1×·· ·×Qd on Θ and on the contingent distribution of Y induced

by θ . Hence, E
[
|Yn− ŷ∗n|2

]
= E

[
|y−E [y] |2

]
≤ E

[
|Yn− ŷn|2

]
for all r.v. ŷn. The desired result

follows from noting that E
[
∑

∞
n=1 δ n−1|Yn− ŷ∗n|2

]
≤ E

[
|Yn− ŷ∗n|2

]
+ δC

1−δ
for some constant C < ∞

depending on the set K.

For instance, the independence copula is also approximately optimal in the following sense,

which may be verified by induction:

Lemma 9. Suppose that the probability density function fθ (y) is multiplicatively separable in the

sense that for every θ ∈Θ, fθ (y) = ∏
d
i=1 f i

θi
(y) for some functions f i

θi
, i∈ {1, . . . ,d}, θi ∈Θi. Then

when W ∗n is generated by application of the independence copula it exactly equals the canonical

Bayesian prior conditioning on Y1, . . . ,Yn−1 and initial prior W0 = P.

This covers the obvious situation where Y is d-dimensional with each coordinate independently

chosen from distribution f i
θi

. So when the signal Y is extremely well-identified, updating along

marginals is equivalent to canonical Bayesian updating and is consistent under light conditions.

B.2 Proofs

As will be evident in the proof, assumption A3 is only necessary insofar as it provides perturba-

tions to marginal beliefs in the interior of the d dimensional unit cube: in this respect, it may be

generalized a number of ways. Lemma 1 is an example of such a perturbation argument.
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Proof of Theorem 1. Recall that Yn
iid∼ Fθ∗ . When the independence copula is applied, the denomi-

nator of (10) is

∑
ϑ∈Θ:ϑi=θ∗i

Wn(θ = ϑ) = ∑
ϑ∈Θ:ϑi=θ∗i

Wn(θi = θ
∗
i )∏

j 6=i
Wn(θ j = ϑ j)

=Wn(θi = θ
∗
i ) ∑

ϑ−i∈Θ−i

∏
j 6=i

Wn(θ j = ϑ j) =Wn(θ
∗
i ).

Expanding the denominator of (11) in a similar fashion allows us to derive the following condi-

tional expectation:

En (Wn+1(θ
∗
i )) =Wn(θi = θ

∗
i )
∫
R

wn(y|θi = θ ∗i )

wn(y)
fθ∗(y)dy

=Wn(θi = θ
∗
i )
∫
R

∑θ :θi=θ∗i
fθ (y)∏ j 6=iWn(θ j)

∑θ∈Θ fθ (y)∏
d
j=1Wn(θ j)

fθ∗(y)dy.

Integration by parts implies

∫
R

∑θ :θi=θ∗i
fθ (y)∏ j 6=iWn(θ j)

∑θ∈Θ fθ (y)∏
d
j=1Wn(θ j)

fθ∗(y)dy−1

=
∫
R

fθ∗(y)

∑θ∈Θ fθ (y)∏
d
j=1Wn(θ j)

(
∑

θ :θi=θ∗i

fθ (y)∏
j 6=i

Wn(θ j)− ∑
θ∈Θ

fθ (y)
d

∏
j=1

Wn(θ j)

)
dy

=
∫
R

[
d
dy

(
fθ∗(y)

∑θ∈Θ fθ (y)∏
d
j=1Wn(θ j)

)
∫

∞

y

(
∑

θ :θi=θ∗i

fθ (z)∏
j 6=i

Wn(θ j)− ∑
θ∈Θ

fθ (z)
d

∏
j=1

Wn(θ j)

)
dz

]
dy,

where in the third line we have used that the term in parenthesis on the preceding line is a difference

of two probability densities on R. By A1

f ′
θ∗(y)

fθ∗(y)
≥max

θ∈Θ

f ′
θ
(y)

fθ (y)
≥

∑θ∈Θ f ′
θ
(y)∏

d
j=1Wn(θ j)

∑θ∈Θ fθ (y)∏
d
j=1Wn(θ j)

,
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so the quotient rule implies d
dy

(
fθ∗(y)

∑θ∈Θ fθ (y)∏
d
j=1 Wn(θ j)

)
≥ 0. On the other hand, one can write

∑
θ :θi=θ∗i

fθ (z)∏
j 6=i

Wn(θ j)− ∑
θ∈Θ

fθ (z)
d

∏
j=1

Wn(θ j)

= ∑
θ :θi=θ∗i

fθ (z)∏
j 6=i

Wn(θ j)−Wn(θ
∗
i ) ∑

θ :θi=θ∗i

fθ (z)∏
j 6=i

Wn(θi)− ∑
θ :θi 6=θ∗i

fθ (z)
d

∏
j=1

Wn(θ j)

=(1−Wn(θ
∗
i )) ∑

θ :θi=θ∗i

fθ (z)∏
j 6=i

Wn(θ j)− ∑
θ−i∈Θ−i

∏
j 6=i

Wn(θ j) ∑
θi∈Θi\{θ∗i }

fθ (z)Wn(θi)

=(1−Wn(θ
∗
i )) ∑

θ−i∈Θ−i
θi=θ∗i

fθ (z)∏
j 6=i

Wn(θ j)

− (1−Wn(θ
∗
i )) ∑

θ−i∈Θ−i

∏
j 6=i

Wn(θ j) ∑
θi∈Θi\{θ∗i }

fθ (z)
Wn(θi)

(1−Wn(θ ∗i ))
.

Fix a θ−i ∈Θ−i and let θ s denote the element θ ∈Θ with θ s
−i = θ−i and θ s

i = θ ∗i . Let S⊂Θ denote

the set of ϑ with ϑ−i = θ−i and ϑi 6= θ ∗i . A2 implies that for any |S|-dimensional probability vector

q over S and any y ∈ R,

∫
∞

y

(
fθ s(z)−

〈
( fϑ (z))ϑ∈S ,q

〉)
dz≥ 0.

Because
(

Wn(θi)
1−Wn(θ∗i )

)
θi 6=θ∗i

is one such probability vector, it follows that

∫
∞

y
∑

θ :θi=θ∗i

fθ (z)∏
j 6=i

Wn(θ j)− ∑
θ∈Θ

fθ (z)
d

∏
j=1

Wn(θ j)dz≥ 0.

Hence, Wn(θ
∗
i ) is indeed a submartingale for all i. As it is bounded between 0 and 1, Doob’s

convergence theorem for submartingales establishes the first claim (Berk, 1966). It can similarly

be shown that the inverse odds ratio 1−Wn(θ
∗
i )

Wn(θ∗i )
is a nonnegative supermartingale. In particular,

E0

(
1−Wn(θ

∗
i )

Wn(θ∗i )

)
is at least weakly decreasing, so almost surely limn→∞Wn(θ

∗
i )> 0.

Now, suppose that A1–A3 hold. Suppose for the sake of contradiction that for i = 1, . . . ,d,

38



limn→∞Wn(θ
∗
i ) = Li, where for some i it is the case that Li < 1. Fixing this i, note that for any n

wn(y|θi = θ ∗i )

wn(y|θi 6= θ ∗i )

=

∑θ−i∈Θ−i\{θ∗−i}
θi=θ∗i

fθ (y)∏ j 6=iWn(θ j)+ fθ∗(y)∏ j 6=iWn(θ
∗
j )

∑θ−i∈Θ−i\{θ∗−i}∏ j 6=iWn(θ j)∑θi∈Θi\{θ∗i } fθ (y)
Wn(θi)

(1−Wn(θ∗i ))
+∑θi∈Θi\{θ∗i } f(θi,θ

∗
−i)
(y)

Wn(θi)∏ j 6=i Wn(θ∗j )

(1−Wn(θ∗i ))

.

By restricting attention to A
⋂

θ :θi=θ∗i
θ−i 6=θ∗−i

{y : fθ (y) < M} if necessary, for large enough M, we may

assume that fθ (y) for θ satisfying θi = θ ∗i and θ−i 6= θ ∗−i is bounded by some M on A. Similarly,

we may assume that fθ∗ > fθ + ε for some ε > 0 for y ∈ A. Using A3 and the arguments used to

prove convergence, y ∈ A implies

∑
θ−i∈Θ−i\{θ∗−i}

∏
j 6=i

Wn(θ j) ∑
θi∈Θi\{θ∗i }

fθ (y)
Wn(θi)

(1−Wn(θ ∗i ))
≤ ∑

θ−i∈Θ−i\{θ∗−i}
θi=θ∗i

fθ (y)∏
j 6=i

Wn(θ j)

≤M

(
1−∏

j 6=i
Wn(θ

∗
j )

)
< ∞.

In addition,

lim
n→∞

fθ∗(y)∏
j 6=i

Wn(θ
∗
j ) = fθ∗(y)∏

j 6=i
L j ≥ ∑

θi∈Θi\{θ∗i }
f(θi,θ

∗
−i)
(y)

Wn(θi)∏ j 6=i L j

(1−Wn(θ ∗i ))
+ ε ∏

j 6=i
L j

= lim
n→∞

∑
θi∈Θi\{θ∗i }

f(θi,θ
∗
−i)
(y)

Wn(θi)∏ j 6=iWn(θ
∗
j )

(1−Wn(θ ∗i ))
+ ε ∏

j 6=i
Wn(θ

∗
j )

By the second Borel-Cantelli Lemma, Pr(limsupn→∞{Yn ∈ A}) = 1. Notice that the first term in

the previous line is bounded by M ∏ j 6=iWn(θ
∗
j ). Hence, almost surely

limsup
n→∞

wn(y|θi = θ ∗i )

wn(y|θi 6= θ ∗i )
≥

M+ ε ∏ j 6=i L j

M
> 1,
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since L j > 0 for all j. Recall that

1−Wn+1(θ
∗
i )

Wn+1(θ
∗
i )

=
wn(Yn+1|θi = θ ∗i )

wn(Yn+1|θi 6= θ ∗i )

1−Wn(θ
∗
i )

Wn(θ ∗i )
,

so it is impossible that the inverse odds ratio converges. Hence, Li = 1 for all i almost surely.

Proof of Corollary 2. It suffices to verify that assumptions A1 and A2 hold. We do this by verify-

ing that for every θ and every i,
fTi(θ)

(y)
fθ (y)

is weakly increasing. Suppose without loss of generality

that i = d. By the convolution formula and our hypothesis,

f ′Td(θ)
(y) fθ (y) =

∂

∂y

∫
· · ·
∫

gθ1(x1) · · ·gθ∗d
(y− x1−·· ·xd−1)dx1 · · ·dxd−1

·
∫
· · ·
∫

gθ1(x
′
1) · · ·gθd(y− x′1−·· ·x′d−1)dx′1 · · ·dx′d−1

=
∫
· · ·
∫

gθ1(x1)gθ1(x
′
1) · · ·g′θ∗d (y− x1−·· ·xd−1)gθd(y− x′1−·· ·x′d−1)dx1 · · ·dx′d−1

≥
∫
· · ·
∫

gθ1(x1)gθ1(x
′
1) · · ·gθ∗d

(y− x1−·· ·xd−1)g′θd
(y− x′1−·· ·x′d−1)dx1 · · ·dx′d−1

= fTd(θ)(y) f ′θ (y).

Lemma 10. Let { fn}∞
n=0 be a collection of probability densities on Y satisfying

0 < β1 ≡ inf
n,y

fn(y)
f0(y)

≤ sup
n,y

fn(y)
f0(y)

≡ β2 < ∞.

Then for any vector of nonnegative weights (pn)
∞
n=0 and any n0 ∈ N satisfying ∑

∞
k=0 pk = 1,

∣∣∣∣∣DKL

(
f0

∣∣∣∣∣
∣∣∣∣∣n0−1

∑
k=0

pk fk + f1

∞

∑
k=n0

pk

)
−DKL

(
f0

∣∣∣∣∣
∣∣∣∣∣ ∞

∑
k=0

pk fk

)∣∣∣∣∣ (14)

≤max

{
log

β1

β1− (β2−β1)∑
∞
k=n0

pk
,− log

β1

β1 +(β2−β1)∑
∞
k=n0

pk

}
. (15)
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Proof. This follows from the calculation:∣∣∣∣∣
∫ (

log
f0

∑
n0−1
k=0 pk fk + f1 ∑

∞
k=n0

pk
− log

f0

∑
∞
k=0 pk fk

)
f0

∣∣∣∣∣ dy

≤
∫ ∣∣∣∣∣log

∑
∞
k=0 pk fk

∑
n0−1
k=0 pk fk + f1 ∑

∞
k=n0

pk

∣∣∣∣∣ f0 dy. (16)

where

log
∑

∞
k=0 pk fk

∑
n0−1
k=0 pk fk + f1 ∑

∞
k=n0

pk
≤ log

∑
∞
k=0 pk fk

∑
∞
k=0 pk fk− (β2−β1)∑

∞
k=n0

pk f0

≤ log
β1

β1− (β2−β1)∑
∞
k=n0

pk
(17)

and similarly

log
∑

∞
k=0 pk fk

∑
n0−1
k=0 pk fk + f1 ∑

∞
k=n0

pk
≥ log

β1

β1 +(β2−β1)∑
∞
k=n0

pk
(18)

Since
∫

f0 dy = 1, (16) is bounded in magnitude by the larger of the magnitudes of (17) and (18).

Inconsistent learning

In the main text we assume that agents us an independence copula to construct joint probabilities

given marginals. However, we can use more general (fixed, static) copulas so long as the copula

is well behaved. We make the following assumptions on the copula Ψ which are that the agent

updates using roughly the independence cupola, and that no realization of Y rule out any state θ :

B3: The copula Ψ is relatively bounded with respect to the independence copula;

0 < inf
t∈Θ

V i∈∆(Θi),
1≤i≤d

Ψ
(
V 1, . . . ,V d)(t1, . . . , td)

∏
d
i=1V i(θ̂i)

≤ sup
t∈Θ

V i∈∆(Θi),
1≤i≤d

Ψ
(
V 1, . . . ,V d)(t1, . . . , td)

∏
d
i=1V i(θ̂i)

< ∞. (19)
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It is clear that the independence copula of the main text satisfies B3.

One can illustrate the substance of Assumption B2 by rephrasing it in terms of the common L1

distance between probability densities, ‖ f −g‖1 ≡
∫

X | f −g|dµ . In this case the local dominance

condition (3) states that f
θ̂

is “closer” to fθ∗ than any of the f ∈ co
(

fθ : θ ∈ Gi(θ̂)
)

are to f
θ̂

,

which is essentially to state that f
θ̂

is closer to fθ∗ than any of the perturbed f . Connecting the

K-L divergence to an L1 norm requires assumption B1, although the bound in (2) only enters inside

of a logarithm.

Lemma 11. Suppose that B1 holds with bound β . If |Θi| < ∞ then B2 holds if and only if

DKL ( fθ∗ || f ) > DKL
(

fθ∗
∣∣∣∣ f

θ̂

)
for all f ∈ co

({
fθ : θ ∈ Gi(θ̂)

})
. Moreover a sufficient condi-

tion for B2 is

∥∥ f
θ̂
− fθ∗

∥∥
1 <

1
2logβ

inf
f∈co({ fθ∈Gi(θ̂)})

‖ f − fθ∗‖2
1 .

Proof of Lemma 11. Necessity of the first condition is clear. To prove sufficiency, suppose for

the sake of contradiction that inf f∈co({ fθ :θ∈Gi(θ̂)})DKL ( fθ∗ || f ) = DKL
(

fθ∗
∣∣∣∣ f

θ̂

)
; then there is a

sequence of weights pm ≡ (p1, . . . , p|Θi|−1)m ∈ ∆(Gi(t)) for all i such that, letting f m denote the

element of co
({

fθ : θ ∈ Gi(θ̂)
})

with weights pm, satisfies DKL ( fθ∗ || fm )→DKL
(

fθ∗
∣∣∣∣ f

θ̂

)
. By

a diagonalization argument we can extract a limiting probability vector p and a subsequence pm`

such that pm`→ p pointwise. But if f is the element of co
({

fθ : θ ∈ Gi(θ̂)
})

corresponding to the

weight vector p, the dominated convergence theorem (invoking B3) implies that DKL ( fθ∗ || f ) =

DKL
(

fθ∗
∣∣∣∣ f

θ̂

)
, a contradiction to our first stated hypothesis. Note that Prokhorov’s theorem gen-

eralizes the same argument to sets of densities { fθ}θ∈Θ that are tight with closed convex hull.

To prove the second claim, first we claim that for all densities f ,g we have DKL ( f ||g ) ≥
1
2 ‖ f −g‖2

1. This is just a continuous version of Pinsker’s inequality, which we give here for the L1

42



norm. Let a =
∫
{ f>g} f dµ and b =

∫
{ f>g} gdµ (ignore the case that ‖ f −g‖1 = 0):

−DKL ( f ||g ) =
∫

X
f log

g
f

dµ = a
∫
{ f>g}

f
a

log
g
f

dµ +(1−a)
∫
{g≥ f}

f
1−a

log
g
f

dµ

≤ a log
b
a
+(1−a) log

1−b
1−a

≤−2(a−b)2,

where the second line uses Jensen’s inequality and the last line is an application of the fact that

a log b
a +(1−a) log 1−b

1−a +2(a−b)2 achieves a maximum at a = b. Note that

∫
| f −g|dµ =

∫
{ f>g}

( f −g)dµ−
∫
{ f≤g}

( f −g)dµ = 2
∫

f>g
( f −g)dµ,

and so DKL ( f ||g )≥ 2
(∫
{ f>g}( f −g)dµ

)2
= 1

2 ‖ f −g‖2
1. By B3, for any f ∈ co({ fθ ∈ Gi(t)})

DKL
(

fθ∗
∣∣∣∣ f

θ̂

)
≤ DKL

(
fθ∗
∣∣∣∣ f

θ̂

)
+DKL

(
f
θ̂
|| fθ∗

)
=
∫
( fθ∗− f

θ̂
) log

fθ∗

f
θ̂

dµ

≤ sup
x

log
fθ∗

f
θ̂

∫
| fθ∗− f

θ̂
|dµ ≤ logβ ‖ ft− fθ∗‖1 .

By Pinsker’s inequality we have thus shown

DKL
(

fθ∗
∣∣∣∣ f

θ̂

)
≤ logβ

∥∥ fθ∗− f
θ̂

∥∥
1 <

1
2

inf
f∈co({ fθ∈Gi(t)})

‖ fθ∗− f‖2
1

≤ inf
f∈co({ fθ∈Gi(t)})

DKL ( fθ∗ || f ) .

Proof of Theorem 2. Denote lower and and upper limits in (19) by α1 and α2 respectively, and let

the left side of (2) be β . For any fixed i, we claim that there is a δ ∈ (0,1) such that if

W j
n (θ̂ j)≥ δ for all j (20)
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then E

[
log

wn

(
Yn+1

∣∣θi=θ̂i

)
wn

(
Yn+1

∣∣θi 6=θ̂i

)
]
> 0. First, denote

L≡ inf
f∈co({ fθ :θ∈Gi(t)})

DKL ( fθ∗ || f )> DKL
(

fθ∗
∣∣∣∣ f

θ̂

)
. (21)

Now by (10), wn
(
Yn+1|θi = θ̂i

)
is a weighted average of fϑ (Yn+1) such that ϑi = θ̂i; furthermore,

by (19) one has Wn(θ = θ̂)≥ α1 ∏
d
j=1Wn(θ̂ j) and:

∑
ϑ∈Θ:ϑi=θ̂i

ϑ−i 6=t−i

Wn(θ = ϑ)≤∑
j 6=i

∑
ϑ∈Θ:ϑi=θ̂i

ϑ j 6=θ̂ j

Wn(θ = ϑ)≤∑
j 6=i

(1−W j
n (θ̂ j)).

From (11), wn(Yn+1|θi 6= θ̂i) can similarly be expressed as a weighted average with weights satis-

fying

∑
ϑ∈Θ:ϑi 6=θ̂i

Wn(θ = ϑ) = ∑
s∈Θi:s 6=θ̂i

Wn(θi = s,θ−i = θ̂−i)+ ∑
ϑ∈Θ:θi=s
θ−i 6=θ̂−i

Wn(θ = ϑ)

 .

By (19), Wn(θi = s,θ−i = θ̂−i)≥ α1W i
n(s)∏ j 6=iW j(θ̂ j) and

∑
ϑ∈Θ:θi=s

θ−i 6=t−i

Wn(θ = ϑ)≤ α2W i
n(s)∑

j 6=i
∑

ϑ∈Θ−i:ϑ j 6=θ̂ j

∏
k 6=i

W k
n (ϑk)

= α2W i
n(s)∑

j 6=i
(1−W j

n (θ̂ j)).

Thus, in calculating (10) the agent places little weight on ϑ that are not θ̂ , and in calculating (11),

the agent places little weight on ϑ such that ϑ−i 6= θ̂−i. In particular, the weight placed on densities

fϑ with ϑ 6= θ̂ in (10) is bounded by ∑ j 6=i(1−W j
n (θ̂ j))

α1 ∏
d
j=1 Wn(θ̂ j)

, and the weight placed on densities fϑ with

ϑ−i 6= θ̂−i in (11) is bounded above by:

∑s∈Θi:s 6=θ̂i
α2W i

n(s)∑ j 6=i(1−W j
n (θ̂ j))

∑s∈Θi:s 6=θ̂i
α1W i

n(s)∏ j 6=iW j(θ̂ j)
=

α2 ∑ j 6=i(1−W j
n (θ̂ j))

α1 ∏ j 6=iW j(θ̂ j)
.
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For every η > 0, it follows that there is a δ satisfying α2dδ

α1(1−δ )d < η such that when W j
n (θ̂ j)≥ 1−δ

for all j then the agent’s beliefs in these ancillary states of the world which differ from t is bounded

by η , conditioning either on θi = θ̂i or θi 6= θ̂i. Suppose that (20) holds with δ > 0 meeting this

condition.

Now, application of (15) in Lemma 10 with f0 = fθ∗ , f1 = ft , n0 = 2, p0 = 0, and p1 =W i
n(θ̂i)≥

1−δ along with β1 = β−1,β2 = β implies that

∣∣∣DKL
(

f0
∣∣∣∣Wn(·|θi = θ̂i)

)
−DKL

(
f0
∣∣∣∣ f

θ̂

)∣∣∣≤ K(β ,η),

where limη→0 K(β ,η) = 0. Similarly, by letting f1, . . . , fd−1 be the elements of Gi(t) and n0 = d,

one finds

∣∣∣DKL
(

f0
∣∣∣∣Wn(·|θi 6= θ̂i)

)
−DKL ( f0 || f )

∣∣∣≤ K(β ,η),

where f ∈ co({ fθ : θ ∈ Gi(t)}). By (21), if one choose δ and hence η to be small enough so that

K(β ,η)<
L−DKL( fθ∗|| fθ̂ )

3 ≡C, the triangle inequality implies

DKL
(

f0
∣∣∣∣Wn(·|θi 6= θ̂i)

)
>C+DKL

(
f0
∣∣∣∣Wn(·|θi = θ̂i)

)
.

where C > 0. Thus, by (12), (20) implies,

E

[
log

wn
(
Yn+1

∣∣θi = θ̂i
)

wn
(
Yn+1

∣∣θi 6= θ̂i
)]= ∫ (log

wn
(
Yn+1

∣∣θi = θ̂i
)

fθ∗
−

logwn
(
Yn+1

∣∣θi 6= θ̂i
)

fθ∗

)
fθ∗ dy >C.

(22)

Since the number of marginals to be considered is d < ∞, one can pick δ and C above small

enough so that (22) holds for all i. Let Ω = YZ+ where Ω is equipped with the product σ -algebra

and product measure inherited from fθ∗ (since the observations Yn are iid∼ fθ∗). For 1 ≤ i ≤ d,
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define the following stochastic process (X i
n) : Ω→ [0,1]:

X i
0 = log

W i
0(θ̂i)

1−W i
0(θ̂i)

X i
n+1 =


X i

n if min1≤ j≤d,
0≤`≤n

W j
` (θ̂ j)< 1−δ

X i
n + log wn(Yn+1|θi=θ̂i)

wn(Yn+1|θi 6=θ̂i)
−C otherwise

Then X i
n is a submartingale with respect to the filtration Fn =σ

((
W j

` (θ̂ j)
)

1≤ j≤d,
0≤`≤n

)
. Suppose that

we pick c≤ δ and W i
0(θ̂i)≥ 1− c for every i so that X i

0 ≥ log 1−c
c . Then, let γ = log 1−c

c − log 1−δ

δ

and note that Azuma’s inequality for submartingales implies that:

Pθ∗

(
d⋂

i=1

{
log

W i
1(θ̂i)

1−W i
1(θ̂i)

≥ log
1−δ

δ
+

C
2

})

≥ 1−
d

∑
i=1

Pθ∗

(
log

W i
1(θ̂i)

1−W i
1(θ̂i)

< log
W i

0(θ̂i)

1−W i
0(θ̂i)

− γ +
C
2

)

≥ 1−
d

∑
i=1

Pθ∗

(
X i

1−X i
0 <−γ−C

2

)
≥ 1−d exp

(
−(γ +C/2)2

2logβ

)
. (23)

Let En denote the event
⋂

1≤ j≤d,
0≤`≤n

{
log W i

` (θ̂i)

1−W i
` (θ̂i)
≥ log 1−δ

δ
+ `C

2

}
. Then similarly,

Pθ∗ (En+1|En) = Pθ∗

(
d⋂

i=1

{
log

W i
n+1(θ̂i)

1−W i
n+1(θ̂i)

≥ log
1−δ

δ
+

(n+1)C
2

}∣∣∣∣∣ En

)

≥ 1−
d

∑
i=1

Pθ∗

(
log

W i
n+1(θ̂i)

1−W i
n+1(θ̂i)

< log
W i

0(θ̂i)

1−W i
0(θ̂i)

− γ +
(n+1)C

2

∣∣∣∣∣ En

)

≥ 1−
d

∑
i=1

Pθ∗

(
X i

n+1−X i
0 <−γ− (n+1)C

2

∣∣∣∣ En

)
≥ 1−d exp

(
−(γ +(n+1)C/2)2

2(n+1) logβ

)
Pθ∗ (En)

−1 .
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Since Pθ∗ (En) = Pθ∗ (E1)∏
n−1
`=1 Pθ∗

(
E`+1

∣∣E`

)
with Pθ∗ (E1) as in (23), we obtain:

Pθ∗ (En)≥ 1−d
n−1

∑
`=0

exp
(
−(γ +(`+1)C/2)2

2(`+1) logβ

)
.

The sum on the right is majorized by ∑
∞
`=0 exp

(
− (`+1)C2

8logβ

)
, which converges, so by application of

the DCT with respect to counting measure, limγ→∞ d ∑
∞
`=0 exp

(
− (γ+(`+1)C/2)2

2(`+1) logβ

)
= 0. It follows

that γ , and thus c, can be chosen high enough so that Pθ∗ (
⋂

∞
n=1 En)> 1−ε , which concludes.

C Simulation Results in the 2×2 Model

By Propositions 1 and Theorem 1, when θ =σ =H so that values of Y = 2 are very likely (or when

θ = σ = L so that values of Y = 0 are very likely), then beliefs converge to the truth, regardless

of initial priors. However, by Lemma 3 and Theorem 2, convergence is not guaranteed when

θ 6= σ . Accordingly, we consider simulations with θ = L and σ = H (the order does not matter).

We consider two sets of parameter robustness. First, we fix the priors P0,Q0 and see how the

probability of divergence varies with the success probabilities (pH , pL,qH ,qL). Second, we vary the

priors, together with a cross section of success probabilities. For each set of parameters we solve

one million simulations, running simulations until beliefs converge to zero or one, and calculate

the fraction of simulations converging to the wrong value.

We set priors to P0 = 0.8 and Q0 = 0.6 (beliefs can possibly converge to the incorrect state),

qH = 0.65 and qL = 0.4, and we do parameter sensitivity over a grid of (pH , pL) covering the full

range. Figure 5 plots the frequency of simulation converging to the incorrect state. (Remember that

the convergence probability is continuous in priors.) Not surprisingly, the convergence probability

looks “multivariate Normal” as a function of the parameters.

When the states θ and σ are not so different, and P0 > Q0, then the simulations suggest that

asymptotically Pn → 1 and Qn → 0 with high probability. When the parameters differ, the fre-

quency of convergence decreases (continuously) as they differ by more. When the states are far

from symmetric, there is a robust region with positive probability of converging to the wrong
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Figure 5: Probability of converging to wrong beliefs given prior (P0,Q0) = (.8, .6), with qH =
0.65,qL = 0.4, varying pH , pL.

beliefs, but there need not be a set of parameters where asymptotic disagreement occurs with prob-

ability one.

To analyze a cross-section around symmetry, we set pL = 0.4, and we do parameter sensitivity

varying pH ∈ [0.5,0.9] varying Q0 = 0.4,0.6,0.75. The other parameters are as before. We then

investigate a cross-section farther from symmetry. We run simulations varying pH with qH = 0.4

and qL = 0.2, but this time with pL = 1− pH . Figure 6a plots the frequency of simulations in which

Pn converges to the incorrect value near symmetry. Figure 6b plots these results for when the states

are quite asymmetric. The simulation evidence suggests that for a broad range of parameters

Pn→ 1 with high probability, with divergence likely to occur the closer to symmetric are the states.

Furthermore, the more different are P0 and Q0, the greater probability of Pn→ 1.

While the values of the aggregate states are complements, posteriors need not converge to

complements (i.e., they could both converge to 1 or to 0). When states are not symmetric, posteriors

can converge to values that are not even “symmetric” with the truth. This is surprising in the sense

that beliefs converge to states that are observationally quite different. This result is important
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(b) P0 = 0.8, qH = 0.4, qL = 0.2, pL = 1− pH .

Figure 6: Probability of converging to wrong beliefs when starting with P0 > Q0.

because agents would not only disagree about the underlying values of θ ,σ , but they would have

quite different predictions for the distribution of Yn. (One could argue that polarization truly refers

to agents disagreeing about the value of θ + σ , which is what would occur in this case.) The

frequency of these convergences, of Pn,Qn
a.s.→ 1,1 and Pn,Qn

a.s.→ 0,0, are plotted in Figure 7, which

shows the likelihood that both beliefs converge to zero for these parameters. Not surprisingly, the

curve shifts up (more likely) when P0 is more different from Q0, down the closer they are.
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Figure 7: Probability of Pn,Qn
a.s.→ 1,1 and Pn,Qn

a.s.→ 0,0 when starting with P0 > Q0.
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