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Abstract

This chapter discusses the challenges that shape panel cointegration tech-
niques, with an emphasis on the challenge of maintaining the robustness
of cointegration methods when temporal dependencies interact with both
cross sectional heterogeneities and dependencies. It also discusses some
of the open challenges that lie ahead, including the challenge of generaliz-
ing to nonlinear and time varying cointegrating relationships. The chapter
is written in a nontechnical style that is intended to be assessable to non-
specialists, with an emphasis on conveying the underlying concepts and
intuition.
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1 Introduction

In this chapter I discuss the development and status of panel cointegration
techniques as well as some of the open challenges that remain. Over the past
quarter century, the investigation of panel cointegration methods has involved
many dozens of econometric papers that have studied and developed method-
ology as well as many hundreds of economic papers that have employed the
techniques. This chapter is not intended to be a survey of the vast literature on
the topic. Rather, it is written as a guide to some of the key aspects of the con-
cepts and implementation of panel cointegration analysis in a manner that is
intended to be intuitive and assessable to applied researchers. It is also written
from the perspective of a personal assessment of the status of panel cointegra-
tion techniques and the open challenges that remain.

Notwithstanding the overall approach of the chapter, some occasional overview
is instructive to understanding some of the key motivations that have helped
to shape the literature and the associated challenges that remain. Indeed, per-
sonally, one of the earliest motivations for panel cointegration methods in my
Ph.D. dissertation, Pedroni (1993), was the desire to import some of the re-
markable features of the time series properties of cointegration into a panel
data framework where they could be exploited in the context of data series
that are often far too short for reliable cointegration analysis in a conventional
time series context. In particular, what was at the time a relatively young field
of cointegration analysis for pure time series provided considerable promise
in its potential to circumvent traditional concerns regarding endogeneity of
regressors due to certain forms of reverse causality, simultaneity, omitted vari-
ables, measurement error and so forth. The potential robustness with respect
to these features stems fundamentally from the superconsistency properties
under cointegration, which are described in the next section.

However, bringing superconsistency associated with cointegration to panel
analysis naturally brought to the forefront numerous challenges for panel data
analysis that became more apparent in the treatment of the type of aggregate
level data that is typically used in cointegration analysis. In particular, while
cointegration analysis in panels reduces the need for series to be as long as
one would require for cointegration analysis in a pure time series context, it
does require the panels to have moderately long length, longer than one would
typically require for more conventional panel data techniques that are oriented
toward micro economic data analysis. This naturally leads many of the panels
that are used for cointegration analysis to be composed of aggregate level data,
which are more often observed over longer periods of time and therein fall into
the realm of what has come to be known as time series panels.

Typical data include formats such as multi-country panels of national level
data, or multi-regional panels or panels composed of relatively aggregated in-



dustry level data to give a few examples. With these data formats, the need
to address cross sectional heterogeneity becomes apparent, not just in the form
of fixed effects as was typical in earlier panel data methods that were oriented
toward microeconomic data, but more importantly heterogeneity in both the
short run and long run dynamics. Another challenge that becomes more read-
ily apparent from these types of data structures is that the nature of cross sec-
tional dependency is likely to be more complex than was typical in the treat-
ment of earlier micro oriented panel methods, particularly in the sense that the
cross sectional dependency is likely to be intertwined with the temporal depen-
dencies. In short, both the cross sectional heterogeneity and the cross sectional
dependency interact with an essential feature of time series panels, namely the
temporal dependence.

Of course the panel cointegration techniques discussed in this chapter can
be applied equally well to microeconomic data panels given sufficient length of
the panels. But by addressing the challenges that arise from the typical appli-
cations to aggregate level ”macro” panels they have helped to highlight some
of the attractive features of panel time series techniques in general, which has
helped to fuel the growth of the literature. One way to better appreciate this is
to compare these methods in broad terms to alternative strategies for empirical
analysis of aggregate level data. For example, at one end of the spectrum, one
can consider simply using cross sectional methods to study aggregate coun-
try level data. While this has the attraction of providing ample variation in
macroeconomic conditions along the cross sectional dimension, it runs into the
usual challenges in treating endogeneity and searching for underlying struc-
tural causation. Furthermore, when the cross sections represent point in time
observations, the estimation may reflect the arbitrariness of the time period,
and similarly, when the cross sections represent averages over time the estima-
tion may reflect a relationship that exists among the unconditional time aver-
ages rather than for a well defined sense of a long run steady state relationship.

Another strategy might be to use more conventional static micro panel
methods for aggregate data. In fact, static micro panel methods can be viewed
as essentially repeated cross sections, observed in multiple time periods. But
aside from offering controls for unobserved fixed effects or random effects, in
the absence of cointegration, the challenges in treating endogeneity and the
issues associated with the temporal interpretation still pertain for these meth-
ods. While dynamic panel methods such as those of Holz-Eakin, Newey and
Rosen (1988) and Arellano and Bond (1991) among others exist for micro data
which can help give more precise meaning to the temporal interpretations, the
difficulty with these approaches is that they require the dynamics to be strictly
homogeneous among the individual members of the panel. When this assump-
tion is violated, as would be typical for most aggregate data, then, as noted in
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Pesaran and Smith (1995) and discussed in detail in section 3 of this chapter,
this leads to inconsistent estimation, even for the average dynamic relation-
ships, which makes these dynamic panel methods unattractive for the analysis
of dynamics in aggregate level macro type data.

At the other end of the spectrum of alternatives, it is worth considering
what one learns simply from time series estimation applied to the series of
an individual country. In this context plenty of methods exist for treating en-
dogeneity without the need for external instruments, and providing specific
temporal interpretations is often central to these methods. However, by using
the data from an individual country, the sample variation that pertains to a
particular question of interest may be limited. For example, learning about the
economic consequences of changing from one type of monetary policy regime
to another type is difficult when the time series data from a country spans only
one regime. For this, cross sectional variation that spans both regimes in the
form of multi-country time series data becomes important and useful.

Viewed from this perspective, panel time series methods, which includes
panel cointegration techniques, provide an opportunity to blend the attractive
features of time series with potential aggregate level cross sectional variation
in data settings where the time series length are moderate. Furthermore, as
we will see, when the challenges posed by the interaction of temporal depen-
dencies with cross sectional heterogeneity and cross sectional dependence are
properly addressed, the techniques offer a further opportunity to study the
underlying determinants of the cross sectional variation.

The remainder of this chapter is structured as follows. In the next section, I
use a simple bivariate example to review the concepts behind the superconsis-
tency result that is key to understanding the robustness properties that cointe-
gration brings to panel data analysis. Following this, in sections 3 through 7,
I describe how the challenge of addressing cross sectional heterogeneity in the
dynamics has shaped testing, estimation and inference in cointegrated panels,
including testing for directions of long run causality in panels. In sections 8 and
9, I discuss how addressing the interaction of both cross sectional heterogeneity
and cross sectional dependencies continue to drive some of the open challenges
in panel cointegration analysis, and in section 10, I conclude with a discussion
of some open challenges that are being explored currently which are associ-
ated with generalizing panel cointegration analysis to allow for time varying
heterogeneity and nonlinearities in the long run relationships. It should be re-
iterated that this chapter is not intended as a comprehensive or even partial
survey, as the panel cointegration literature on the whole is vast, and there
are by necessity topics that are not touched upon in detail here, including for
example non-classical, Bayesian approaches, as these are reserved for another
chapter.
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2 Cointegration and the Motivation for Panels

In this section of the chapter I discuss the property of superconsistency and the
motivation that this gives to bringing cointegration to a panel setting in order
to allow for estimation that is robust to a myriad of issues typically associated
with endogenous regressors. In particular, to gain some intuition, I illustrate
these concepts using a simple bivariate OLS regression framework.

Toward this end, consider the following very simple and standard example
taken from a classical time series perspective. Let

yt = α + βxt + µt (1)

for t = 1, ..., T be the data generating process that describes the true unknown
relationship between yt and xt for some unknown error process µt. For simplic-
ity of notation, we will work with the time demeaned versions of the variables,
so that y∗t = yt − T−1 ∑T

t=1 yt and similarly x∗t = xt − T−1 ∑T
t=1 xt. Then we

know that the OLS estimator for β can be written as

β̂OLS =
1
T ∑T

t=1 x∗t (βx∗t + µt)
1
T ∑T

t=1 x∗2t
= β + RT , (2)

where RT =
R1T
R2T

, R1T =
1
T

T

∑
t=1

x∗t µt, R2T =
1
T

T

∑
t=1

x∗2t (3)

Thus, OLS is a consistent estimator of the true value β only when the remainder
term RT is eliminated, and much of the use and adaptation of OLS for empirical
work revolves around the conditions under which this occurs.

When xt and µt are both covariance stationary, and in the simplest special
case are i.i.d. serially uncorrelated over time, then as we envision the sample
growing large and consider T → ∞, the probability limit of both the numerator
and denominator go to constants, such that R1,T → ET [x∗t µt] = σx,µ and R2,T →
ET [x∗2t ] = σ2

x . Thus, OLS becomes consistent such that β̂OLS → β only when xt
and µt are orthogonal, such that ET [x∗t µt] = σx,µ = 0. When the condition is
violated, one classic solution is to look for an external instrumental variable, zt,
such that ET [z∗t µt] = 0 and ET [z∗t x∗t ] 6= 0, which can often be difficult to justify
in practice, particularly for aggregate time series data.

However, in a different scenario, wherein xt and µt are not both covari-
ance stationary, but rather xt is unit root nonstationary, denoted xt ∼ I(1),
while µt is covariance stationary, denoted µt ∼ I(0), then yt and xt are said to
be cointegrated, in which case the large sample OLS properties become very
different. Specifically, in this case OLS becomes consistent in the sense that
β̂OLS → β regardless of whether or not the regressor is orthogonal to the resid-
ual µt, and regardless of any serial correlation dynamics that endogenously
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relate the changes in xt to µt. In a nutshell, this occurs due to the fact that since
xt is nonstationary, its variance is no longer finite but rather grows indefinitely
with respect to the sample size, while by contrast, under cointegration, due
to the stationarity of µt, the covariance between xt and µt does not similarly
diverge.

To see this more precisely, it is worth introducing a few concepts that are
typically used in the analysis of nonstationary time series, which will be useful
in other sections of this chapter as well. For example, to allow for fairly general
vector stationary processes with jointly determined serial correlation dynam-
ics, one typically assumes that the conditions are present for a multivariate
functional central limit theorem, which essentially generalizes more standard
central limit theorems to allow for time dependent processes. Specifically, if
we let ξt = (µt, ηt)′ where ∆x = ηt is the stochastic process which describes
how xt changes, then we can replace the standard central limit theorem for i.i.d.
processes with one that allows for endogenous, jointly determined dependent
process by writing

1√
T

[Tr]

∑
t=1

ξt ⇒ Br(Ω) as T → ∞ f or r ∈ [0, 1] , (4)

where Br(Ω) is a vector of demeaned Brownian motion with long run covari-
ance Ω. This functional central limit theorem applies for a broad class of pro-
cesses for ξt, including for example linear time series representations such as
VARs.

If we define the vector Zt = Zt−1 + ξt, it is fairly straightforward to show
based on (4) and what is known as the continuous mapping theorem, that

1
T

T

∑
t=1

Ztξ
′
t ⇒

∫ 1

r=0
Br(Ω)dBr(Ω) + Λ + Ω0 as T → ∞ (5)

1
T2

T

∑
t=1

ZtZ′t ⇒
∫ 1

r=0
Br(Ω)Br(Ω)′dr as T → ∞. (6)

Note that these expressions simply indicate that the sample statistics on the left
of the thick arrows converge in distribution to the expressions on the right of
the thick arrow, which are multivariate stable distributions expressed in terms
of Brownian motion, known as Brownian motion functionals. In the case of
(5) the distribution is further uncentered by constants, which come from the
decomposition of the long run covariance matrix into its forward spectrum, Λ,
and standard covariance, Ω0, components such that Ω = Λ + Λ′ + Ω0. But
for our current purposes, the more important detail to notice is that the OLS
remainder terms from (3) are closely related to the sample statistics on the left
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hand sides of (5) and (6), such that the numerator and denominator terms cor-
respond to off-diagonal and lower diagonal elements of these matrix expres-
sions, so that R1T = ( 1

T ∑T
t=1 Ztξ

′
t)21 and R2T = ( 1

T ∑T
t=1 ZtZ′t)22. Therefore,

according to (5), R1T converges to a stable distribution as the sample grows
large. By contrast, according to (6), R2T is off by a factor of T. In order to
converge to a stable distribution, one would need to divide R2T by an addi-
tional factor of T. By not doing so in the construction of the OLS estimator,
the implication is that R2T diverges to infinity at rate T so that the remainder
term RT = R−1

2T R1T collapses to zero as the sample size grows large. Therefore,
under cointegration we have

R1T ⇒
(∫ 1

r=0
Br(Ω)dBr(Ω)

)
21
+ Λ21 + Ω0,21 as T → ∞ (7)

R2T → ∞ , RT → 0 , β̂OLS → β , as T → ∞. (8)

Notice that under cointegration this occurs regardless of the covariance
structure between xt and µt in the DGP. Furthermore, since under (4) the vector
process for µt and ∆xt = ηt is permitted to have very general forms of dynamic
dependence, the parameter β can be interpreted as the relationship between xt
and yt that is invariant to any stationary and therefore transitional dynamics
associated with either changes in xt or changes in yt conditional on xt. In this
way, the parameter β can also be interpreted as reflecting the stable steady state
relationship that exists between x∗t and y∗t , which under cointegration can be
estimated consistently even when the transition dynamics are unknown and
omitted from the estimation.

For these reasons, the presence of cointegration brings with it a form of ro-
bustness to many of the classic empirical problems that lead to the so called vi-
olation of exogeneity condition for the regressors. Obvious examples include
omitted variables, measurement error, simultaneity, reverse causality, or in-
deed anything that leads the data generating process, for ∆xt = ηt to be jointly
determined with the data generating process, hereafter referred to as the DGP,
for µt. To be clear, one must make sure that the reasons for the violation are
not so extreme as to essentially break the cointegration and thereby induce µt
to become unit root nonstationary. For example, measurement error that is
stationary but unknown will not affect consistency of the OLS estimator, nor
will omission of a stationary variable, nor will omission of stationary transi-
tion dynamics, and so forth. But if the measurement error is itself unit root
nonstationary, or the omitted variable is unit root nonstationary and belongs
in the cointegrating relationship such that without it µt is nonstationary, then
robustness is lost. But of course this is just another way to state the fact that yt
and xt are not cointegrated, in which case there is no claim to the robustness.
In practice, one can either assert on an a priori basis that the cointegration is
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likely to hold based on economic reasoning, or more commonly, one can test
whether the cointegrating relationship appears to hold empirically, as I discuss
in the next section.

Of course, these arguments are based on asymptotics, and the practical
question is how closely these properties hold as approximations in small sam-
ples. If the empirical interest were limited only to the actual estimation of
the steady state relationship by OLS under cointegration, then on balance one
could say that estimation performs reasonably well in small samples, though
needless to say, precisely how well it performs depends on a myriad of details
of what the regression omits relative to the DGP.

The bigger practical issue, however, pertains to the performance of the var-
ious tests typically associated with cointegration analysis. For example, as al-
luded to in the previous paragraph, one is often interested in confirming by
empirical test whether a relationship is cointegrated, so that one has greater
confidence that the robustness properties associated with cointegration are in
play. Similarly, beyond simply robustly estimating the coefficients associated
with the long run steady state relationship, one is interested in conducting in-
ferential tests regarding the estimated coefficients, or simply reporting stan-
dard errors or confidence bands. In contrast to what is required in order to
consistently and robustly estimate the steady state relationship, each of these
inferential aspects of cointegration analysis require one to account for the sta-
tionary transitional dynamics, most commonly through estimation either para-
metrically or non-parametrically. The classic methods for these are also based
on asymptotic arguments, and it is these methods for treating the dynamics
that often require distressingly long time series in order to perform well. It is
in this context that panels can help to substantially reduce the length of the
series required in order for the tests to perform well and for the inference to be
reliable.

However, by using cross sectional variation to substitute for temporal vari-
ation in the estimation of the transitional dynamics, this is the context in which
the challenges posed by the interaction of temporal dependencies with cross
sectional heterogeneity and cross sectional dependence arise, as discussed in
the introductory section. This is an important theme for the next section, in
which I discuss how these challenges help to shape the strategies for test-
ing cointegration in time series panels and constructing consistent and robust
methods of inference in cointegrated panels.
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3 Strategies for Treating Cross Sectional Heterogene-
ity in Cointegration Testing and Inference

In the next several sections I discuss some the key aspects of using panels to test
for the presence of cointegration and to test hypotheses about cointegrating re-
lationships in panels. As discussed in the previous section, classic approaches
to this in time series contexts invariably require the estimation of dynamics. An
important challenge for panels occurs when these dynamics are cross section-
ally heterogeneous, as one would expect for virtually all aggregate level data,
and in this section I describe in greater detail the challenge that this creates.
Specifically, cross sectional heterogeneity in the dynamics rules out standard
approaches to pooling data cross sectionally as is done in tradition micro panel
methods. This is due to the fact that if one pools the data when the true dynam-
ics are heterogeneous, this leads to inconsistent estimation of all coefficients of
the regression. More precisely, as pointed out in Pesaran and Smith (1995),
in the presence of heterogeneity, the pooled coefficients on lagged dependent
variables do not converge to any notion of the average of the underlying het-
erogeneous parameters as one might hope.

To see this point more clearly, consider a simple illustration for a dynamic
process characterized by a first order autoregressive process. For example,
imagine that for a panel yit with i = 1, ..., N cross sectional units, which I will
often refer to as ”members” of the panel to avoid ambiguity, and t = 1, ..., T
time periods, the data generating process for the dynamics in stationary form
can be represented as

∆yit = αi + φi∆yit−1 + µit , (9)

φi = φ + ηi , ηi ∼ iid(0, σ2
η) , σ2

η < ∞ , |φi| < 1 ∀i , (10)

so that the coefficient reflecting the stationary transition dynamics, φi, is het-
erogeneous among the members of the panel, i. But imagine that in the process
of estimation the dynamic coefficient is pooled across i, so that estimation takes
the form

∆yit = αi + φ∆yit−1 + vit , (11)

so that we have in effect imposed the homogeneity restriction φi = φ ∀i, when
in truth φi = φ+ ηi. This would not be a problem if the pooled estimation for φ̂

consistently estimated the average or some other notion of the ”typical” value
of φi among the members of the panel. But as noted by Pesaran and Smith
(1995), this is not what happens under this scenario. To see this, notice that for
the estimated residuals in (11) we have

vit = µit + ηi∆yit−1 , (12)
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which now consists of both the original stochastic term µit from the DGP plus
a contamination term ηi∆yit−1. Consequently, E[(∆yit−1 − ∆ȳit−1)vit] 6= 0 and
the usual condition for consistency is violated so that the pooled OLS estima-
tor no longer estimates the average value for φi in the sense that φ̂POLS 9 φ.
Most importantly, there is no easy solution to this problem when the hetero-
geneous coefficients are pooled, since the same value ∆yit−1 appears in both
the regressor and the residuals, so that instrumentation for this is not possible.
This is a simple illustrative example, but the principle generalizes to higher
order dynamics and multi-variate dynamics. Indeed, this issue is pervasive in
any panel time series methods that estimate dynamics, and since both testing
for the presence of cointegration and constructing consistent tests for hypothe-
ses about cointegrating relationships typically require estimation of dynamics,
this issue must be addressed in most panel cointegration techniques.

4 Treating Heterogeneity in Residual Based Tests
for Cointegration

In this section I focus specifically on the challenges that cross sectional hetero-
geneity in the dynamics creates for testing for the presence of cointegration in
panels, with an initial focus on residual based tests. Furthermore, it is impor-
tant to understand that in addition to the issue of heterogeneity in the station-
ary transition dynamics as discussed in the previous section, the specifics of
testing for the presence of cointegration also introduces another important het-
erogeneity issue, which is possible heterogeneity of the long run steady state
dynamics. This was an important theme regarding cointegration testing in Pe-
droni (1993), as presented at the 1994 Econometric Society meetings and then
most widely circulated as Pedroni (1995) and many years later published as
part of Pedroni (1999, 2004). To understand this issue, which is fairly unique
specifically to testing for the presence of cointegration, consider a panel version
of the DGP described in (1) so that we have

yit = αi + βixit + eit. (13)

Imagine, analogous to the discussion surrounding heterogeneity of the station-
ary transition dynamics, that the cointegration slope of the steady state dynam-
ics are also heterogeneous, so that by analogy

βi = β + ηi , ηi ∼ iid(0, σ2
η) , σ2

η < ∞ . (14)

Again, imagine that in the process of estimation the cointegration slope coeffi-
cient is pooled across i, so that estimation takes the form

yit = αi + βxit + vit. (15)
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so that the homogeneity restriction βi = β ∀i has been imposed when in truth
βi = β + ηi. Now, similar to when we were studying the consequences of
ignoring heterogeneity in stationary dynamics, the regression error term in (15)
becomes

vit = eit + ηixit , (16)

which consists of both the original stochastic term eit from the DGP plus a
contamination term ηixit.

In this case the consequences we wish to consider are specifically for test-
ing whether yit and xit are cointegrated. Specifically, if the linear combination
is stationary, so that eit is stationary, denoted eit ∼ I(0), then yit and xit are coin-
tegrated, whereas if the linear combination is unit root nonstationary, so that
eit follows a nonstationary unit root process, denoted eit ∼ I(1), then yit and
xit are not cointegrated. But notice now that based on (16) vit ∼ I(1) follows
a unit root process due to the fact that the contamination term ηixit inherits a
unit root from xit ∼ I(1). This implies that vit ∼ I(1) regardless of whether or
not yit and xit are in truth cointegrated. Consequently, if the true cointegrating
relationships are heterogeneous across i in the sense that βi 6= β ∀i, then tests
constructed from pooled regressions that treat βi = β ∀i will produce incon-
sistent tests in that they cannot distinguish between the presence or absence of
cointegration regardless of the sample size. Furthermore, even when the de-
gree of heterogeneity is small in the sense that ηi is small, due to the fact that
this small number multiplies a unit root variable xit, substantial contamination
of the stationary component of vit occurs even for very small deviations from a
false homogeneity assumption. Thus, the relatively small possible gain in the
degrees of freedom obtained from pooling is rarely worth the risk of mispeci-
fication, particularly since panel cointegration methods typically already have
very high power under standard conditions. For these reasons, although there
are later exceptions such as Kao (1999) which pools both the long run steady
state dynamics and the stationary transition dynamics, for the most part all
other methods for testing for the presence of cointegration allow for hetero-
geneity of both the short run transition dynamics as well as the long run steady
state dynamics, as reflected in the heterogeneity of the cointegration slope.

Indeed, there are by now many different approaches proposed for con-
structing tests for the presence of cointegration that take into account hetero-
geneity in both the transition dynamics and the steady state cointegrating rela-
tionship. Rather than surveying all of the various approaches, I will focus here
on conveying the central idea of treating the cross sectional heterogeneity in
both the short run and long run dynamics. For this I will use examples based
on residual based tests in this section, as well as ECM based tests in the next
section. The first two examples are taken from Pedroni (1999, 2004). Somewhat
ironically, due to the lengthy and uneven publication process, the 2004 paper
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is actually the published version of the original paper, with the 1999 one being
the published version of follow-up paper, which reported numerical adjust-
ment values that applied to the case in which larger numbers of variables were
used in the cointegrating regressions. Both papers studied a total of seven dif-
ferent statistics spanning various parametric and semi-parametric approaches,
but I will focus here on only the parametric ADF based test statistics that were
studied in order to illustrate two different general methods for treating hetero-
geneity.

Specifically, I will use these to illustrate two different methods for treating
the heterogeneous stationary transition dynamics. The first uses a technique
that conditions out the heterogeneity in the pooled dynamics, while the sec-
ond uses a simple group mean technique for accommodating heterogeneous
dynamics. In keeping with the illustrative style of this chapter, I will continue
to use a bivariate regression example, although of course all of the techniques
generalize to multivariate regresssions.

Since all of these methods account for potential heterogeneity in the long
run steady state dynamics, the first stage regression of the residual based meth-
ods always takes the form

yit = αi + βixit + eit. (17)

for the bivariate case. The only difference in the various methods of testing
lies in how the estimated residuals êit from this regression are treated, either
semi-parametrically using long run variance estimators or parameterically us-
ing ADF principles as with the two that I discuss here.

The first of these, taken from Pedroni (1999, 2004), is based on construct-
ing a pooled ADF regression on the estimated residuals êit by conditioning out
the heterogenous dynamics. Toward that end, rather then estimating the full
ADF regression with lagged differences, one estimates a simple DF type of re-
gression, but with the dynamics conditioned out individually for each member
of the panel, for both the regessor and regressand. Specifically, the regression
takes the form

v̂it = ρη̂i,t−1 + uit (18)

where v̂it and η̂i,t−1 are obtained as the estimated residuals from the regressions

∆êi,t =
K1i

∑
k=1

γ̂1i,k∆êi,t−k + vit (19)

êi,t−1 =
K2i

∑
k=1

γ̂2i,k∆êi,t−k + ηi,t−1 (20)
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applied to each of the members of the panel individually. Notice that (19) and
(20) thereby serve to condition out the member specific dynamics for the for
significance of ρ in the pooled DF style regression (18).

This method for conditioning out the heterogeneous dynamics is analogous
to the approach taken in Levin, Lin and Chu’s (2003) panel unit root test. In-
deed, a further refinement, consistent with LLC’s approach, can be made for
the cross sectional heteroscedasticity of the long run variances, in which case it
is known as the ”weighted” pooled ADF based test. But as shown in Pedroni
(2004), this refinement is not necessary for the consistency of the test, even
when the dynamics and thus the long run variances are heterogeneous across
i, provided that the dynamics are conditioned out via regressions (19) and (20).
The ”unweighted” pooled version therefore simply computes the t-statistic as-
sociated with the pooled estimator for ρ in (18), which we will denote here as
tPOLS.

The final step then is to adjust the statistic in a manner that will allow it
to converge in distribution as the sample size grows large. Specifically, the
adjustment takes the form

ZPADF =
tPOLS,ρ − µPADF,ρ

√
N

√
νPADF,ρ

. (21)

The adjustment terms µPADF,ρ and νPADF,ρ are numerical values that are either
computed analytically or simulated based on the properties of the distribution
of tPOLS,ρ, and depend on the moments of the underlying Wiener functionals
that describe the distributions. The particular numerical values that result from
these computations or simulations differ depending on details of the hypoth-
esized cointegrating relationship (17), such as whether intercepts or trends are
included, and also on the number of regressors that are included, and are re-
ported accordingly in Pedroni (2004) for the case of a single regressor, and in
Pedroni (1999) for the case of multiple regressors. The adjusted statistic is then
distributed as standard normal under the null hypothesis of no cointegration
and diverges to the left under the alternative of cointegration, so that for ex-
ample -1.28 and -1.64 are the 10 percent and 5 percent critical values required
to reject the null in favor of cointegration.

As noted previously, conditioning out the member specific dynamics prior
to pooling is just one strategy for dealing with heterogeneous transition dy-
namics. Another technique, which has become far more common, is to use
group mean methods rather than the combination of pooling with heteroge-
nous dynamic conditioned out of the regression. Group mean methods have
become more popular in large part because they are relatively easier to imple-
ment and interpret. To illustrated this, I use a second example taken from Pe-
droni (1999, 2004), namely the group mean ADF residual based test. To imple-
ment this test, one begins by simply estimating the individual ADF regressions
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using the estimated residuals from the hypothesized cointegrating regression
(17), so that one estimates

∆êi,t = ρi êi,t−1 +
Ki

∑
k=1

γi,k∆êi,t−k + ui,t (22)

by OLS individually for each member i of the panel. The group mean ADF t-
statistic for the null of cointegration is then computed as tGOLS,ρ = N−1 ∑N

i=1 ti,ADF,
where ti,ADF is the standard ADF t-statistic for significance of ρi for member i.
The statistic is then adjusted to ensure it converges in distribution as the sam-
ple grows large, so that

ZGADF =
tGOLS,ρ

√
N − µGADF,ρ

√
N

√
νGADF,ρ

. (23)

where µGADF,ρ and νGADF,ρ are numerical values that are either computed ana-
lytically or simulated based on the properties of the distribution of tGOLS,ρ, and
depend on the moments of the underlying Wiener functionals that describe the
distributions. While these values differ from those of µPADFρ and νPADFρ, they
also depend on the details of the hypothesized cointegrating relationship (17),
such as whether intercepts or trends are included, and also on the number of
regressors that are included, and are reported accordingly in Pedroni (2004)
for the case of a single regressor, and in Pedroni (1999) for the case of multiple
regressors. Again the statistic is distributed as standard normal under the null
hypothesis of no cointegration and diverges to the left under the alternative
of cointegration, so that for example -1.28 and -1.64 are the 10 percent and 5
percent critical values required to reject the null in favor of cointegration.

Monte Carlo simulation studies reported in Pedroni (2004) show that for all
of the residual based test statistics studied in the paper, including the two ADF
based tests described above, size distortions are low and power is extremely
high even in modestly dimensioned panels. For example, even when the time
series length, T, is far too short for reliable inferences in a conventional time
series context, in the panel framework, panels with similarly short lengths for
T and modest N dimensions can in many cases deliver close to 100 percent
power with relatively small degrees of size distortion.

5 Comparison of Residual Based and Error Correc-
tion Based Testing

While residual based methods are the most common approach, there are also
other methods for testing for cointegration in time series, which have been
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extended to heterogenous panel frameworks. One such example are error cor-
rection methods, and it is worth comparing these to residual methods in order
to understand the trade-offs. For example, Westerlund (2007) studied the use
of single equation ECMs in panels with heterogeneous dynamics, including
a group mean version. In contrast to residual based methods, single equa-
tion ECM approaches require the assumption of weak exogeneity. The basic
idea then is to exploit this assumption in order to estimate the error correction
loading parameter from a single equation and use it to test for the null of no
cointegration.

The first step is therefore to estimate by OLS what is known as an aug-
mented form of the ECM equation as

∆yit = ci + λ1,iyi,t−1 + γixi,t−1 +
Ki

∑
j=1

Ri,j,11∆yi,t−j +
Ki

∑
j=−Ki

Ri,j,12∆xi,t−j + ε1,it,

(24)

where γi = −λ1,iβi. The equation has been augmented relative to the standard
ECM equation by the inclusion of lead terms of the differences in ∆xit, rather
than just the usual lagged terms of ∆xit. This allows one to loosen the exogene-
ity requirements on xit to one of weak exogeneity, rather than stronger forms
of exogeneity. As discussed later, imposing weak exogeneity in this context
can be interpreted as imposing the a priori restriction that causality only runs
in one direction in the long run cointegrating relationship, from innovations
in xit to yit, but not the other way around. Imposing such an exogeneity re-
striction is contrary to the full endogeneity that is typically permitted for most
panel cointegration methods, and the implications of this are discussed below.

Under the maintained assumption of weak exogeneity in the relationship
between yit and xit, the null of no cointegration between yit and xit can be
tested by testing whether λ1,i = 0, and so the group mean test is constructed by
computing the average value of the t-statistics associated with these such that
tGOLS,λ = N−1 ∑N

i=1 ti,λ, where ti,λ are the individual t-statistics for significance
of λ1i for each member i. Analogous to the other tests, this statistic can then be
standardized as

ZGλ =
tGOLS,λ

√
N − µGOLS,λ

√
N

√
νGOLS,λ

. (25)

where µGOLS,λ and νGOLS,λ are the numerical adjustment values based on the
properties of the distribution of tGOLS,λ, so that ZGλ is similarly distributed as
standard normal under the null hypothesis of no cointegration and diverges to
the left under the alternative of cointegration.

To better understand the motivation for the ECM based approach in rela-
tion to residual based approaches, and to see the consequences of violating
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the specialized weak exogeneity condition, it is worth comparing the details
of the ECM estimation equation to the residual based estimation equation. In
particular, consider rearranging the various terms in (24) as

∆yit − βi∆xit = λ1,i(yit−1 − βixit−1) +
Ki

∑
j=1

Rij,11∆yit−j +
Ki

∑
j=1

Rij,11βi∆xit−j

+
Ki

∑
j=0

Rij,12∆xit−j −
Ki

∑
j=0

Rij,11βi∆xit−j + ε1,it

(26)

where for ease of notation I have dropped the deterministics, ci, and the leads
of ∆xit from the equation since these are not central to the issues that I discuss
next. Specifically the above form is convenient as it allows us to substitute eit
for yit − βixit and similarly for ∆eit = ∆yit − βi∆xit where these appear in the
first line of (26). This gives us the form

∆eit = λ1,ieit−1 +
Ki

∑
j=1

Rij,11∆eit−j +
Ki

∑
j=0

Rij,12∆xit−j −
Ki

∑
j=0

Rij,11βi∆xit−j + ε1,it,

(27)

which allows us to easily compare what the ECM equation is estimating rel-
ative to what the residual based methods are estimating. In particular, for a
given finite lag truncation Ki, we can see from (27), that estimating the ADF re-
gression for the residuals eit is equivalent to setting ∑Ki

j=0 Rij,12∆xit−j = ∑Ki
j=0 Rij,11βi∆xit−j.

This is the so called ”common factor” restriction. One of the motivations for
ECM based approaches is that residual based tests ignore information con-
tained in fact that these two factors need not be the same, and ignoring this can
add variance to the small sample distribution of the λ1,i estimator. It should be
noted however, that this is not a form of misspecification that leads to incon-
sistency. The key is that the lag truncation is not treated as given in residual
based methods, and can simply increase to absorb any additional serial cor-
relation due to these terms. So the gain from using the ECM form for the es-
timation is simply a potential increase in small sample power, although it is
not guaranteed to increase power, as this depends on the tradeoff between the
number of lag coefficients estimated by the ADF regression versus the number
of coefficients estimated by the ECM.

However, the trade-off for this potential increase in small sample power is
the specialized assumption of weak exogeneity. In light of this, it is worth con-
sidering what the consequences can be when this assumption does not hold,
yet the single equation ECM test is used. To see this, it is worth noting that in
general for the case in which yit and xit are cointegrated, the VECM represen-
tation provides for a two equation system with the error correction coefficient
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taking the form λiβ
′
i where λi is a loading vector with two elements such that

λi = (λ1i, λ2i)
′. Cointegration between yit and xit requires that at least one of

the values for λi is nonzero. In this context, the weak exogeneity assumption
can be interpreted as an a priori assumption that λ2i = 0. Therefore, since λ2i is
zero by assumption, then in order for yit and xit to be cointegrated, it must be
the case that λ1i is nonzero, and hence the test for the null of no cointegration
proceeds by testing whether λ1i = 0 via (24). But the risk with this strategy is
that if the a priori maintained assumption that λ2i = 0 corresponding to weak
exogeneity turns out not to be true, then the test risks becoming inconsistent
in the sense that it cannot distinguish the null of no cointegration from the
alternative of cointegration no matter how large the sample size.

To see this, consider what the first equation of the VECM form looks like
when the weak exogeneity assumption is not true, so that potentially both el-
ements of λi appear in front of the error correction term, which can be written
as

∆yit = (λ1,i−Ri0,12λ2,i)(yit−1− βixit−1)+
Ki

∑
j=1

Rij,11∆yi,t−j +
Ki

∑
j=1

Rij,12∆xi,t−j + ε1,it.

(28)

In this context, the single equation ECM based approach can be interpreted as
testing whether λ1,i − Ri0,12λ2,i = 0 under the null of no cointegration. How-
ever, in general, the value for Ri0,12λ2,i is unrestricted under cointegration.
Therefore, if we consider the scenarios in which Ri0,12λ2,i < 0 and λ1,i < 0 ,
but |Ri0,12λ2,i| > |λ1,i| then (λ1,i − Ri0,12λ2,i) > 0, and the test will fail to reject
the null of cointegration with certainty as the sample size grows despite the
fact that the null is false. In this way, in contrast to residual based tests, the test
becomes inconsistent in that under this scenario it will be unable to reject a false
null even for large samples if the maintained assumption of weak exogeneity
is not true. The tradeoff between residual based tests therefore amounts to
a tradeoff between a potential gain in small sample power at the expense of
robustness in the sense that the test risks become meaningless if the weak exo-
geneity condition is violated. Since small sample power is already fairly large
in almost all tests for the null of no cointegration in panels, for these reasons
in most applications the potential gain is unlikely to be worth the risk if one is
not absolutely a priori certain of the weak exogeneity assumption.

So far I have been discussing panel cointegration tests that are designed to
test the classic null of no cointegration, against the alternative of cointegration.
However, for some applications one might be interested in reversing the null
hypothesis, so that the null becomes cointegration against the alternative of
no cointegration. In principle it can be useful to consider both types of tests,
in particular when the empirical application is likely to be such that results
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may be mixed in the sense that some members of the panel are best described
as cointegrated while others may not be cointegrated. While doing a test for
the null of cointegration does not resolve the issue of so called mixed panel
applications per se, which we discuss in greater detail later in this chapter,
the combination of both types of tests can sometimes serve to narrow down
the fraction of individual members that are consistent with either alternative
as discussed and illustrated for example in Pedroni (2007). Indeed there are
many proposed tests in the literature for the null of cointegration in panels,
starting with McCoskey and Kao (1998), which develops a pooled panel ver-
sion of the Shin (1994) time series test for the null of cointegration. However,
the difficulty with virtually all of the tests that have been proposed in the liter-
ature is that, similar to the corresponding time series based tests, they inherit
the property of high size distortion and low power in finite samples, and are
unable to mitigate this problem even for fairly large panels. A good reference
that documents these difficulties through a series of large scale Monte Carlo
simulations is Hlouskova and Wagner (2006) for the case of tests for the null of
stationarity which also applies to tests for the null of cointegration. A general-
ized solution to this problem and the related problem associated with inference
for mixed panel applications remains an open challenge, which I discuss later
in this chapter.

6 Estimation and Testing of Cointegrating Relation-
ships in Heterogeneous Panels

For panels in which cointegration has been established or is expected to hold,
the typical next step is to estimate the cointegrating relationships and construct
consistent tests of hypotheses pertaining to the cointegrating relationships. In
what follows I discuss some simple methods for this which account for het-
erogeneous dynamics. To be clear, as discussed previously, if one is simply
interested to obtain superconsistent estimates, then static OLS provides an im-
mediate solution as it is robust to any features that lead to endogeneity of the
regressors, including the omitted dynamics. The problem that presents itself
with OLS, however, is that the associated standard errors are not consistently
estimated when the regressors are endogenous, even when cointegration is
present. The methods discussed here are designed to correct for this, such that
both the estimates of the cointegrating relationship and the associated stan-
dard errors are consistently estimated so that standard test statistics that rely
on standard error estimates, such as t-statistics or F-statistics, can be used.

There are in fact many ways to construct cointegration estimators that also
produce consistent standard error estimates for the purposes of testing hy-
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potheses about cointegrating relationships. Here I focus on two relatively easy
to understand approaches that are based on the time series principles of fully
modified OLS estimation and dynamic OLS estimation. In both cases, the pri-
mary strategy is to adjust for a second order bias that arises from the dynamic
feedback due to the endogeneity of the regressors by using dynamics of the
regressors as an internal instrument. Fully modified OLS makes these adjust-
ments via nonparametric estimates of the autocovariances, while dynamic OLS
makes these adjustments by parametric estimates using the leads and lags of
the differenced regressors. Since dynamics are estimated in both of these cases,
as discussed previously, an important issue for panels is to accommodate any
heterogeneity in the dynamics that is likely to be present among the members
of the panel. Analogous to previous discussions, one can in principle either
use a pooled approach that conditions out the member specific heterogeneous
dynamics, or one can use a group mean approach.

Group mean approaches are popular in that they are easy to implement,
and the group mean estimates can be interpreted as the average cointegrating
relationship among the members of the panel. Another attractive advantage
for group mean approaches is that they produce a sample distribution of es-
timated cointegration relationships for the individual members of the panel
which can be further exploited in order to study what characteristics of the
members are associated with different values for the cointegrating relation-
ships as illustrated in Pedroni (2007). In what follows I therefore discuss the
details of the group mean fully modified OLS (FMOLS) approach developed
in Pedroni (2000, 2001) and the group mean dynamic OLS (DOLS) approach
introduced in Pedroni (2001).

Specifically, the group mean FMOLS approach simply makes the FMOLS
adjustments to each member of the panel individually, and then computes the
average of the corresponding cointegration estimator. For example, continu-
ing with the bivariate example of this chapter, the first step is to obtain the
estimated residuals êit from the OLS regression for the cointegrating relation-
ship, as described in (17). These residuals are then paired with the differences
in the regressors to create the panel vector series ξ̂it = (êit, ∆xit)

′. From this
the vector of autocovariances Ψ̂ij = T−1 ∑T

t=j+1 ξ̂it ξ̂
′
it−j are estimated, and then

weighted using for example the Bartlett kernel as per the Newey-West estima-
tor, to estimate the various elements of the long run covariance matrix

Ω̂i = Σ̂i + Γ̂i + Γ̂′i , where Γ̂i =
Ki

∑
j=1

(
1− j

Ki + 1

)
Ψ̂ij , Σ̂i = Ψ̂i0 (29)

for each member i for some bandwidth Ki, typically set according to the sample

length as Ki = 4
(

Ti
100

) 2
9 , rounded down to nearest integer. These are then used

to create the modification to the usual OLS estimator such that the FMOLS
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estimator for each member i becomes

β̂FMOLS,i =
∑T

t=1 x∗itỹ
∗
it − Tγ̂i

∑T
t=1 x∗it

2 , (30)

where analogous to earlier in the chapter, y∗it = yit − T−1 ∑T
t=1 yit and x∗it =

xit − T−1 ∑T
t=1 xit are the time demeaned versions of the variables, and the

FMOLS corrections are now such that

ỹ∗it = y∗it −
Ω̂21,i

Ω̂22,i
∆xit , γ̂i = Γ̂21,i + Σ̂21,i −

Ω̂21,i

Ω̂22,i
(Γ̂22,i + Σ̂22,i) (31)

To understand the role of these adjustment terms, it is worth pointing out that
according to (7) the numerator of the OLS estimator converges to a distribu-
tion with a stochastic nonzero mean due to the feedback effect that arises from
the endogeneity of the regressors. Once the adjustment terms (31) are made,
the distribution for the FMOLS estimator becomes centered around zero, so
that when the FMOLS t-statistic is computed based on the variance of the dis-
tribution, the t-statistic becomes asymptotically standard normal. In fact, it is
worth noting that in the special case in which the regressors happen to be ex-
ogenous, the off-diagonal elements of the autocovariances between ∆xit and eit
go to zero, so that ỹ∗it → y∗it and γ̂i → 0, and therefore the β̂FMOLS,i estimator
becomes identical to the β̂OLS,i estimator.

In any event, once the β̂FMOLS,i estimator is computed, the associated FMOLS
t-statistics is then constructed on the basis of (30) in a manner analogous to
conventional t-statistics, except that in place of the usual standard deviation
the standard deviation of the long run variance Ω̂11,i is used as estimated by
(29), so that the FMOLS t-statistic becomes

tFMOLS,i =
β̂∗FMOLS,i − βo,i√

Ω̂−1
11,i ∑T

t=1 x∗it
2

. (32)

The group mean FMOLS estimator and group mean t-statistic are then com-
puted as

β̂GFMOLS = N−1
N

∑
i=1

β̂FMOLS,i , tGFMOLS = N−1/2
N

∑
i=1

tFMOLS,i (33)

where β̂FMOLS,i and tFMOLS,i are the individual member FMOLS estimator and
t-statistics from (30) and (32) respectively. Note that since the individual t-
statistics have an asymptotic distribution which is standard normal, there is no
need to use the usual µ, v adjustment terms to render the group mean asymp-
totically normal, and indeed under the null tGFMOLS ⇒ N(0, 1) and under the
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alternative tGFMOLS → ±∞ as a two-tailed test, so that the critical values are
the familiar ±1.96 for the 5% p-value, and so forth.

In pure time series applications, FMOLS is notorious for suffering from
small sample size distortion, and this is also inherited to some degree by pooled
FMOLS as documented in Pedroni (1996). On the other hand, as documented
in Pedroni (2000), group mean FMOLS has remarkly high power and very little
size distortion in small samples. Intuitively, this appears to be due to the fact
that while the individual FMOLS t-statistic distributions have fairly fat tails
that lead to size distortion in short samples, they are nevertheless fairly sym-
metric so that as the cross sectional dimension N increases, the group mean
t-statistic converges quickly and is well approximated by a standard normal
even in short panels.

DOLS also appears to behave similarly, with the pooled version inherit-
ing the poor small sample properties, while the grouped version appears to
do well. As noted previously, DOLS also makes the adjustments to OLS that
are necessary in order to obtain consistent standard errors and thus produce
standard tests such as t-statistics that are consistent and nuisance parameter
free under the null. However, in contrast to FMOLS which uses estimated au-
tocovariances to make the adjustments, DOLS accomplished the adjustments
via a parametric strategy that uses leads and lags of ∆xit directly in the regres-
sion. Thus, in order to construct the group mean DOLS estimator as described
in Pedroni (2001), one first estimates the individual DOLS regression for each
member of the panel as

yit = αi + βixit +
Ki

∑
j=−Ki

φi,j∆xit−j + eit. (34)

The inclusion of the leads and lags of ∆xit serve to center the distribution of the
numerator of the estimator for βi here, which we refer to as β̂DOLS,i, much in
the same way that the adjustment with the autocovariances in FMOLS served
to center the distribution. Again, analogous to the t-statistic for FMOLS, the
DOLS t-statistics is then constructed on the basis of (34) in a manner analogous
to conventional t-statistics, except that in place of the usual standard deviation
the standard deviation of the long run variance Ω̂11,i is used, which can be
estimated by (29). The corresponding group mean DOLS estimators and t-
statistics then become

β̂DOLS = N−1
N

∑
i=1

β̂DOLS,i , tDOLS = N−1/2
N

∑
i=1

tDOLS,i (35)

and again there is no need to use µ, v adjustment terms to render the group
mean asymptotically normal, and under the null tDOLS ⇒ N(0, 1) while under
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the alternative tDOLS → ±∞ as a two-tailed test, so that the critical values here
are also the familiar ±1.96 for the 5% p-value, and so forth.

As alluded to earlier, pooled approaches are also possible, as for exam-
ple the pooled FMOLS approaches studied in Pedroni (1996) and Phillips and
Moon (1999) and the pooled DOLS studied in Kao and Chiang (2000). In the
latter DOLS approach the dynamics are pooled, which can be problematic for
reasons discussed previously, but one can easily imagine conditioning out the
heterogeneous dynamics in a pooled DOLS approach. Another approach that
is sometimes used is the panel autoregressive distributed lag approach of Pe-
saran (1999). While autoregressive distributed lag approaches are in general
built around the assumption that the regressors are fully exogenous, the ap-
proach in Pesaran (1999) is able to relax the restriction to one of weak exo-
geneity, analogous to the assumption discussed previously for the Westerlund
(2007) ECM based approach. By contrast, FMOLS and DOLS approaches allow
for full endogeneity of the regressors as is typical in the panel cointegration
literature. Finally, it is worth noting that rank based tests using VECM ap-
proaches are also possible, but we defer this to a more general discussion of
rank based tests later in this chapter, and instead turn next to the use of the
panel VECM framework for the purposes of causality testing in cointegrated
panels.

7 Testing Directions of Long Run Causality in Het-
erogeneous Cointegrated Panels

It is worth noting that while cointegration analysis in panels is in general ro-
bust to the presence of full endogeneity of the regressors, as with any econo-
metric method, consistent estimation in the presence of endogeneity is not
synonymous with establishing a direction of causality. In order to establish
causality one needs to impose further restrictions that relate the structure of
the estimated relationship to exogenous processes, which in general requires
additional a priori assumptions when the observed processes are endogenous,
and is therefore not synonymous with consistency of estimation under endo-
geneity. I would argue that in this regard, cointegration analysis is on par with
any other econometric method that treats endogeneity to establish consistency
of estimation. In a nutshell, additional structure is needed to establish the na-
ture of the causal relationships.

Fortunately, in this context cointegration can be interpreted as a type of
identification which already implicitly imposes some structure on dynamic
systems, so that the additional a priori structure that is needed to establish
causal relationships can in many cases be relatively easy to come by. Specif-
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ically, as discussed previously, in dynamic systems the presence of cointegra-
tion can be interpreted to imply the existence of a long run steady state relation-
ship among the variables. Continuing with the bivariate example of this chap-
ter, the implication is that if yit and xit are cointegrated, then a long run causal
effect must exist that links the two variables in their steady state. However,
the long run causal effect can run in either direction. It can originate in some-
thing that induces an innovation in x which causes y to move in the long run,
or it can originate in something that induces an innovation in y which causes
x to move in the long run, or it can be both of these. It what follows I describe
the panel VECM long run causality tests introduced originally in Canning and
Pedroni (1997) and eventually published in Canning and Pedroni (2008).

Specifically, the technique relies on the panel VECM form to estimate the
vector loadings and construct panel tests based on these. Both the direction of
causality and the sign of the causal effect can be tested in this way. To see how
this works, it is worth considering how some of the implications of cointegra-
tion lead to a natural test for these. Again, I will use a simple bivariate example
to illustrate. But to economize on notation, I will use polynomial operator no-
tation here. Specifically, cointegration has three important implications which
can be used to understand the nature of the tests. First, cointegration between
yit and xit implies that their relationship can be represented in VECM form as

Ri(L)∆Zit = ci + λiβ
′
iZit−1 + µit , Ri(L) = I −

Pi

∑
j=1

Ri,jLj (36)

where Zit = (yit, xit)
′ is the vector of variables, Ri(L) contains the coefficients

for the lagged differences which reflect the heterogenous dynamics specific to
member i, µit are the iid white noise innovations, and β′iZit−1 is the error cor-
rection term. Since βi is typically unknown, when (36) is estimated for the
purposes of constructing long run causality tests, this error correction term
must be estimated individually for each member, and it is important that it
be estimated in a manner that has no asymptotic second order bias, such that
the associated standard errors are consistently estimated. Thus, the Johansen
procedure may be used to estimate the VECM, or alternatively one may use
estimated residuals, computed on the basis of the FMOLS or DOLS estimator,
so that for example

êFMOLS,it = y∗it − β̂i,FMOLSx∗it (37)

is used in place of β′iZit−1 in (36). When êFMOLS,it is used in place of β′iZit−1,
then each of the equations of (36) can be estimated individually by OLS for each
member i to obtain consistent estimates of the loadings λi, and the associated
t-statistics will be asymptotically standard normal.

22



The second, fairly trivial implication is that a stationary vector moving av-
erage representation exists for the differenced data, ∆Zit, which we write as

∆Zit = ci + Fi(L)µit , Fi(L) =
Qi

∑
j=0

Fi,jLj , Fi,0 = I (38)

Notice that in this form, when we evaluate the polynomial Fi(L) at L = 1, this
gives us the total sum F(1) = ∑Qi

j=0 Fi,j, which can be interpreted as the total
accumulated response of ∆Zit to the innovations µit, which is equivalent to the
long run steady state response of the levels Zit to the innovations. Therefore,
the off-diagonal elements of Fi(1) can be interpreted as the long run responses
of the variables to each other’s innovations, so that for example Fi(1)21 repre-
sents the long run response of xit to a µit,1 unanticipated innovation in yit and
therefore can be interpreted as a measure of the causal effect from y to x.

The third, and in this context most substantial implication of cointegration,
is known as the Granger representation theorem, which serves two tie together
the first two implications. Specifically, it tells us that the relationship between
the loadings on the error correction terms and the long run steady state re-
sponses of the levels is restricted via a singularity such that

Fi(1)λi = 0. (39)

If for example we are interested to test hypotheses regarding the long run
causal effect represented by Fi(1)21, then we can use one of the characteristic
equations of (39) to see the implications in terms of the loadings, λi. Specifi-
cally, (39) implies that

Fi(1)21λi,1 + Fi(1)22λi,2 = 0. (40)

Under cointegration, both elements of λi cannot be zero, as in this case the
error correction term would drop out of (36). If we are willing to make the
fairly innocuous assumption that x causes itself to move in the long run, so
that F(1)i,22 6= 0, then (40) implies that Fi(1)21 = 0 if and only if λi,2 = 0.
This implies that the construction of a test for the null hypothesis that λi,2 = 0
becomes a test for the null of no long run causality running from y to x. A
grouped panel version of the t-statistic for this test can then be constructed as

ZGLRC = N−1/2
N

∑
i=1

ti,λ2 (41)

where ti,λ2 is the individual t-statistic for the significance of λi,2 for unit i.
Under the null hypothesis of no long run causality running from y to x, the
grouped test is asymptotically standard normal, while under the alternative
the test diverges to positive or negative infinity. By substituting ti,λ1 in place
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of ti,λ2 in (41) one can analogously test for the null hypothesis of no long run
causality running from x to y.

Of course, since these are two tailed tests, it is possible that positive and
negative values for the loadings are averaging out over the i dimension, so
that the test is effectively asking whether there is no long run causality ”on
average”. To address the extent to which this might occur, one can use the
same individual ti,λ2 values to compute the corresponding Fischer style statis-
tic, which is constructed as

Pλ = −2
N

∑
i=1

ln pi , (42)

where ln pi is the natural log of the p-value associated with either ti,λ1 or ti,λ2

depending on which causal direction one wishes to test. Under the null hy-
pothesis of no causality, the Pλ statistic is distributed as χ2

2N , i.e. a chi-square
with 2N degrees of freedom. Since this is a one tailed test with only positive
values, there is no canceling out of positive and negative values, and the test
can be interpreted as a test of how ”pervasive” non causality is in the long run
from y to x or x to y depending on which element of λi is used.

Another advantage of this general framework is that one can use the impli-
cations of (40) to test the sign of the long run causal effect. Specifically, to give
an example, imagine we have rejected the null of no long run causality running
from y to x so that λi,2 6= 0 and therefore Fi(1)21 6= 0. If we are further willing
to make a sign normalization such that we call an innovation to x positive if it
increases x in the long run and negative if it decreases x in the long run, so that
Fi(1)22 > 0, then (40) implies that the sign of Fi(1)21 is the opposite of the sign
of the ratio of the two elements of the loading vector. Specifically, if causality
runs both directions in the long run, so that neither λi,2 nor λi,1 are zero, then

sign[Fi(1)21] = sign[−λi,2

λi,1
]. (43)

so that this ratio can be used to test the sign of the long run causal effect. Note
of course that if λi,1 = 0, there is no need to compute such a ratio, since in that
case causality only runs in one direction and the sign of the OLS or FMOLS es-
timator trivially reflects the sign of the remaining long run causal effect. Con-
structing the panel version of a test based on the ratio is not as straightforward
as some of the other tests discussed in this chapter. This is due to the fact that
the ratio in (43) is distributed as a Cauchy, which does not have a defined mean
and variance. Instead the median, which is defined for the Cauchy, is used to
recenter the distribution and the panel distribution is then simulated by boot-
strap from the estimated version of (36).

In contrast to the other techniques discussed in this chapter, for which the
bivariate examples were simple illustrations of techniques that in general work
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for any number of variables, the panel long run causality tests are in fact best
suited for simple bivariate investigations. In this regard, they can easily be
interpreted as the total derivative causal effect rather than partial derivative
causal effects. If one is interested to investigate multivariate channels, it is in
principle possible to generalize to larger systems of variables. But the general-
izations are not trivial as they require additional restrictions beyond the fairly
simple and innocuous normalization assumptions made for the bivariate case.
If these are to be justified on the basis of economic restrictions, then the ap-
proach begins to take on the flavor of the heterogeneous panel SVAR approach
developed in Pedroni (2013), which can also be used to test for long run direc-
tions of causality whether cointegration is present or not. Embedding an error
correction term in the panel structural VAR approach of Pedroni (2013) is con-
ceptually straightforward, although the properties of the approach specifically
when the ECM term is embedded is a topic that will benefit from further study.

8 Strategies for Treating Cross Sectional Dependence
in Heterogeneous Panels

The emphasis in my presentation of the techniques so far in this chapter has
been on the treatment of heterogeneity in the dynamics. However, as discussed
in the introduction, it is also imperative to consider how the heterogeneity of
the temporal dependencies interacts with the cross sectional, or spatial, depen-
dencies in such panels. In this section I discuss a number of approaches, each
of which can in general be applied to the techniques discussed so far in this
chapter.

One the earliest and simplest ways that was used for treating cross sec-
tional dependencies initially was to use time effects, much the way fixed ef-
fects were regularly used. For this, one simply computes the time effects as
ȳt = N−1 ∑N

i=1 yit, x̄t = N−1 ∑N
i=1 xit, which can then be used to purge the raw

data of these so that ỹit = yit − ȳt, x̃it = xit − x̄t. Keeping with our bivariate
example, one can then proceed to use the purged data in place of the raw data
for any of the techniques discussed in this chapter. Mechanically, this treat-
ment is entirely symmetric with the treatment of fixed effects discussed earlier,
such that these were computed as the means over time for each member and
subtracted from the raw data. Indeed, keeping with our bivariate example, if
we account for both time effects and fixed effects, then we can represent the
prototypical cointegrating regression as

ỹ∗it = βi x̃∗it + eit (44)

where consistent with previous discussions the ∗ denotes that fixed effects also
have been extracted, so that for example ỹ∗it = ỹit − T−1 ∑T

t=1 ỹit where ỹit is
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as defined above, and similarly for x̃∗it. The advantage of this approach is that
it is easy to implement, and it can be applied to the raw data as a stand alone
solution, which after processing in this way can then be fed into any one of
the techniques discussed in this chapter, as was typically done in empirical
applications. Furthermore, the asymptotic properties of estimators and tests
are unaffected by this.

Economically, the solution can be justified when most of the cross sectional
dependency in the data derives from sources that commonly impact all mem-
bers of the panel. This is a typical assumption in microeconomic applications
where the members of the panel are small, and it can be a reasonable first ap-
proximation in macroeconomic applications when for example the panel con-
sists of a large number of small open economies which are responding to the
global economy, but are not individually affecting the global economy much.
Similar justifications can also be used for regions of a large country, or disag-
gregated industries of a large economy for example.

However, in many applications time effects may not be sufficient to accom-
modate all of the cross sectional dependency. This can occur most obviously
when the individuals that constitute the members of the panel are large enough
to affect one another rather than merely being affected by a commonality. More
importantly the cross sectional dependencies can be intertwined with the tem-
poral dependencies so that one member affects another member over time. In
other words, conceptually, one can think of autocovariances that run across
both time and space for the cross sectional dimension, so that there is an N×N
long run covariance matrix that characterizes this. Indeed, a GLS approach for
cointegration and unit root testing in panels based on such a long run covari-
ance matrix estimation was explored in a conference paper, Pedroni (1997).

While the approach studied in Pedroni (1997) allows for a generalization
of the dependency structure relative to time effects, as noted in the paper, it
suffers from two important shortcomings. The first is that it requires the time
series dimension to be substantially longer than what one requires for time
effects. The second is that it falls apart when the cross sectional dependencies
that run across the members of the panel are not temporally transitory, but
are permanent. In other words, it is possible that series are cointegrated not
simply across variables for a given member of the panel, but also for variables
from different members of the panel, sometime referred to as cross-member or
cross-unit cointegration, so that for example yit might be cointegrated with yjt
for i 6= j regardless of whether or not yit is cointegrated with xit. In this case
the long run covariance becomes singular, and the estimators used for GLS
may not be good approximations of the true dependency.

A more elegant solution is what can be thought of as a generalization that
is more closely related to the time effects solution, which is to model the com-
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monalities in terms of a dynamic factor model. Specifically one can think of
time effects as a special case in which there is a single common factor that
drives the dependency structure in the panel. The factor model approach gen-
eralizes this in two regards. First it allows for multiple factors, and allows
the individual members of the panel to respond in a heterogeneous manner
to the common factors by allowing member specific loadings for the factors.
Secondly, the factors themselves can be thought of as dynamic so that there is
temporal dependence in the evolution of the vector of common factors. This is
the approach taken for example in Bai and Ng (2004), among others.

Specifically, Bai and Ng (2004) suggest estimating the common factors by
principle components and then conducting the subsequent analysis on the de-
factored data. Bai and Ng originally proposed the approach in the context of
panel unit root testing, and showed that treating the cross sectional depen-
dency in this manner did not impact the asymptotic properties of the subse-
quent panel unit root tests. In this regard, similar to time effects, one can think
of this as a stand alone treatment that can be performed prior to using the data
for any of the techniques discussed in this chapter. The technique works well
for a small known number of factors. When the number of factors is unknown
and must itself be estimated, the technique can be sensitive to misspecification
of the number of factors. The practical consequence is that when the number
of factors is unknown is that inference regarding unit roots and cointegration
can be sensitive to the number of chosen factors.

Another related approach advocated by Pesaran in numerous papers, in-
cluding initially Pesaran (2007), is to use the cross sectional averages directly in
the panel regressions, in what is known as cross sectional augmentation. This
is equivalent to estimating the time effects from the data as described above,
but rather than extracting them from the data, one includes them in the regres-
sions. This has the consequence of allowing the individual members of the
panel to respond in a heterogeneous manner to the time effects similar to the
common factor approach, but without the need to estimate principle compo-
nents. Pesaran (2007) also originally proposed the method in the context of
panel unit root testing, but the approach can in principle also be used in the
context of any type of panel cointegration technique. However, one important
implication, in contrast to other approaches, is that using the time effects in
this way does affect the asymptotic distributions of the subsequent tests. This
stems from the fact that member specific coefficients on the cross sectional av-
erages must be jointly estimated within the same equation as one is estimating
for the panel analysis. Thus, in contrast to the principle components based fac-
tor model approach, the cross sectional augmentation technique should not be
thought of as a stand alone treatment for the data prior to analysis, but rather
as a method for adapting existing techniques. Westerlund and Urbain (2015)
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compare the cross sectional based approach versus the principle component
based approach analytically and in Monte Carlo simulations to draw out com-
parisons of the relative merits of the two approaches.

While simple time effects extraction, common factor extraction and condi-
tioning regressions on cross sectional averages have econometric appeal, an
important practical concern stems from the idea that their implementation has
the potential to alter the economic interpretation of the results, depending on
what has been extracted by these methods. For cointegration analysis this is
particularly relevant when the commonality that has been extracted or condi-
tioned out based on any of these methods potentially follows a unit root pro-
cess. To give a simple empirical example, imagine that one is testing whether
long run purchasing power parity holds for a panel of real exchange rates.
Imagine furthermore that the truth is that the parity condition fails due to a unit
root process in the common total factor productivity frontier shared by coun-
tries, which causes differential terms of trade effects in different economies in
the spirit of the Balassa-Samuelson hypothesis. But the researcher is unaware
of this truth, and simply wants to control for possible cross sectional depen-
dency by extracting a common factor by principle components or conditioning
out the effect of the common factor by means of a cross sectional average. In
this case we expect the raw data to reject PPP as the individual real exchange
rates will follow a unit root process due to the common TFP unit root, while
the data that has been treated for cross sectional dependency in either of these
ways will fail to reject PPP. But it would be a mistake to conclude from this that
PPP holds in the data. In the name of controlling for cross sectional depen-
dency, we would have unwittingly eliminated the very factor that is respon-
sible for the fact that in truth PPP fails. In a nutshell, this manner of control-
ling for cross sectional dependency is not innocuous in that it has the potential
to substantially impact the economic interpretation of the results in unknown
ways if we do not know what the commonality is that has been eliminated. To
avoid this, rather than working with defactored data, it would be preferable if
we could work with the raw data in a way that accounted for the dependency
without potentially changing the interpretation of the results.

There are several possible avenues for alternative approaches to controlling
for cross sectional dependency without the need to eliminate the source that
creates the dependency, that can nevertheless work in modestly dimensioned
panels. One such approach is to account for the dependencies via bootstrap
methods. Estimating and replicating by bootstrap very general forms of dy-
namic cross sectional dependency parametrically is not feasible in moderately
dimensioned panels, so that sieve bootstrap methods are likely to be a non-
starter in this regard if the hope is generality in the dependence structure. By
contrast, block bootstrap methods do have the potential to accommodate fairly
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general processes, as for example the approach developed in Palm, Urbain and
Smeekes (2011). The basic idea is to sample blocks of random temporal length,
Tn < T for each draw n which span the entire cross sectional dimension with
width N for each draw. In this way whatever form of cross sectional depen-
dency is present in the data will be captured and replicated within the block
with each draw. Performance of the bootstrap is sensitive to some of the de-
tails such as choices by which randomization of the block length occurs, and
at this point the Palm, Urbain and Smeekes approach is specifically designed
for panel unit root testing rather than for cointegration applications. But this
remains a promising area of current and future research.

In the next two sections I discuss some other lines of research, which al-
though not exclusively focused on the treatment of cross sectional dependency,
nevertheless offer very broad alternative solutions to accounting for general
unknown forms of cross sectional and temporal dependencies in a manner that
does not alter the economic interpretation of the results, as potentially occurs
when commonalities are extracted.

9 A Nonparametric Rank Based Approach to Some
Open Challenges

In this section I discuss a method for testing cointegration rank in panels using
robust methods, and its relationship to some of the challenges in the literature.
In particular, the approach addresses four of the important challenges, some of
which have been touched upon in earlier discussions of this chapter. Specif-
ically, one key challenge is the ability to address the interaction of temporal
dependencies with both cross sectional heterogeneities and dependencies in a
very general manner that does not require the extraction of commonalities, as
discussed in the previous section. A second related challenge is to do so in a
way that does create sensitivity to ad hoc choices. Examples of potentially ad hoc
choices include not only choices related to numbers of common factors when
treating the cross sectional dependence, but also choices with respect to choos-
ing lag length or choosing the number of autocovariances for the bandwidth
when treating the cross sectionally heterogeneous temporal dependence. A
third challenge discussed previously in this chapter is the problem of ”mixed”
panels, whereby different members of the panel may exhibit different proper-
ties with regard to cointegration and unit roots. Finally, a challenge for many
of the techniques discussed so far in this chapter is that they tend not to per-
form well when incidental member-specific deterministic trends are present
and estimated in the regressions. For all of these challenges, in the spirit of the
literature, it would be good to have techniques that perform well without the
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need for exceedingly large panels.
As it turns out, these challenges are inter-related and can be viewed as stem-

ming fundamentally from the over-riding challenge presented by the classic
curse of dimensionality problem. To see the connection, imagine treating a
panel of time series as if it were a large vector of time series to be investi-
gated a large dimensional unrestricted VECM, with each member of the panel
contributing variables and equations to the VECM. For example, imagine a
panel with N members, each one of which includes M = 2 variables, yit,
xit. This could be loaded into an MN × 1 dimensional vector to produce a
VECM of dimension MN ×MN. This is appropriate conceptually, since with-
out restrictions the VECM would allow for both full heterogeneity of the dy-
namics among the members as well as full unrestricted dynamic ”cross sec-
tional” dependencies among the members. The dependencies could include
non-transitory, permanent dependencies across the variables analogous to cross-
member cointegration, which would be reflected in a reduction in the rank of
the VECM.

The question of rank is also of interest here because it relates to the issue of
mixed panels discussed earlier in this chapter. It is common in the literature to
think of the problem of mixed panels in terms of questions about how many
members of the panel are consistent with the alternative when we reject the
null. For example, if we reject the null of a unit root or the null of no cointe-
gration, if the empirical application allows for the possibility that the answer
differs across members of the panel, then how many of the members are consis-
tent with the alternative? However, there is a conceptual problem in thinking
about the question in this way when one recognizes that the members of the
panel might be linked through cross-member cointegration. To give a simple
example, imagine a panel consisting of a hypothetical state GDP price deflator
series for the 50 states of the U.S. Imagine furthermore that each of the series
follows a unit root process, but that the unit root in each of these series is due
to their single common link to the U.S. dollar, which creates a unit root for the
U.S. national GDP deflator. In other words, the panel has a cointegration rank
of 1 rather than 50. In this case, depending on ones perspective, one could ar-
gue either that 50 of the state deflators have unit roots, or, after accounting for
the cross sectional dependence structure, one could argue that in effect there is
really only one unit root shared among all 50. More generally, in applications
with unknown forms of cross sectional dependency and unknown degrees of
cross member cointegration dependencies, the answer can lie anywhere in be-
tween. I would argue that in this case, conceptually the more salient question
is not how many members have unit roots but rather what is the rank of the
panel. In effect one would like to know how many unit roots are responsible
for determining the properties of the panel, and whether the rank is large and
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close to full rank, or whether the rank is low and close to zero. The same ap-
plies if we are asking about the number of members for which for example two
variables within the same member appear to cointegrate.

While the VECM approach helps us to sort through these various issues
conceptually, it is not feasible to apply the VECM form directly. The reason
is simply that the number of parameters that would need to be estimated is
far too large. Consider the example described above, where we have N = 30
members with M = 2 variables, and say K = 8 lags. Estimating the VECM
would in this case require the estimation of N2M2(K + 1) + NM parameters,
which comes to 32,460 parameters to be estimated in this case. If we require at
least 10 data points per parameter in order to allow enough degrees of freedom,
which is likely an understatement, then this would imply that we should look
for panels of length T = 10x(32460/30), hence panels of length T = 10, 820.
Clearly, this makes the approach infeasible and contrary to the spirit of the
panel cointegration literature which attempts to find techniques that work well
in panels of moderate length.

One way to think about this more broadly is that the vast majority of the
parameters that would need to be estimated for such a VECM approach are
parameters that are associated with nuisance features of the data which are
not necessarily central to the questions of interest. A different strategy there-
fore is to look for approaches that do not require that the nuisance features
be controlled for by estimation of the associated parameters. This is central to
the approach discussed in this section as well the very different approach dis-
cussed in the next section. Specifically, in this section I discuss the approach
taken in Pedroni, Vogelsang, Wagner and Westerlund (2015) to test for the
cointegration rank in panels in a way that is robust to the interaction of cross
sectional dynamic heterogeneity and cross sectional dynamic dependence of
unknown form. The approach is based on using untruncated kernel estima-
tion. An added advantage to the untruncated kernel estimation is that it does
not require the choice of any tuning parameters such as numbers of lags or
autocovariances or common factors to be estimated, and thus eliminates the
sensitivity to these. Furthermore, since the dependence structure is not explic-
itly modeled or estimated, the method may be implemented with much shorter
panels, provided that the time series dimension, T, is greater in magnitude to
the cross sectional dimension, N. Finally, freeing up degrees of freedom in
this way leaves enough room for the tests to perform almost as well with the
inclusion of member-specific deterministic trends as without.

To gain some intuition for how the technique works, imagine at first that
we interested in asking whether a single series or potentially cointegrated lin-
ear combination of series follows a unit root or is stationary. We will take the
series to be µt to denote the idea that any deterministics such as intercepts or
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trends are accounted for by regressing the individual member series against an
intercept and possibly also a trend. Consider then estimating the untruncated
kernel for µt. This is equivalent to estimating (29) for a single series for a single
member, but with the bandwidth Ki set to the maximum possible for the sam-
ple, so that Ki = T. Ordinarily this would not be done if one is interested in
estimating the long run covariance, as this will lead to inconsistent estimation
of the long run variance. However, in our present context, the nature of the
inconsistent estimation turns out to be useful. Specifically, in this case Kiefer
and Vogelsang (2002) show that when µt follows a unit root process

T−2ω̂2 ⇒ 2σ2D1 as T → ∞ , (45)

where ω̂2 is the untruncated Bartlett kernel estimate of µt, σ2 is the true long
run variance, and D1 is a known nuisance parameter free distribution based
on a Brownian bridge. Similarly, it is well known that if one computes the
standard variance for a process that follows a unit root, then

T−1 ŝ2 ⇒ 2σ2D2 as T → ∞ , (46)

where s2 is the standard variance estimate of µt, σ2 is the true long run variance,
and D2 is a different but known nuisance parameter free distribution based on
a Wiener functional. The implication of (45) and (46) is that for their ratio we
have

T−1 ω̂2

ŝ2 ⇒ 2
D1

D2
as T → ∞ , (47)

so that the ratio converges to a known nuisance parameter free distribution
when µt follows a unit root. By contrast, if µt is stationary, then s2 → s2 con-
verges to a constant given by the true standard variance, while T−1ω2 → 0, so
that the ratio in (47) collapses to zero as T → ∞. In this way, the ratio in (47)
can be used to consistently test whether µt follows a unit root process against
the alternative that it is stationary without the need to consistently estimate
and control for the unknown dynamics associated with σ2.

Consider now the case of a panel imagined as a large vector of variables.
This may be for a univariate case, or for the case in which the variable repre-
sents a linear combination of unit root variables which are hypothesized to be
cointegrated for each member i of the panel. In this case µt becomes an N × 1
vector of variables. If we use these to compute the untruncated Bartlett kernel,
we obtain the analogous symmetric matrix estimate such that

T−2Ω̂⇒ 2Ω1/2D1,RΩ′1/2 as T → ∞ , (48)

where Ω̂ is the untruncated kernel estimate, Ω is the true unknown long run
covariance structure and D1,R is a known nuisance parameter free vector Brow-
nian bridge of dimension R, which will be explained shortly. Similarly for the
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standard covariance matrix estimator we obtain

T−1Σ̂⇒ Ω1/2D2,RΩ′1/2 as T → ∞ , (49)

where Σ̂ is the standard covariance estimate, Ω is the same true unknown long
run covariance structure, and D2,R is a different but known nuisance parameter
free vector Wiener functional, also of dimension R. Note that the long run co-
variance matrix Ω summarizes all possible heterogeneous temporal and cross
sectional dependencies and is unknown. Unfortunately, it is no longer the case
that these simply cancel out if we form the ratio Ω̂Σ̂−1. Fortunately, however,
if we perform the trace operation over the ratio, then the Ω terms do cancel
out, so that

T−1Ω̂Σ̂−1 ⇒ D1,RD−1
2,R as T → ∞ . (50)

Notice what this has accomplished. Since the Ω terms which contain all the
information about the heterogeneous temporal and cross sectional dynamic de-
pendencies has dropped out, there is no need to estimate any of these and we
are left with a pure nuisance parameter free known distribution which can be
used for testing in a manner that is robust to the temporal and cross sectional
dependencies. What is furthermore very useful is that the dimensionality R of
the vector distributions, and therefore the tail values of the distributions, de-
pend on the rank of the vector µt, so that one can use these to test the rank
of the panel. Note furthermore that in this light, conventional panel unit root
tests can be viewed as testing hypotheses which are special cases of this. In
the simplest interpretation of conventional panel unit root tests such that they
are used in applications where the individual members either all follow a unit
root or are all stationary, conventional panel unit root tests can be interpreted
as a special case of the rank test of this section whereby the null of full rank
R = N is tested against the alternative of zero rank R = 0. In more nuanced
”mixed” panel applications of conventional panel unit root tests, where indi-
vidual members are free to follow either a unit root process or a stationary
process, conventional test can be interpreted as a special case of the rank test
whereby one tests the null of full rank R = N against the alternative of any
reduced rank R < N. By contrast, here we have a continuum of possibilities
to test for the null as well as the alternative, ranging anywhere between full
rank to zero rank. Indeed Pedroni, Vogelsang, Wagner and Westerlund (2015)
describe a sequential step down procedure for determining the rank.

It should be noted, however, that while the test has high power even in
the presence of deterministic trends to distinguish full rank from zero rank,
or in general ”high” rank from ”low” rank, the test does not have sufficient
power to reliably distinguish the exact numerical ranks in moderately dimen-
sioned panels. On the other hand, the precise numerical rank is not likely to
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be of interest in most economic applications. For example, it is hard to foresee
many economic hypotheses that revolve around whether a panel of dimension
N = 30 has a rank of say 17 or 18. Instead, I would argue that what is typi-
cally of interest is whether the rank of the panel is relatively high, or whether
it is relatively low so that one knows whether there are many or only a few
unit roots that drive the properties of the panel. This can also be very useful
as a type of empirical cross check for more conventional panel unit root and
panel cointegration tests. Imagine for example that one has confirmed through
panel cointegration testing that the null of no cointegration has been rejected.
In ”mixed” applications, if one would like confirmation that the fraction of
members consistent with this rejection is high, then one can use this type of
rank test to check the rank of the residuals. If the rank is low, then the fraction
of the members consistent with the rejection is high. Of course, since we es-
timate N × N untruncated kernels, we require T > N to implement the rank
test. But in cases where T < N, it is always possible to break the panel into
smaller subsets of members for the purposes of rank testing.

It should also be noted that in unpublished versions of the study, tests for
the null of stationarity were also initially explored, but later dropped in or-
der to focus on the pure rank tests, and that the general approach of using
untruncated kernels also holds promise for constructing tests for the null of
stationarity or the null of cointegration that have good small sample proper-
ties. In general, the testing framework of this section is an example of one in
which we obtain robustness to unknown forms of temporal and cross sectional
dependencies in panels of moderate sample length due to the fact that we do
not need to estimate the parameters associated with this. In the next section I
continue this discussion with some recent techniques that do so in a completely
different manner while attempting to address further open challenges.

10 New Directions and Challenges for Nonlinear
and Time Varying Long Run Relationships

In this section I discuss some new directions and their relationship to the open
challenges of treating nonlinearities and time varying relationships in hetero-
geneous cross sectionally dependent panels. In particular, I discuss this in rela-
tion to some of the details of an approach first introduced by application in Al
Masri and Pedroni (2016) and studied econometrically in terms of its asymp-
totic and small sample properties in Pedroni and Smeekes (2018).

The basic idea is to exploit some the desired robustness properties dis-
cussed in this chapter and to bring them to estimation of long run nonlinear
relationships as well as potentially time varying long run relationships. In par-
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ticular, the idea is to be able to estimate arbitrary potentially nonlinear and
possibly even time varying functions of the form

yit = f (Xit, Zi) (51)

for some vector of unit root variables Xit, possibly conditional on the value of
some vector of cross sectional observations Zi. This is a challenging goal as
cointegration was developed in the time series literature as a fundamentally
linear concept, and while nonlinearities have been explored in the recent time
series literature, it is often hard to retain the superconsistency robustness prop-
erties that come from cointegration once nonlinearities are introduced. To gain
some quick intuition for this, imagine a nonlinear relationship among unit root
variables naively estimated by grouped OLS in the following form

yit = γo + γ1xit + γ2x2
it + eit . (52)

The problem with this format relates to the way in which unit root variables
contributes to the regression properties when they appear in nonlinear form.
For example, imagine that yit and xit follow unit roots and are cointegrated.
If we then square the xit variable, the stochastic properties are altered and it
becomes difficult to think about yit being cointegrated with both xit and x2

it in
a way that preserves the conventional superconsistency. Conversely if we start
by thinking about yit being cointegrated with x2

it, it is difficult to imagine that it
is also cointegrated with the square root of this variable in a way that preserves
the superconsistency associated with cointegration in a conventional sense.

Therefore the approach we take is not to estimate anything like the format
in (52), and indeed the approach we take is entirely unrelated to existing ap-
proaches to treating nonlinearities in nonstationary time series. Rather, we take
an approach that is uniquely possible only in a heterogeneous panel context.
The result is an approach which can estimate a general class of functions of
unknown form in a way that is robust to any of the forms of temporal and
cross sectional dependency discussed in this chapter, including dependencies
in the form of cross member cointegration, which we will not need to extract
or identify in order to estimate the function. Intuitively, the approach works
by estimating what can be interpreted as the Taylor polynomial approximation
to (51) in a way that envisions different members i of the panel as being re-
alizations along different portions of the domain of the function (51). A cross
sectional sampling of a linear approximation of the polynomial is taken across
these different portions of the domain that correspond to the different units of
the panel, and this is then interacted with fixed point in time observations, s, of
the regressors Xi(s) via a second stage regression in order to approximate the
Taylor polynomial.

Specifically, if we continue with the bivariate example used throughout this
chapter, then we can describe the technique as composed of two key steps. The
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first step is to estimate a static time series regression for each unit of the panel
in the form

yit = αi + βixit + µit . (53)

The second stage is to take the heterogeneous estimated slope values, β̂i from
(53), and use them in a second stage cross sectional regression as

β̂i =
P

∑
j=0

cj,sxj
i(s) + vi (54)

where the order of the polynomial P in (54) is chosen by data dependent meth-
ods, and xi(s) is a point in time observation of xit at any fixed point in time s
from the observed sample. In practice, (54) can repeated for any and all avail-
able values of s. Furthermore, if the data generating process is understood to
be time invariant, then the group mean values can be used to obtain the time
invariant estimates ĉj = S−1 ∑S

s=1 ĉj,s for any value j. If instead the data gen-
erating process is understood to be time varying, subject to smoothness con-
straints, then one can use individual or rolling window averages of the ĉj,s to
trace their evolution over time.

To gain some further intuition for how the technique works, consider a sim-
ple case where the polynomial being estimated is relatively low order. For ex-
ample, imagine for simplicity that the chosen value for P in (54) is P = 1. Now
if we take the fitted values from (54) and imagine plugging them into the fitted
values of (53), for the case of P = 1 we obtain

yit = αi + c0xit + c1xi(s)xit , (55)

so that by setting P = 1 in (54) we obtain a quadratic relationship in x for
(55). However, what is important to note is that the quadratic term in (55)
is specialized in that it is not x2

it, but rather xi(s)xit. It is this detail which
allows us to use variation in the domain realizations of xi(s) over the cross
sectional dimension i to trace out the polynomial. Specifically, if we picture the
polynomial as having the curvature of a quadratic, then if we take a fixed point
xi(s) and then vary xit over t around this point we obtain a line representing
the tangency of the curve at that location. If we now imagine doing this at
various points along the x axis corresponding to the different i realizations for
xi(s), with enough variation over i, we begin to trace out the entire polynomial.
In this way, we are exploiting the heterogeneity among the i realizations to
map out the details of the polynomial. The same principle applies when we
take higher order values for P so that we are in effect taking a higher order
expansion around the linear relationship between yit and xit corresponding to
unit i.

36



While the regressions (53) and (54) are both static and linearly additive, it
is important to keep in mind that the data generating process yit and xit is per-
mitted to be dynamic, cross sectionally dependent and potentially nonlinear,
with the idea being that these regressions are able to consistently estimate the
underlying nonlinear long run relationship between y and x in a way that is
robust to these features, without the need to specify and estimate the dynam-
ics and cross sectional dependencies. Indeed, the robustness properties owe
much to the fact that the nonlinear panel form has been decomposed into two
simple sets of regressions, the first of which is a static time series regression
for each member i and the second which is an additively linear cross sectional
regression for each fixed time point s. In particular, the first stage regressions
(53) simply needs to estimate a linear approximation that is appropriate for the
range over which the data is realized for each member i. Since these are unit
root variable, stationary transition dynamics play only a second order role in
this estimation and vanishes asymptotically as the number of observations for
the range associated with a given i increases.

In the second stage regressions (54) the cross sectional distribution of these
estimates are then related to the corresponding cross sectional distributions of
observations taken at a given point in time s. Since this latter step is done as a
cross sectional regression for a given period s, dynamic cross sectional depen-
dencies do not play a role in the consistency of the estimation viewed from the
perspective of the cross sectional estimation as the number of members grows
large. More broadly, the fact that the interaction of the linear approximation
based on the relationship between yit and xit and the cross sectional point in
time observations on xi(s) are used to obtain the robustness properties can be
interpreted as exploiting the fact that the specific historical realizations xi(s)
matter in the way they interact in the incremental relationship between xit and
yit to create the nonlinearities that we observe.

Another interesting aspect of the approach is that since for the first stage
regressons (53) we do not require the variables to be cointegrated in the con-
ventional sense of a linear combination of variables that are stationary, the tech-
nique is also robust to the omission of unit root common factors that would in
more conventional setting break the cointegrating relationship between yit and
xit. In this regard, the technique also offers the possibility of a type of robust-
ness for mixed panel applications, since we do not require each member to be
individually cointegrated in the conventional sense. Furthermore, Monte Carlo
simulations for both the Al Masri and Pedroni (2016) and Pedroni and Smeekes
(2018) studies show that the technique works well even when the length of the
panel is relatively short, even in the presence of omitted dynamics and com-
mon factors. Furthermore, Pedroni and Smeekes (2018) study the conditions
under which the distributions are asymptotically normal, and under which
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standard t-statistics have good size and strong power even in relatively short
samples.

As alluded to earlier, I have described here a simple bivariate example, but
as shown in both studies, and as applied in Al Masri and Pedroni (2016), the
technique can also be used in the general case when Xit is an M× 1 vector, and
the corresponding multivariate polynomials can also be conditioned on cross
sectional variables. Since the generalization is less obvious than for some of
the other techniques discussed in this chapter, it is worth elaborating briefly
on how this is done. Specifically, when (53) is replaced with a multivariate
regression of the form

yit = αi + β′iXit + µit (56)

where Xit is an M× 1 vector, the second stage regressions now take the form

β̂i =
P

∑
j=0

Cj,sX(s)j
i + vi , (57)

which represents a system of equations, one for each estimate of the M × 1
vector β̂i from (56), where X(s)i is an M× 1 vector realization of Xit for some
fixed time period s and the Cj are the M×M estimated matrices, which is di-
agonal for j = 0, symmetric for j = 1 and unrestricted for j > 1. In this way,
the form of the approximating polynomial is interacted among the various ele-
ments of the vector version of (51. For example, in Al Masri and Pedroni (2016)
arguments X1,it and X2,it reflecting measures of development of financial insti-
tutions and measures of development of financial markets respectively are al-
lowed to interact with one another in their relationship to per capita income, so
that by taking time derivatives of the estimated relationships one can infer the
implications of different relative rates of development in financial institutions
versus financial markets for various types of countries.

Furthemore, as mentioned previously, it is also possible to condition these
polynomial relationships on any vector of cross sectional observables, Zi. In
such cases (58) can optionally be extended to take the form

β̂i =
P

∑
j=0

Cj,sX(s)j
i +

K

∑
k=1

P

∑
j=0

Dk,jXi(s)jZk,i + vi (58)

Zi is K × 1 vector of unit specific variables and Dk,j are conformably dimen-
sioned M×M matrices. In practice Zi can take the form of static cross sectional
variables, or either point in time realizations or time averaged realizations of
stationary time series variables. In this way, cross sectional and stationary vari-
ables can also be made to have a role in shaping the form of the polynomials.
For example Al Masri and Pedroni (2016) show how the relationships between
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the different types of financial development and long run economic growth
depend in part on the degree of financial openness, which is incorporated as a
static conditioning variable, Zi, that reflects the financial openness of member
i. Furthermore, as discussed previously, by estimating the relationship over a
rolling window for s one can see the evolution of the polynomials over time.

While this general line of research on nonlinear and time varying long run
relationships is in its early stages, it should be clear that the promise is fairly
high for addressing some of the open challenges that remain in the literature
on panel cointegration, and for having very broad empirical applicability. In
that spirit, far from being an exhaustive survey of the literature on panel coin-
tegration methods, this chapter has instead selectively touched in a simple and
hopefully intuitive manner on what I believe to be some of the key challenges
that have helped to shape the literature, as well as some the key challenges that
I expect are likely to be a part of what continues to motivate the literature, both
in its theoretical development as well as its broad empirical applicability.
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