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Abstract

When information is of lower dimension than the model generating the data, Bayesian

learning need not converge to the truth. Because the information is of lower dimension than

the model, agents face an identification problem, affecting the role of data in inference. We

provide conditions under which Bayesian learning is asymptotically inconsistent with positive

probability, and sometimes almost surely. Robustly, two agents with differing priors who

observe identical, unambiguous data may disagree forever, with stronger disagreement the

more data is observed. Agents rationally use common observations to differentially update

beliefs about different parameters.
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1 Introduction

People disagree, sometimes forever. Standard models of Bayesian learning suggest that when

presented with the same evidence, agents should update their beliefs “toward that evidence” so
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that agents’ beliefs are more similar. Even if agents continue to disagree, it is supposed, they

should disagree less, or differently. However, in reality beliefs often diverge and people become

polarized.1 Surprisingly, polarization occurs even when people face the same “evidence,” and

especially if they see lots of evidence. People constantly interpret the same data as evidence in

favor of their prior beliefs. In particular, people may use the same evidence to draw inference

about different variables. Consider two examples:

(i) Two economists, a Keynesian and a Neoclassical, walk into a bar. There was a recent stim-

ulus package, and the new GDP results are sluggish. The Neoclassical says, “Goes to show

that stimulus doesn’t work.” The Keynesian replies, “Oh no, goes to show that the econ-

omy is much worse than we thought.” (Perhaps later adding that the stimulus was poorly

designed.) Meanwhile, in another bar in another country far away, a stimulus bill has passed

with apparently great results. “I guess the economy was already out of the recession,” says

the Neoclassical.

(ii) A liberal and a conservative are watching the news together. After a string of media coverage

providing evidence that the country has become more liberal, the liberal says, “The country

is coming my way.” The conservative, responds, “No, more evidence of the media’s liberal

bias.”

In each of these cases, the exact same evidence is interpreted in completely different ways,

even confirming the prior that each person had before. But the observers are not rejecting the

data, nor are the data ambiguous and unclear: they are simply using the evidence in different,

rational ways. What these examples illustrate is that the world is multi-dimensional—there are a

number of factors that contribute to what we see—but the data we see is nearly always of lower

dimensionality than the world. In other words, we live with identification problems. When our

data are of lower dimensionality than that of the generating process, some observations do not

1There is ample empirical evidence documenting belief divergence in many environments regarding different is-
sues: religion (Batson, 1975); death penalty (Lord et al., 1979); nuclear power (Plous, 1991); caffeine (Chaiken et al.,
1992); sexuality (Munro and Ditto, 1997); affirmative action and gun violence (Taber and Lodge, 2006). Darley and
Gross (1983) provide evidence of people interpreting the same evidence differently in light of earlier evidence, and
Hirshleifer and Teoh (2003) document how the presentation of accounting information affects its interpretation.
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identify the underlying parameters. For the economists at the bar, GDP is a function of the state

of the economy, the effectiveness of stimulus, and potentially how well designed that stimulus

was. For the liberal and the conservative, the politics of news reflect the underlying beliefs of the

population and how accurately those are reported. Each observer uses the data—they do not ignore

the observation or assume it is just “noise”—but they rationally use the data to make inference

about different underlying variables. The Keynesian infers that weak GDP data means something

about the economy, not the effectiveness of stimulus, while the Neoclassical infers weak GDP

means the fiscal multiplier is low.2

What is most interesting is not that people can disagree after a single observation, but that with

many observations people may continue to disagree, and disagree further, even becoming com-

pletely convinced of their beliefs. The striking regularity is that polarization persists or increases

when people observe many identical data points. Polarization can occur even if many observations

are definitively revealing about the state of the world, so long as enough observations can rationally

be used to make inference about different underlying variables.3

In this paper we show that when world is of higher dimensionality than the data people receive,

(i) rationally updated posterior beliefs will converge, though not necessarily to the true values,

and as a result (ii) heterogeneous priors may rationally diverge when agents’ initial beliefs are

polarized. In particular, these results are likely to occur when unidentified observations occur

frequently: beliefs are likely to converge to values confirming initial beliefs, whether those beliefs

are correct or not. In other words, posterior beliefs converge to confirm relative initial beliefs:

what matters is which beliefs are held more strongly, not the absolute levels of beliefs.

To show these results, we consider a simple model in which there are two state variables, θ

and σ , that determine whether realization variables t and s will be successes or failures. What
2We show that updating beliefs in this way may be a completely rational approach in light of identification is-

sues. We do not make behavioral assumptions or suppose any bounded rationality. Of course, behavioral biases may
provide other reasons why people interpret data in favor of their priors. That said, it is well-known that is easier to
convince oneself of a lie that is largely based in fact, so the prevalence of behavioral biases may reflect the truth that a
multidimensional world makes it quite possible to believably interpret data in favor of priors.

3A classic example of people observing exactly the same evidence and drawing polarized conclusions is the O.J.
Simpson trial, in which the same evidence was interpreted vastly differently (see Uschel, 1995). Our paper is about
how repeated observations can lead to polarization. Thus, an example would be that different people interpret multiple
cases of police shootings in ways that lead to increased polarization (for evidence see Pew Research Center, 2014).
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is observed is not t and s but the sum: agents see the number of successes but not the composi-

tion. Hence, observations of “two” or “zero” successes are clearly identified, while observations

of “one” are “unidentified.” Agents hold beliefs about the states θ and σ , which can be good or

bad, and update their beliefs about the states in light of observations. Critically, when interpreting

“unidentified observations” (ones), the likelihood function for one state (say θ ) depends on beliefs

about the other state (say σ ). Technically, when agents have different beliefs, they have different

likelihood functions. Thus, agents update beliefs differently when observing unidentified obser-

vations. Likelihood functions diverge more if beliefs are dissimilar. Thus, differing priors lead to

divergent likelihood functions and divergent posteriors.

When unidentified observations are relatively unlikely, beliefs converge to the truth almost

surely for any priors. However, when unidentified observations are relatively likely, then robustly

with positive probability beliefs converge, though not necessarily to the truth. Instead, if a person

has a prior that it is more likely that the good aggregate state is θ , then asymptotically with positive

probability the person will believe with certainty that θ is the good state and that σ is the bad state

(vice versa if the prior is that σ is more likely to be good). Thus, if two people disagree about

which state is more likely to be good—regardless of the overall level of beliefs about each state—

then robustly beliefs diverge asymptotically with positive probability. Furthermore, under certain

conditions beliefs diverge asymptotically with probability one. In these cases, more data leads to

greater polarization rather than greater agreement.

We theoretically characterize the limiting properties of beliefs in our model and show that there

are robust conditions under which beliefs converge to the wrong values, leading to asymptotic

polarization. In addition, we provide simulation results illustrating that it is almost always the case

that polarization can occur with positive probability when unidentified observations are relatively

likely. Thus, high-dimensionality may lead to asymptotic extreme polarization when unidentified

observations are likely, but will lead to asymptotic agreement when identified observations are

relatively likely. Or put differently, when unidentified observations are likely, agents in an economy

with common priors may have collective beliefs converge to something other than the truth.
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Related Literature Several papers consider how observing a small number of signals can lead

to belief polarization. Benoı̂t and Dubra (2014) show that as a result of identification problems

of the type we consider, divergence occurs for intermediate values of information, but not for

extreme values of information (which are more informative of the underlying identification struc-

ture).4 Similarly, Baliga et al. (2013) show that polarization can occur as an optimal response to

ambiguity aversion, a possibility only at signal with an intermediate likelihood ratio. Andreoni

and Mylovanov (2012) also consider polarization about optimal actions when agents receive two-

dimensional information to form a one-dimensional opinion. They consider that agents receive

information about only one of two states, rather than information that is a function of the two

states, and must make inference on what action is preferred, in light of beliefs about the other state

(disagreement persists because agents discount information filtered through the actions of others).

We show that, in fact, even with infinitely many signals, beliefs may diverge, even when many

of those signals are in fact extreme. In fact, it is possible that disagreement grows with the number

of realizations, diverging to completely polarized views of the world. Like the intermediate results

of Benoı̂t and Dubra (2014) and Baliga et al. (2013), our asymptotic result holds when the true

state of the world is in an “intermediate region”, which will lead toward a higher frequency of

unidentified signals. Thus, disagreement persists asymptotically only when the fundamentals are

not extreme, leading to many unidentified observations.

Our asymptotic result differs from Acemoglu et al. (2016), who show that agreement does not

necessarily follow even when learning does. They consider a model in which agents have different

priors about the state, and they also have different beliefs about how the state maps to signals;

in other words, they disagree about how much noise there is. As a result, agents also face an

identification problem regarding how to interpret signals. They show that even though agents learn

the true state asymptotically, this does not mean that agents will agree asymptotically because

the likelihood ratios of their beliefs need not converge. In contrast, in our model agents need not

learn the truth asymptotically, and disagreement can be exacerbated by the same information. The

4Similar observations are made by Dixit and Weibull (2007) and Jern et al. (2014). Kondor (2012) shows that
public information can increase disagreement when traders have private information and different trading horizons
(they update higher-order expectations about beliefs of others).
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results differ because the nature of the identification problems we consider are different.5

Fryer et al. (2015) consider a model in which agents may receive “ambiguous” signals, which

are interpreted in light of current priors (as in our model) and “stored” as an unambiguous signal.

Their convergence result is driven by bounded memory, where agents do not retain whether signals

were ambiguous or not, but remember the interpreted value. Crucially, if ambiguous signals could

be stored as such, learning (and agreement) would occur. Their setup shares many features with

ours; however, our paper is fundamentally about the difference between the dimensionality of

observations and the generating parameters, not about ambiguity. In our model, a signal of one

is “ambiguous” only in the sense that the underlying values cannot be identified, and the way that

agents update their posteriors depends on their beliefs—but agents unambiguously know that a

one is a one and store the observation as a one; the observation is perfectly clear, but how it is

interpreted differs because of the identification problem.

Our treatment of dimensionality in learning is applicable to the broad class of inference prob-

lems in economics in which agents are tasked with learning the distribution of a multidimensional

x by observing oscillations in the one-dimensional function (or functional) g(x) (this was the case

in the two examples discussed earlier in the introduction). In our model, agents are completely

rational, but there is a fundamental limitation, inherent to the model but not agents, in the ability

of information to identify the model.6

Many papers provide theories (often with a behavioral assumption) of polarization and conver-

gence to incorrect beliefs. Rabin and Schrag (1999) consider confirmatory bias; Eyster and Rabin

(2010) show how “social confirmation bias” leads to herding with positive probability to incorrect

actions; Ortoleva and Snowberg (2015) consider the role of overconfidence in political behavior to

explain ideological extremeness; Schwartzstein (2014) shows that selective attention to informa-
5Nonetheless, our model can also deliver the result of asymptotic disagreement even when learning occurs. See

Proposition 1 and Lemma 4.
6In the model of Fryer et al. (2015), agents interpret observations differently because of bounded rationality and

because ambiguous signals are sufficiently likely. Therefore, divergence occurs when beliefs about the states are
greater than or less than one-half and ambiguous signals occur with a sufficiently high frequency. In our model,
divergence can occur when beliefs about one state are greater than the other, regardless of how high each belief is,
whenever unidentified observations occur relatively frequently. Thus, divergence occurs when relative beliefs differ
and the identification problem is sufficiently severe. Furthermore, as we discuss below, in our model, both agents will
converge to the truth when the fundamentals in the model are not polarized (states are either (1,1) or (0,0)), whereas
polarization occurs when fundamentals are, in a sense, polarized (states are (1,0) or (0,1)).
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tion can lead to persistently incorrect beliefs (see also Sundaresan and Turban, 2014). Heidhues

et al. (2015) consider a model in which agents are (overly) optimistic about their ability, choose an

effort level, and observe the outcome. Beliefs about fundamentals diverge from reality precisely

because agents change their effort level in a self-defeating, misguided way. Thus, incorrect learn-

ing follows because agents endogenously observe different signals based on their effort. In our

model agents observe exactly the same signals and yet learn differently.7

A Simple Example

We first provide a simple example to illustrate how Bayesian learning is affected by the identifica-

tion problem. In the next section we present the full model and characterize asymptotic properties.

Let there be two underlying state variables t and s that jointly determine the aggregate realiza-

tion y(t,s). The two state variables can each take two values in {0,1}. The aggregate realization is

defined by the following function:

y(t,s) = t + s. (1)

In other words, a realization of y= 2 or y= 0 definitively says the value of the underlying variables,

but a realization of 1 yields an identification problem: there are two possible sets of parameters

that would provide that realization.8

Let there be two agents denoted i = 1,2. Agent i holds beliefs Pri(t = 1) = Pi and Pri(s =

1) = Qi. Agents are rational: when they see the realization y they update their beliefs Pi and Qi

according to Bayes’ Rule. Denote posterior beliefs by P̂i and Q̂i. Consider two agents faced with a

moderate realization y = 1 trying to learn the effectiveness of the stimulus. From Bayes’ Rule the

posteriors, given observation y = 1, are given by

P̂ =
P(1−Q)

P(1−Q)+(1−P)Q
, Q̂ =

Q(1−P)
P(1−Q)+(1−P)Q

. (2)

7See Eyster et al. (2014) for a model in which learning follows by observing the actions of others, which are
endogenously determined as a function of expected payoffs.

8For example, one could interpret t as the strength of the economy and s as the effectiveness of a stimulus package.
A strong economy and an effective stimulus lead to high output (similarly for weak variables), but a mix of strong
economy and ineffective stimulus, or the reverse, will lead to a moderate realization.
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Crucially, the posterior for P depends on beliefs about Q (vice versa).9 How might beliefs

diverge in light of information? We say that agents have strongly polarized beliefs if P1 >
1
2 > P2

and Q2 >
1
2 > Q1. Thus, agent 1 is optimistic about t but not s, and agent 2 is optimistic about s and

not t. Divergence occurs when beliefs are strongly polarized. However, beliefs can diverge relative

to each other without agents becoming strongly polarized. We say that polarization increases

relatively if P̂1
P̂2

> P1
P2

and Q̂2
Q̂1

> Q2
Q1

.

Lemma 1. Suppose P1 > 1
2 > P2 and Q2 > 1

2 > Q1. Then polarization increases and posteriors

diverge further if y= 1: P̂1 >P1 >P2 > P̂2 and Q̂2 >Q2 >Q1 > Q̂1. Relative polarization increases

if
Pr1(s = 0)
Pr2(s = 0)

>
Pr1(y = 1)
Pr2(y = 1)

,
Pr2(t = 0)
Pr1(t = 0)

>
Pr2(y = 1)
Pr1(y = 1)

. (3)

The results follow immediately from the equations for posteriors. When beliefs are polarized in

this sense, the same information leads to increased polarization. Agent 1 becomes relatively more

optimistic about t and less optimistic about s, and the reverse is true for agent 2. Thus, agents draw

divergent conclusions from the same data; the observation works as evidence in favor of greater

polarization.

2 The Model

In the static setup a realization of y = 0 or y = 2—evidence that cannot be interpreted differently—

would cause beliefs to converge, and such a realization would cause both agents to admit that

they were wrong about something. Thus, one might wonder if given enough observations beliefs

must eventually converge. We now extend the model to answer precisely this question and show

that, when observations of y = 1 are relatively likely, more observations increase the likelihood

of polarization. We characterize the limiting behavior of posterior beliefs with theoretical and

simulation results. Proofs not in the text are given in the appendix.

9In fact, the likelihood ratio for the odds ratio for P is 1−Q
Q and for Q is 1−P

P , which is to say the likelihood ratio is
completely determined by beliefs about the other varibles.
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Setup Suppose now that there are two aggregate states, θ and σ , which determine the frequency

of t and s respectively, and the aggregate states take binary values (think “good” or “bad”). In

particular, t-successes occur with higher probability when θ = 1 (θ is “good”), and s-successes

occur with higher probability when σ = 1. Thus,

Pr(t = 1|θ = 1) = pH > pL = Pr(t = 1|θ = 0), and (4)

Pr(s = 1|σ = 1) = qH > qL = Pr(s = 1|σ = 0), (5)

so that t = 1 is more likely when θ = 1 and s = 1 is more likely when σ = 1. Let all probabilities

p,q lie strictly between zero and one. The realization function is y(t,s) = t + s, as before. Thus,

the aggregate states θ and σ determine the frequency of observations y ∈ {0,1,2}. The mapping

from aggregate states θ and σ to t and s is common knowledge: agents only disagree about the

likelihood of θ and σ , but not about how those states translate into realizations y.10

Belief Updating Let an agent hold beliefs Pn and Qn about θ and σ (the probability the states are

good), where n denotes the number of signals observed (also the period). Agents observe signal y

in period n+1 and use Bayes’ Rule to update their beliefs about the two aggregate states to Pn+1

and Qn+1. Thus, agents update beliefs sequentially, using only the current prior and the current

information, together with Bayes’ Rule, to form their posteriors.11

Define p = PpH +(1−P)pL and q = QqH +(1−Q)qL to be the ex-ante expected realizations

of t and s given beliefs P,Q (notice we will suppress the sub-n subscripts when all variables share

the same n value). It is convenient to work with odds ratios. Define OP = P
1−P , and OQ = Q

1−Q . Let

10Contrast this assumption with the information structure in Acemoglu et al. (2016), where a one-dimensional state
θ produces signals with probability pθ , and agents potentially disagree about pθ as well as the probability of θ .

11Since agents update sequentially, agents are not strictly Bayesian in the classical sense of Doob in which agents
obtain belief Pn+1 by updating a fixed initial prior P0 in conjunction with all n+ 1 observations at once, rather than
sequentially. Since the learning process is path dependent (Lemma 3), sequential updating matters for the results.
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OP(y),OQ(y) denote the updated odds ratio after observing y. Then Bayes’ Theorem yields

OP
n+1(2) =

pH

pL
OP

n , OQ
n+1(2) =

qH

qL
OQ

n , (6)

OP
n+1(0) =

1− pH

1− pL
OP

n , OQ
n+1(0) =

1−qH

1−qL
OQ

n , (7)

OP
n+1(1) =

(pH(1−qn)+(1− pH)qn)

(pL(1−qn)+(1− pL)qn)
OP

n , OQ
n+1(1) =

(qH(1− pn)+(1−qH)pn)

(qL(1− pn)+(1−qL)pn)
OQ

n , (8)

where we have written the posterior odds ratio as a product of the prior odds ratio and the likelihood

ratio, which depends on y, and, importantly for y = 1, on P,Q. Denote the likelihood ratios by

LP
y (Q) and LQ

y (P). The following result is immediate.

Lemma 2. Posteriors behave as follows:

if y = 2 then Pn+1 > Pn, and Qn+1 > Qn

if y = 0 then Pn+1 < Pn, and Qn+1 < Qn

if y = 1 then Pn+1 > Pn iff qn <
1
2
, and Qn+1 > Qn iff pn <

1
2
.

In other words, when the realization gives identified information about t and s, both agents

update posteriors in the same way, as standard models suggest, though posteriors will still differ

because priors differ. However, unidentified realizations (y = 1) can lead to divergent posteriors

when beliefs are sufficiently polarized.

Discussion The reader may wonder about the simplicity of the model and signals received and

whether our results are robust to more general setups. Our results are completely driven by the

following two assumptions: (i) a partially identified model with (ii) relatively frequent observations

that do not completely identify the model. We have deliberately chosen the simplest model to

illustrate that partial identification can lead to beliefs diverging from the truth—in fact, if anything

the simplicity of our model and the set of signals makes learning the truth more likely. There

are many reasons to believe that the identification problem in a higher dimensional model with a

richer signal-space would be more severe, making divergent learning even more likely, since fully-
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identifying observations would be even less common. Furthermore, our agents can only possibly

disagree about initial priors; polarization would be even more likely if agents also disagreed about

the model parameters.

2.1 Theoretical Results

The main results of this section are as follows: when unidentified observations are relatively un-

likely, beliefs converge to the truth (Proposition 1); when unidentified observations are relatively

likely and the aggregate states are symmetric, then with probability one beliefs converge to confirm

relative initial priors (Proposition 2); robustly, when unidentified observations are relatively likely

there is a positive probability that beliefs converge to confirm relative initial priors (Proposition 5).

First, this process is path dependent: the order of observations matters for determining the

posterior.

Lemma 3 (Path Dependence). The stochastic process defined by the posterior is path dependent.

In other words, the posterior at any time T > 1 depends on the order of observations.

The result is very intuitive. Since the evolution of posteriors depends on likelihood ratios, and

since the likelihood ratios depend on priors, how an agent updates after seeing a one depends on

what information has already been received. Naturally, path dependence is precisely a feature of

the process. Agents interpret information differently—they have different likelihood functions—

because their likelihood functions depend on their beliefs about the other variable. But these

beliefs evolve as well. Thus, while our agents are completely rational and Bayesian (we have not

made any behavioral assumptions) our model delivers learning that has a flavor of psychological

short-sightedness: an agent need not recall the entire history of observations in order to update the

posterior, but simply consults the current prior, which includes the information from the history of

observations.

Our first result concerns a case where individuals converge asymptotically to the correct beliefs.

Specifically, when θ = σ = 1 or θ = σ = 0, then beliefs converge to the truth. This is because

identified observations (y = 2 or y = 0) are relatively most likely in these cases. Thus, for the most
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frequent observations, the likelihood ratios do not depend on both beliefs P and Q, and so agents

tend to interpret observations the same most of the time.

Proposition 1. If θ = σ = 1 or θ = σ = 0, then (respectively) Pn,Qn
a.s.→ 1 and Pn,Qn

a.s.→ 0.

However, when intermediate observations (y = 1) are relatively likely, beliefs needs not con-

verge to the truth. We now focus on these results.

2.1.1 Incorrect Beliefs in the Symmetric Case

While path dependence makes it more difficult to characterize the limiting properties of the pro-

cess, we can still prove an important result when the states θ and σ are symmetric. Crucially,

asymptotically beliefs converge to certainty confirming initial relative priors: extreme polarization

occurs asymptotically.

Lemma 4. Let pH = qH and pL = qL. Then almost surely the ratio OP/OQ diverges to infinity if

P > Q and converges to zero if P < Q .

The result follows because likelihood ratios get updated only after observing a one, going up or

down depending only on the initial prior. The convergence of posteriors to reinforce initial priors

immediately follows from this lemma.12

Proposition 2. Let pH = qH and pL = qL. Suppose the truth is θ = 0 and σ = 1. If P0 > Q0, then

Pn
a.s.→ 1 and Qn

a.s.→ 0 (vice versa if P0 < Q0).

Proof. By Lemma 4 the ratio of the odds-ratios, OP/OQ converges to infinity almost surely. This

implies that Pn
a.s.→ 1 almost surely. Since OP/OQ→∞, at least one of Pn

a.s.→ 1 or Qn
a.s.→ 0. However,

if Q = 0 then the problem of Bayesian learning is isomorphic to learning whether σ = 1 given

P = 0. That is, there exists ε > 0 such that if Pn < ε , then Qn is a submartingale. By Doob’s

12It is worth comparing this result with symmetry to Fryer et al. (2015). In their paper, there are two symmetric
states (a and b) and agents’ beliefs converge to one of these states to confirm their prior when ambiguous signals
are sufficiently frequent. In this section, with symmetric parameters, the two polarized states are (1,0) and (0,1), and
agents’ beliefs will always converge to confirm their priors. In our model, polarization occurs because unidentified
observations are frequent because the fundamental states are polarized. When the states are not polarized ((1,1) or
(0,0)), then polarization will never happen.
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Martingale Convergence Theorem, this problem converges to the truth (Q = 1) almost surely.13 By

symmetry, if Qn < ε then Pn
a.s.→ 1.

Corollary 1 (Asymptotic belief divergence). Let pH = qH and pL = qL. Suppose one agent holds

prior beliefs with P0 > Q0 and the other has priors with P0 < Q0. Then if θ 6= σ , with probability

1 agents’ beliefs will asymptotically diverge to complete polarization, the first with Pn
a.s.→ 1 and

Qn
a.s.→ 0, and the reverse for the other.

An implication of Proposition 1 and Lemma 4 is that when θ = 1 = σ , both P and Q converge

to 1. However, agents starting with different priors will continue to hold different relative beliefs

about P and Q asymptotically—and those relative beliefs will diverge—even as beliefs converge

to the truth (similar to Acemoglu et al., 2016). The symmetric result holds when θ = 0 = σ .

The symmetric case is perhaps least interesting because the states θ = 1,σ = 0 and σ = 1,θ = 0

produce observationally equivalent outcomes. However, if agents could take actions whose payoffs

depended on the values of θ and σ , disagreement would still matter. Nonetheless, this result is

helpful to consider how divergence can occur even when states are asymmetric.14

2.1.2 Incorrect Beliefs in the Asymmetric Case

Individuals can converge asymptotically to false beliefs for any parameters. For any parameters

there exist priors such that almost surely beliefs converge to the wrong values. Crucially, there is

a robust set of parameters such that beliefs diverge. Throughout suppose θ = 0 and σ = 1. (By

symmetry all results also hold for θ = 1 and σ = 0.)

First, we can characterize conditions on beliefs P,Q such that beliefs converge incorrectly al-

most surely. Ignoring a (measurably) small set of parameter values, we obtain a classification

result for the asymptotic behavior of (Pn,Qn). Proposition 3 states conditions on parameters that

13See Diaconis and Freedman (1986).
14 Notice, for all parameter values, LP

1 (Q)/LQ
1 (P) is increasing in P (this follows immediately from differentiation).

Thus, there exists P/Q such that OP/OQ increases after a y = 1, and thus P/Q increases. When the p′s and q′s are
close, then a low P/Q is required for LP

1 (Q)/LQ
1 (P)> 1 (for example, we saw in the symmetric case that this is always

true). Farther from symmetry requires a higher P/Q. If beliefs fall in this region, if likelihoods for y = 0,2 are not so
different, if y = 1 are sufficiently likely—then beliefs are likely to diverge as in the symmetric case. Thus, asymptotic
disagreement is less likely, and is only likely to occur if the initial priors are very different.
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guarantee when priors exists such that beliefs will asymptotically converge to the endpoints (zero

or one) with positive probability. Specifically, the proposition states that the asymptotic behavior

of (Pn,Qn) behavior can be stated in terms of the expectation of the transition function (i.e., the log

odds ratio, defined in the Appendix) in neighborhoods of the extremal points of [pL, pH ]× [qL,qH ],

because asymptotically individuals will accumulate in these neighborhoods with positive proba-

bility. (The conditions are technical, so the reader may want to skip the equations and instead

consider Figure 1.)

Proposition 3. The following hold:

1. If E
[
∆ logOP

n+1(qL)
]
> 0 and E

[
∆ logOQ

n+1(pH)
]
< 0, then there exist (P0,Q0) such that

Pn→ 1 and Qn→ 0 with positive probability tending to 1 as Q0→ 0 and P0→ 1

2. If E
[
∆ logOP

n+1(qL)
]
< 0, then P a.s.→ 0; if additionally E

[
∆ logOQ

n+1(pL)
]
< 0 then Q a.s.→ 0,

whereas if E
[
∆ logOQ

n+1(pL)
]
> 0 then Q a.s.→ 1.

3. If E
[
∆ logOQ

n+1(pH)
]
> 0, then Q a.s.→ 1; if additionally E

[
∆ logOP

n+1(qL)
]
< 0 then P a.s.→ 0,

whereas if E
[
∆ logOP

n+1(qL)
]
> 0 then P a.s.→ 1.

Most importantly, if parameters satisfy condition 1 of Proposition 3 then there exist priors

(correctly ordered) such that beliefs will diverge with positive probability. Numerically evaluating

over all combinations (pH , pL,qH ,qL) ∈ (0,1)4 together with ordering restrictions, approximately

27.26% of parameters satisfy condition 1, meaning that for at least this many parameters there is a

positive probability of converging to the wrong values for some priors.

Next, given parameters pH , pL,qH ,qL, let f (p,q) = Pr((Pn,Qn)→ (1,0)|P0 = p,Q0 = q) be

the probability of that beliefs converge to (1,0), which are the wrong beliefs. We have the follow-

ing important results, including a finding on continuity in Proposition 4 that extends to a broader

class of random dynamical systems with a Bernoulli Shift as a random component (see Proposition

1.6 in the Online Appendix).

Proposition 4. The convergence probability f (p,q) is continuous in priors p,q.
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Corollary 2. If

log qH
qL

log pH
pL

<
log 1−qH

1−qL

log 1−pH
1−pL

, (9)

then either f (p,q)> 0 for all (p,q) ∈ (0,1)× (0,1), or it vanishes for all (p,q).

Thus, if parameters satisfy condition 1 of Proposition 3 as well as equation (9), then for any

(rightly ordered) priors, beliefs will diverge with positive probability. By simple counting of pa-

rameters and conditions, we have the following result.

Proposition 5. There is a robust set of parameters such that for any priors 0≤Q0 < P0 ≤ 1 beliefs

diverge with positive probability.

Approximately 8.33% of all parameters satisfy both sets of conditions. Figure 1 plots the sets of

(pH , pL) parameters that satisfy the conditions, with each frame holding fixed a different (qH ,qL).

Yellow sections indicate that any priors will converge to (1,0) with positive probability. Green

sections indicate that some priors are guaranteed to converge to (1,0) with positive probability.

The blue sections are not guaranteed to never converge to (1,0), but the regions do not satisfy the

conditions guaranteed that they might.

2.2 Simulation Results

Simulations evidence is useful for characterizing the limiting behavior of this process (which,

again, is path dependent). In light of our theoretical results, we consider simulations with θ = 0

and σ = 1 (the order does not matter), and consider two sets of parameter robustness.15 We first

set qH = .65,qL = .4, pL = .4, and we do parameter sensitivity varying pH ∈ [.5, .9]. We set prior

beliefs to P0 = .8 and consider Q0 = .4, .6, .75. For each set of parameters we solve one million

simulations, running simulations until beliefs converge to zero or one, and calculate the fraction

15Remember that as with standard Bayesian learning, beliefs converge to 1 or 0 with sufficient observations; how-
ever, the belief need not converge to the true value. As proved, when θ = σ = 1 so that values of y = 2 are very likely
(or when θ = σ = 0 so that values of y = 0 are very likely), then beliefs converge to the truth, regardless of initial
priors. However, convergence is rarely the case when θ 6= σ .
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(a) qH = .6,qL = .4. (b) qH = .6,qL = .2.

(c) qH = .8,qL = .4. (d) qH = .8,qL = .2.

Figure 1: Parameters satisfying Proposition 3 and equation (9). Yellow: all priors will converge to
(1,0) with positive probability. Green: some priors will converge to (1,0) with positive probability.

of simulations converging to one (the wrong value). Figure 2 plots the frequency of simulations

that converge to the incorrect value. The simulation evidence suggests that for a broad range of

parameters P→ 1 with high probability. The more symmetric are the states (the q’s and p’s are

more similar), the more likely do beliefs converge to the wrong value. This occurs whenever

P0 > Q0, regardless of the level. However, the more different are P0 and Q0, the greater probability

of converging to P = 1 (the curve is a wider bell).

If the states are not so different and P0 > Q0 (the probability that θ = 1 is greater than the

probability that σ = 1), then the simulations suggest that asymptotically P→ 1 and Q→ 0 with

16
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Figure 2: Probability of converging to wrong beliefs when starting with P0 > Q0.

high probability. This effect induces asymptotic disagreement when one agent has prior P0 > Q0

and the other has prior with P0 < Q0, and the disagreement is greater with more observations.

When the parameters differ (p’s and q’s), the frequency of convergence decreases (continuously)

as they differ by more. And thus the probability of permanent belief divergence decreases.16

When the states are far from symmetric, the qualitative result stands (there is a robust region

with bell-shaped positive probability of converging to the wrong beliefs) but there need not be a set

of parameters where asymptotic disagreement occurs with probability one. To further investigate

this possibility, we run simulations varying pH with qH = .4,qL = .2 but this time with pL =

1− pH , again considering Q0 = .4, .6, .75. Figure 3 plots these results for when the states are quite

asymmetric. As one expects, the probability of converging to the wrong belief is greater when the

16Compare these results to Fryer et al. (2015). In their model, the probability of polarization is an increasing
function of the probability of ambiguous signals. As our simulation results suggest, in our model the probability of
polarization is a function of how different are parameters for each state. The more parameters differ, the easier it is
to “statistically identify” observations of 1, which are otherwise unidentifiable. In their model ambiguous signals are
completely unidentified. Thus, in our model, fundamentals determine the severity of the identification problem and the
probability of polarization, whereas in their model the severity of ambiguity determines the probability of polarization.
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initial belief Q0 is lower.
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Figure 3: Probability of converging to wrong beliefs when starting with P0 > Q0. qH = .4,qL =
.2, pL = 1− pH .

Figure 4 plots the convergence probability over a grid of (pH , pL), holding fixed priors and

parameters qH = .65,qL = .4. (Remember that the convergence probability is continuous in pri-

ors.) Not surprisingly given the previous figures, the convergence probability looks “multivariate

Normal” as a function of the parameters.

While the values of the aggregate states are complements, posteriors need not converge to

complements (i.e., they could both converge to 1 or to 0). Of course, this is not all that surprising

since posteriors are not converging to the truth. The frequency of these convergences—of Pn,Qn
a.s.→

1,1 and Pn,Qn
a.s.→ 0,0 are plotted in Figure 5 in the appendix.
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Figure 4: Probability of converging to wrong beliefs given prior (P0,Q0) = (.8, .6), with qH =
.65,qL = .4, varying pH , pL.

3 Implications

Our analysis has several implications for the effectiveness of attempts to relieve identification

problems, polarization and information disclosure, and model specification and dynamics.

3.1 Actions

First, incomplete attempts to relieve the identification problem need not completely cure it. Sup-

pose agents can choose with rare frequency to take an action leading to some realization: action a

has a greater success rate when θ = 1 and action b has a greater success rate when σ = 1. Since

agents’ beliefs are unlikely to converge, agents are likely to disagree about the best action to take. If

agents could choose actions frequently enough, then their “experimentation” could provide richer

data, perhaps even relieving the identification problem. However, this is precisely the problem that

we find ourselves in the real world: we could know the effect of policies on macro variables if
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we could experiment frequently enough, but of course we cannot. Given unidentified models, it

is no surprise that economists and politicians will continue to make contrasting recommendations.

In some cases it is not surprising that recommendations will become increasingly polarized with

more observations.

In fact, even frequent experimentation would still likely lead to polarization. First, if agents first

observe many “unidentified observations,” then beliefs will already be polarized and so identified

observations will have small effects changing beliefs. Second, if the frequency of identified ob-

servations is exceeded by the frequency of unidentified observations (again, this is the scenario of

concern), then polarization should still occur in the long run. An implication is that if economists

produce a handful of well-designed natural experiments or instrumental variables to relieve an

identification problem, the profession may nonetheless continue to hold divergent beliefs so long

as there are plenty of cases in which the model is unidentified.17

3.2 Persuasion and Information

Our results have implications for persuasion and information release. First and most immediately,

our model predicts that in some cases polarization may be unavoidable when initial beliefs are

relatively different. Initial heterogeneity can lead to extreme polarization, and more information

worsens polarization. This may explain why polarization in many places has seemingly increased

in recent decades as information becomes more plentiful. If it is possible that priors can get “reset”

(perhaps with a new generation), beliefs may be determined and unchanging until such a genera-

tional change occurs.

Second, our model is silent about where prior beliefs come from, but our results demonstrate

that initial priors are critical for how people infer data (perhaps there are behavioral or generational

explanations for priors; see Bénabou and Tirole (2016) for an overview of belief production). Our

results suggest that the stakes from being able to control or influence initial priors (if that can be

done) can be very high.

Third, our results suggest that agents attempting to persuade others (see Kamenica and Gentzkow,

17We acknowledge Bruce Sacerdote for this observation.
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2011) may choose to purposely disclose “unidentified information” when priors are in their favor,

knowing that people will infer the unidentified information in ways that are favorable to their out-

come.18 Additionally, in light of information undermining agents’ initial beliefs, agents may have

an incentive to “modify” an existing model by adding additional dimensions. This creates an iden-

tification problem, so that an initial hypothesis or theory can accommodate information that was

initially at odds.

3.3 Model Specification and Dynamics

Finally, our results suggest that model specification has important implications for equilibrium dy-

namics, whether an economy has a representative agent or heterogeneous agents. When learning

processes are unidentified, then a representative agent need not learn the truth, and beliefs among

heterogeneous agents may become polarized rather than converging or being stable. Identifica-

tion problems and learning can have important implications for macroeconomic dynamics (Collin-

Dufresne et al., 2016; Milani, 2007), asset pricing (Adam et al., 2016), stability of non-rational

expectations (Woodford, 2013) and strategies (Kalai and Lehrer, 1993), convergence of dynamical

systems and dynamic models (Fernández-Villaverde et al., 2006; Schenk-Hoppé and Schmalfuß,

2001), and for properties of Bayesian estimation of macro models (Schorfheide, 2011) (the sensi-

tivity of Bayesian estimation to initial priors may in some cases be much higher than commonly

thought).

How can polarization be avoided? Our results show that, when agents face an identification

problem and when the underlying fundamentals of the world are “polarized,” agents’ beliefs can

diverge to certain but differing beliefs about fundamentals. However, a critical driver of this result

is that agents update their beliefs whenever they get new information. If agents instead updated be-

liefs in the classical sense of Doob, “suspending judgment” until all the information has arrived, or

completely revisiting their beliefs in light of all information, then with probability one polarization

would not occur. (When agents form Pn+1 using P0 and n+ 1 observations, then Pn+1 converges

18To the extent that priors differ because of initial private information, polarization can be prevented only when valu-
able communication can occur. A large literature since Crawford and Sobel (1982) have studied strategic information
transmission.
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to the truth for all but a measure zero of parameters—for example, the perfectly symmetric case.)

In our model, agents update their beliefs frequently and rationally, and they rationally incorporate

new information in light of their most recent prior. While this is a perfectly rational way of incor-

porating new information, it is also the reason that beliefs can become polarized. Further research

should determine how agents form beliefs in light of new information and under what conditions

those learning processes can be manipulated or modified.

4 Conclusion

The world is multi-dimensional—there are a number of factors that contribute to what we see—

but the data we see is nearly always less dimensional than the world. We live with identification

problems. As a result, Bayesian learning need not converge to the truth, and so agents with differing

priors may have posteriors diverge forever, with greater divergence the more information received.

When unidentified observations are sufficiently likely, beliefs are likely to converge to certainty

confirming relative initial beliefs. Thus, asymptotic polarization can rationally occur.

We have characterized the limiting properties of beliefs for a simple model in which some ob-

servations are not identified. Our main result is that when unidentifiable observations are relatively

more frequent, then asymptotically people’s initial beliefs get reinforced: whatever state they ini-

tially believed was more likely to be good will with positive probability be believed to be the good

state with certainty. Thus, beliefs become polarized in light of common information. However, if

clearly identified observations are relatively likely, beliefs converge to the truth with probability

one, and polarization will not occur.
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SCHENK-HOPPÉ, K. R. AND B. SCHMALFUSS (2001): “Random fixed points in a stochastic

Solow growth model,” Journal of Mathematical Economics, 36, 19–30.

SCHORFHEIDE, F. (2011): “Estimation and evaluation of DSGE models: progress and challenges,”

Tech. rep., National Bureau of Economic Research.

SCHWARTZSTEIN, J. (2014): “Selective Attention and Learning,” Journal of the European Eco-

nomic Association, 12, 1423–1452.

SUNDARESAN, S. AND S. TURBAN (2014): “Inattentive valuation and belief polarization,” Tech.

rep., Working paper.

25



TABER, C. S. AND M. LODGE (2006): “Motivated skepticism in the evaluation of political be-

liefs,” American Journal of Political Science, 50, 755–769.

USCHEL, J. (1995): “Poll: A Nation More Divided,” USA Today, p. 5A.

WOODFORD, M. (2013): “Macroeconomic analysis without the rational expectations hypothesis,”

Tech. rep., National Bureau of Economic Research.

Appendices

A Proofs

Proof of Lemma 1. The posterior P̂ > P if and only if Q < 1
2 , and the posterior Q̂ > Q if and only

if P < 1
2 . From the posteriors, P̂ > P if (1−Q)> P(1−Q)+(1−P)Q, which is true if 1−Q > Q.

Similarly, Q̂ > Q if (1−P)> P(1−Q)+(1−P)Q, which is true if 1−P > P.

Proof of Lemma 3. Consider the likelihood ratios for P (the results are symmetric for Q). Then the

likelihood ratios are given by

LP
2 =

pH

pL
, LP

0 =
1− pH

1− pL
, LP

1 (Q) =
pH(1−q)+(1− pH)q
pL(1−q)+(1− pL)q

. (10)

Thus, the likelihood from observing y = 0 or y = 2 is independent of Q, but the likelihood from

observing y = 1 depends on Q. Thus, the odds ratios after observing (0,1) and (1,0) are given by

OP
2 (0,1) = LP

0 LP
1 (Q1)OP

0 , and OP
2 (1,0) = LP

0 LP
1 (Q0)OP

0 , (11)

where in the first case the likelihood ratio for the y = 1 observation depends on the updated belief

about Q after the y = 0 observation, while in the second case the likelihood ratio for the y = 1

observation depends on the initial prior belief about Q, which has not been updated.
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Proof of Lemma 4. First, since pH = qH and pL = qL, the likelihood ratios given observations y= 0

and y = 2 are equal:

LP
2 =

pH

pL
= LQ

2 , LP
0 =

1− pH

1− pL
= LQ

0 .

Thus, OP/OQ is unchanged after these observations.

Second, OP/OQ increases after y = 1 whenever P > Q. Differentiating LP
1 (Q) with respect to Q

shows that it is decreasing in Q. By symmetry, if P > Q, then LP
1 (Q)/LQ

1 (P)> 1. Similarly, differ-

entiating and collecting terms, LP
1 (Q)/LQ

1 (P) is increasing in P. Thus, as P/Q grows, the ratio of

likelihoods grows and thus OP/OQ increases by more. Thus, LP
1 (Qn)/LQ

1 (Pn)≥ LP
1 (Q0)/LQ

1 (P0)>

1, and so LP
1 (Qn)/LQ

1 (Pn) is bounded below by a number strictly greater than 1. Since all prob-

abilities are strictly positive, by the Strong Law of Large Numbers asymptotically there will be

an infinite number of y = 1 observations, and thus OP/OQ increases without bound. By similar

argument, if P < Q then OP/OQ decreases to zero.

Proof of Proposition 1. We prove for Pn (the proof for Qn is similar). If θ = σ = 1, then the

inverse-odds ration (OP
n )
−1 = 1−Pn

Pn
is upper bounded on Ω by the random variable ∏

n
i=1 ri defined

such that

ri(ω) =


pL
pH

if yi(ω) = 2
1−pL
1−pH

if yi(ω) = 0
pL(1−qH)+(1−pL)qH
pH(1−qH)+(1−pH)qH

if yi(ω) = 1

Note that in this case

E

[
n+1

∏
i=1

ri

∣∣∣∣∣ rn,rn−1, . . .

]
= E [rn+1|rn,rn−1, . . .]

n

∏
i=1

ri =
n

∏
i=1

ri. (12)

But by the Hewitt-Savage 0-1 Law, liminfn→∞ ∏
n
i=1 ri is a constant c ∈ [0,∞), and it is clear that

such a constant is invariant under multiplication by pL
pH
, 1−pL

1−pH
. Hence c∈ {0,∞}, but as (12) and the

law of iterated expectations imply E [∏n
i=1 ri] is bounded, it must be true that liminfn→∞ ∏

n
i=1 ri = 0.

Hence, liminfn→∞(OP
n )
−1 = 0, and thus limsupn→∞ Pn = 1 (all equalities hold a.e.). Then (16)

implies that Pn
a.s.→ 1.
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Suppose for now that θ = σ = 1 and pH ,qH > 0. Consider the following recursion relations

for (Pn) as a function of Qn:

Pn+1(2) =
Pn pH

Pn pH +(1−Pn)pL

Pn+1(0) =
Pn(1− pH)

Pn(1− pH)+(1− p)(1− pL)

Pn+1(1) =
Pn (pH(1−qn)+(1− pH)qn)

Pn (pH(1−qn)+(1− pH)qn)+(1−Pn)(pL(1−qn)+(1− pL)qn)
,

where qn = QnqH +(1−Qn)qL ∈ [qL,qH ]. One can determine that:

qn (Pn pH +(1−Pn)pL) pn+1(2)

+(1−qn)(Pn(1− pH)+(1− p)(1− pL)) pn+1(0)

+
(

Pn (pH(1−qn)+(1− pH)qn)+(1−Pn)(pL(1−qn)+(1− pL)qn)
)

pn+1(1)

= Pn, (13)

i.e. the agent believes that his estimate of Pn will be correct in expectation in the next period. In

addition, the inequality

Pn+1(2)≥ Pn+1(1)≥ Pn+1(0) (14)

naturally holds because pH
1−pH

> pL
1−pL

. Note that in comparison to (13), one has

qH pH ≥ qn (Pn pH +(1−Pn)pL)

(1−qH)(1− pH)≤ (1−qn)(Pn(1− pH)+(1− p)(1− pL)) .

28



Hence, the imposition of (14) implies

En (Pn+1) =qH pHPn+1(2)+(1−qH)(1− pH)Pn+1(0)

+((1−qH)pH +qH(1− pH))Pn+1(1)

≥Pn, (15)

where En (·) is the time n expectation given Pn, pn−1, . . .. So (Pn) is a supermartingale, and by

Doob’s Martingale Convergence Theorem it is true that

(Pn)
a.s.→ limsup

n∈N
Pn : [0,1]→ [0,1]. (16)

In the following lemma, let Fn be the filtration of F∞ which contain (as cylinder sets of F∞)

sets in the probability space Ω on which (Pn,Qn) are defined. For ω ∈Ω write ω =ω1ω2 . . ., where

ωn ∈ {0,1,2} according to the value of yn(ω).

Lemma 5. If limn→∞ Pn exists in [0,1] almost everywhere and pH , pL ∈ (0,1), then

Pr
(

ω : lim
n→∞

Pn(ω) ∈ (0,1)
)
= 0. (17)

Proof. We claim that any point ω such that limn→∞ Pn(ω) ∈ (0,1) has ωn ∈ {0,2} for only finitely

many indices n. This is easy to see for ωn = 2: assume to the contrary that infinitely many (nm)⊂N

satisfy ωnm = 2, and let limn→∞ pn(ω) = c∈ (0,1). Then taking such m arbitrarily high, (Pnm+1)→
cpH

cpH+(1−c)pL
> c, a contradiction. The proof when ωn = 0 infinitely often is similar. (17) follows

immediately by the Second Borel-Cantelli Lemma.
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Proof of Proposition 3

Consider the log-odds ratios, for which we have the following recursions:

logOP
n+1(2) = log

pH

pL
+ logOP

n (18)

logOP
n+1(0) = log

1− pH

1− pL
+ logOP

n (19)

logOP
n+1(1) = log

pH(1−qn)+(1− pH)qn
pL(1−qn)+(1− pL)qn

+ logOP
n . (20)

Consider the random variable ∆ logOP
n+1(q) (and the analogous expression for Q), whose expected

value can be evaluated explicitly as:

E
[
∆ logOP

n+1(q)
]
=pLqH log

pH

pL
+(1− pL)(1−qH) log

1− pH

1− pL

+(pL(1−qH)+(1− pL)qH) log
pH(1−q)+(1− pH)q
pL(1−q)+(1− pL)q

.

The restriction of the transition function to the interior of the set [pL, pH ]× [qL,qH ] often is less

relevant than its restriction to these endpoints.

We proceed in three lemmas, which deal with different cases in the parameters.

Lemma 6. Let θ = 0 and σ = 1. If E
[
∆ logOP

n+1(qL)
]
> 0 and E

[
∆ logOQ

n+1(pH)
]
< 0, then there

exist (P0,Q0) such that P0→ 1 and Q0→ 0 with positive probability tending to 1 as Q0→ 0 and

P0→ 1.

Proof. First, recall Hoeffding’s inequality: let X1, . . . ,Xn be independent and ai ≤ Xi ≤ bi for all i.

Then

Pr

(
n

∑
i=1

(Xi−E [Xi])≥ nε

)
≤ exp

(
−2n2ε2

∑
n
i=1(bi−ai)

)
. (21)

By continuity, there is a δ1 > 0 such that if q < qL+δ1, then E
[
∆ logOP

n+1(q)
]
> ε1 > 0. Con-

sider the process (Xn) which has ∆(Xn) = ∆(logOP
n ) when ωn = 0,2, and

∆(Xn) = log pH(1−qL−δ1)+(1−pH)(qL+δ1)
pL(1−qL−δ1)+(1−pL)(qL+δ1)

when ωn = 1. Thus, E [∆(Xn)]> ε1. Also, if qn ∈ [qL,qL +
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δ1] for all values of n, we have the relation logOP
n ≥ Xn. Set Q∗ to satisfy Q∗qH +(1−Q∗)qL =

qL + δ1. By the analogous assumption for Qn, there exists some δ2 > 0 and ε2 > 0 such that

E
[
∆ logOQ

n+1(p)
]
< −ε2 if p > pH − δ2. Construct the random walk (Yn) as an upper bound for

logOQ
n just as Xn was constructed as a lower bound for logOP

n , with P replaced with pH −δ2. Set

P∗ to satisfy P∗pH +(1−P∗)pL = pH −δ2. Also, let X∗ = log P∗
1−P∗ and Y ∗ = log Q∗

1−Q∗ . Note that

if Xn ≥ X∗ and Yn ≤ Y ∗ for all n, then Pn ≥ P∗ and Qn ≤ Q∗ for all n and consequentially Xn is

always a lower bound for Pn whereas Yn is always an upper bound for Qn. Fix X0 = logOP
0 and

Y0 = logOQ
0 . By (21), for ν > 0 we have

Pr(Xn−X0 ≤ nE [Xi]−nν) = Pr

(
n

∑
i=1

(∆Xi−E [∆Xi])≤−nν

)

≤ exp

 −2n2ν2

∑
n
i=1

(
log pH

pL
− log 1−pH

1−pL

)
 .

Pick X0 > X∗. Of course, ∆Xi > ε1, so picking ν = ε1/2, we have

Pr
(

Xn ≤ X∗+n
ε1

2

)
≤ Pr

(
Xn ≤ X0 +n

ε1

2

)
≤ exp

 −ε2
1 nν2

2
(

log pH
pL
− log 1−pH

1−pL

)
 ,

and if n≤
⌊

X0−X∗

− log 1−pH
1−pL

+ε1/2

⌋
, Pr(Xn ≤ X∗) = 0. Hence,

Pr
(

Xn ≤ X∗+
nε1

2
for some n

)
≤

∞

∑ X0−X∗

− log
1−pH
1−pL

+ε1/2


exp

 −ε2
1 nν2

2
(

log pH
pL
− log 1−pH

1−pL

)
 .

Obviously, X0 = logOP
0 can be chosen high enough so that this quantity is strictly less than 1

2 .
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Similarly, we can choose Y0 = logOQ
0 so low such that Pr

(
Yn ≥ Y ∗− nε2

2 for some n
)
< 1

2 . Then

Pr(Pn→ 1 and Qn→ 0)≥ Pr
(

Xn ≥ X∗+
nε1

2
and Yn ≤ Y ∗− nε2

n
for all n

)
≥ 1−Pr

(
Xn ≤ X∗+

nε1

2
for some n

)
−Pr

(
Yn ≥ Y ∗− nε2

2
for some n

)
> 0.

Indeed, it is clear that as Q0 → 0 and P0 → 1 for a fixed P∗ and Q∗, this probability tends to 1,

despite the fact that θ = 0 and σ = 1.

Lemma 7. If E
[
∆ logOP

n+1(qL)
]
< 0, then P a.s.→ 0, and if E

[
∆ logOP

n+1(pH)
]
> 0, then Q a.s.→ 1

Proof. The proof follows the method of Lemma 6 by setting Q∗ = 1 and P∗ = 0.

Lemma 8. Let E
[
∆ logOP

n+1(qL)
]
< 0. Then P a.s.→ 0, and if E

[
∆ logOQ

n+1(pL)
]
< 0 then Q a.s.→ 0,

whereas if E
[
∆ logOQ

n+1(pL)
]
> 0 then Q a.s.→ 1.

Alternately, if E
[
∆ logOQ

n+1(pH)
]
> 0, then Q a.s.→ 1 and if E

[
∆ logOP

n+1(qL)
]
< 0 then P a.s.→ 0,

whereas if E
[
∆ logOP

n+1(qL)
]
> 0 then P a.s.→ 1.

Proof. The convergence P a.s.→ 0 follows from Lemma 7. As for convergence of Q, if E
[
∆ logOP

n+1(pL)
]
<

0, then E
[
∆ logOP

n+1(p)
]

is upper-bounded by a strictly negative number everywhere, and a law

of large numbers argument suffices. On the other hand, if E
[
∆ logOP

n+1(pL)
]
> 0, then as P con-

centrates almost surely at 0, E
[
∆ logOQ

n+1

]
becomes lower bounded (for all sufficiently high n)

by a positive ε ∈ (0,E
[
∆ logOP

n+1(pL)
]
) almost surely, whence Q a.s.→ 1. An obvious symmetry

establishes the second claim.

Proof of Proposition 4

Here we provide the essential results necessary for the main claims of our paper. In the Internet

Appendix we provide a proof of more general features of continuity, which builds on these results.

In the proof, we discuss the relevance of the random dynamical theory of cocycles to our model,
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as in (Schenk-Hoppé and Schmalfuß, 2001). Our result of continuity also holds on a larger set of

random dynamical systems with a Bernoulli shift as a random component.

Consider the function f (p,q) giving the probability of convergence of (Pn,Qn) to (1,0) if P0 =

p, Q0 = q given pH , pL,qH ,qL. This function has some nice properties. Suppose that θ = 0,σ = 1.

First,

f (p,q) =pLqH f
(
P′((p,q),2),Q′((p,q),2)

)
+(1− pL)(1−qH)

(
P′((p,q),0),Q′((p,q),0)

)
+
(

pL(1−qH)+(1− pL)qH

)
f
(
P′((p,q),1),Q′((p,q),1)

)
.

Furthermore, observe that for a fixed q, f (p,q) is monotonically increasing in p:

Lemma 9. For p′ ≥ p and q′ ≤ q, f (p′,q′) ≥ f (p,q). Therefore, f (·,q) is continuous almost

everywhere at any fixed q.

Proof. Fix a history ω ∈Ω. Let Pn(ω),Qn(ω) correspond to initial condition (p,q) and P′n(ω),Q′n(ω)

be defined to correspond to (p′,q′). The claim can be verified by on the hypothesis that in each n,

we have

P′n(ω)≥ Pn(ω), Q′n(ω)≤ Qn(ω). (22)

The argument is accomplished with the observation that

1. If yn(ω) = 0,2, the ordering is preserved by monotonicity of the relevant functions.

2. If yn(ω) = 1, then a smaller value of Qn corresponds with a larger increase in Pn. Conversely,

a larger value of Pn corresponds with a smaller increase (larger decrease) in Qn. This can

be easily verified by noting that the odds ratio OP
n+1 increases by more when yn = 1 and

Qn is smaller. Conversely, OQ
n+1 increases by less when yn = 1 and Pn is larger. Because

OP
n+1 ≥ OP′

n+1 if and only if Pn+1 ≥ P′n+1, the inequalities in (22) are indeed preserved.
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Proof of Corollary 2. Note that

n log
pH

pL
+

⌈
−n

log qH
qL

log 1−qH
1−qL

+1

⌉
log

1− pH

1− pL
= n

(
log

pH

pL
+

(
−

log qH
qL

log 1−qH
1−qL

+o(1)

)
log

1− pH

1− pL

)

n log
qH

qL
+

⌈
−n

log qH
qL

log 1−qH
1−qL

+1

⌉
log

1−qH

1−qL
< 0.

Hence, there must exist positive integers n, m≈−n
log qH

qL

log 1−qH
1−qL

such that n log pH
pL

+m log 1−pH
1−pL

> 0, and

n log qH
qL

+m log 1−qH
1−qL

> 0. It follows that if y = 2 for n` times and y = 0 for m` times, as ` becomes

arbitrarily large, logOP
`(n+m) becomes arbitrarily large and logOQ

`(n+m)
becomes arbitrarily small

from any initial prior (P,Q). In particular, if f does not vanish for all (p,q), by Lemma 9, there is

a critical OP∗ and OQ∗ such that for all pairs (OP,OQ) with OP ≥ OP∗ and OQ ≤ OQ∗, there is a

positive probability that OP→ ∞. Because this critical threshold can be reached in a finite number

of steps from any prior, any prior has a positive probability of OP→∞. The second claim is proved

similarly by exchanging ‘P’ and ‘Q’.

B Additional Figures

When states are not symmetric, posteriors can converge to values that are not even “symmetric”

with the truth. Figure 5 shows the likelihood that both beliefs converge to zero in this case. The

curve shifts up (more likely) when P0 is more different from Q0, down the closer they are, but is

not much affected by the levels. This result is not surprising: the Q-belief will get pushed to zero

when there are a sequence of y = 0 which updates Q down, which is likely to occur if P is high.

34



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

p
H

 

0

0.05

0.1

0.15
fr

e
q
u
e
n
c
y

P,Q→ 0

P,Q→ 1

(a) qH = .6,qL = pL = .4.
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(b) qH = .4,qL = .2,pL = 1− pH .

Figure 5: Probability both P→ 0,Q→ 0 when starting with P0 > Q0.
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