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Abstract

We derive a parsimonious returns-based stochastic discount factor that
is robust to model misspecification. We consider a general equilibrium
model with heterogeneous agents who can invest their wealth in many as-
sets. As long as (i) agents have (individual-, time-, and state-dependent)
recursive preferences that are homothetic in current consumption and con-
tinuation value with a common relative risk aversion coefficient γ and (ii)
asset returns and individual state variables are conditionally independent
(e.g., GARCH processes), we prove that the (−γ)-th power of market re-
turn is a valid stochastic discount factor. Within this class of models, asset
prices are determined by relative risk aversion and technology alone, and
“returns-based asset pricing” is robust to model misspecification as op-
posed to the consumption-based approach. We recast the equity premium
puzzle as a consumption/saving puzzle, not as an asset pricing puzzle.

Keywords: asset pricing puzzles, heterogeneous-agent model, model
misspecification, recursive preferences.

JEL codes: D53, D58, D91, G11, G12.

1 Introduction

In the absence of arbitrage a stochastic discount factor (SDF) exists (Ross,
1976). As economists we would like to use economic theory to derive stochastic
discount factors, but finding an SDF that is robust to model misspecification
is not trivial. In asset pricing theory, it is well known that the “returns-based
approach” is equivalent to the “consumption-based approach” given the model.1

However, the consumption-based approach has performed fairly poorly and

∗Department of Economics, Williams College. Email: gp4@williams.edu
†Department of Economics, University of California San Diego. Email: atoda@ucsd.edu
1Let p,m, x denote the asset price, stochastic discount factor, and asset payoff. The

“consumption-based approach” proceeds as follows: (1) form a statistical model of the con-
sumption process, (2) use a model to calculate the implied SDF m given optimal consumption
and portfolio allocations, (3) calculate asset prices and returns directly from the basic pricing
equation p = E[mx]. In contrast, the “returns-based approach” proceeds: (1) form a model
of asset returns, (2) solve the optimal consumption-portfolio decisions given asset returns, (3)
use the equilibrium consumption value in p = E[mx]. The definitions of the two approaches
are cited from Cochrane (2005), p. 40. Classic examples of the returns-based approach are
Markowitz (1952), Tobin (1958), Sharpe (1964), Lintner (1965a,b), Samuelson (1969), Merton
(1969, 1971, 1973), and Fama (1970), and examples of the consumption-based approach are
Lucas (1978) and Mehra and Prescott (1985), just to name a few.
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practitioners predominantly use the returns-based approach (Campbell and Cochrane,
2000). In this paper we argue that the returns-based approach is fairly robust to
model misspecification, while the consumption-based approach is not.We derive,
for a general class of models with heterogeneous agents, a stochastic discount
factor that is both model-robust and trivial to calculate. The key is to “by-
pass consumption data altogether, and instead look directly at asset returns”
(Ludvigson, 2013, p. 801).

To illustrate our result in the simplest possible way, consider the follow-
ing example. There is an investor who lives for two periods with the additive
constant relative risk aversion (CRRA) utility function

1

1− γ

(

c1−γ
0 + β E[c1−γ

1 ]
)

.

Suppose that the investor is endowed with initial wealth w > 0 today and
nothing tomorrow, but can invest in K assets indexed by k = 1, . . . ,K. Asset k
has gross return Rk ≥ 0, which is a random variable. Letting φk be the fraction
of the remaining wealth invested in asset k, φ = (φ1, . . . , φK) ∈ R

K (where
∑

k φ
k = 1) the portfolio, and R(φ) =

∑

k R
kφk the gross return on portfolio φ,

the budget constraint is c1 = R(φ)(w − c0).
Substituting the budget constraint into the utility function, the optimal

consumption-portfolio problem becomes

max
c,φ

1

1− γ

(

c1−γ + β E[R(φ)1−γ ](w − c)1−γ
)

,

Because utility is homothetic, this problem can be broken into separable portfolio-
allocation and consumption-savings problems:

F

1− γ
:= max

φ

1

1− γ
E[R(φ)1−γ ], (1.1a)

U := max
c

1

1− γ
(c1−γ + βF (w − c)1−γ). (1.1b)

Let φ∗ be the solution to the optimal portfolio problem (1.1a). It is well-known
that β(c1/c0)

−γ is a valid SDF given this utility function, but so is (a constant
multiple of) R(φ∗)−γ . To see this, consider investing ǫ more (less) in asset k
and ǫ less (more) in the optimal portfolio φ∗. Taking the first order condition
with respect to ǫ and setting ǫ = 0, we obtain

E[R(φ∗)−γ(Rk −R(φ∗))] = 0

for any asset k. Hence, R(φ∗)−γ (times a constant) is also a valid stochas-
tic discount factor. Note that the only property used to derive this SDF is
the homotheticity of the utility function, not its particular functional form;
the returns-based SDF R(φ∗)−γ is robust. In contrast, the consumption-based
SDF β(c1/c0)

−γ is not robust to model misspecification: if the utility function
changes, so does the SDF. (See Hansen and Renault (2010) for several exam-
ples.) The rest of the paper is an elaboration of this simple idea.

In this paper we consider an economy with many agents who have individual,
time, and state-dependent recursive preferences that are homothetic in current
consumption and continuation value. We show that if asset returns and indi-
vidual state variables are conditionally independent (e.g., GARCH processes),
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then the portfolio and the consumption/savings decisions can be disentangled.
If, in addition, (i) agents have a common relative risk aversion coefficient γ and
(ii) the efficient market hypothesis holds, then agents make the same portfolio
choice, and consequently the individually optimal portfolio must be the mar-
ket portfolio. A corollary is that the (−γ)-th power of the gross return on the
market portfolio (market return) is a valid stochastic discount factor.

This result has three important implications. First, since its validity does
not depend on the functional form beyond homotheticity and hence on the
consumption process, the “returns-based asset pricing” approach is robust to
model misspecification as opposed to the consumption-based approach. Since
in our model consumption is not directly connected to asset prices, the low
volatility of consumption growth (or the low covariance between consumption
growth and asset returns) needed in order to explain asset prices is not an asset
pricing puzzle but a consumption/saving puzzle; the “consumption volatility
puzzle” belongs to macroeconomics, not to finance. Second, since the asset
pricing formula contains only asset returns data, which are available in high
frequency and high accuracy, the ‘(−γ)-th power of market return’ SDF can be
used in practice. Third, the relative risk aversion γ can be estimated using only
asset returns data; consumption data (aggregate or individual) contain no more
information than the asset returns data for estimating the relative risk aversion
coefficient. We do this exercise and obtain an estimate of γ = 2, which suggests
a satisfactory “resolution” to asset pricing puzzles.

Although these results concern relative pricing, we also consider absolute
pricing. By assuming further that (iii) agents have access to constant-returns-
to-scale stochastic saving technologies (AK model, e.g., Levhari and Srinivasan
(1969)) and (iv) technological shocks and individual state variables are condi-
tionally independent, we derive an asset pricing formula which depends only on
fundamentals (technology and relative risk aversion).

The rest of the paper is organized as follows. After a brief discussion of
the related literature, Section 2 presents the model and solves the single agent
optimal consumption-portfolio problem. Section 3 derives relative asset pricing
formulas that do not depend on consumption in a partial equilibrium setting.
Section 4 characterizes the general equilibrium with many heterogeneous agents
and constant-returns-to-scale stochastic saving technologies, and derives abso-
lute asset pricing formulas.

1.1 Related literature

A few papers are related to our work. Rubinstein (1976) derived the ‘(−γ)-th
power of market return’ SDF under the assumption of a representative agent
with additive CRRA utility and serially independent returns. We obtain the
same SDF, but under much weaker assumptions listed above. Most importantly,
in Rubinstein’s model aggregate consumption is proportional to wealth and
hence consumption growth and market return have the same volatility (which
is counterfactual, hence the “consumption volatility puzzle”), but in our model
aggregate consumption is not connected to market return. Campbell (1993)
obtained an asset pricing formula without using consumption in a representative
agent setting by log linearizing the intertemporal budget constraint. One result
of this paper is that relative risk aversion is the only preference parameter that
matters for asset prices (in particular, the EIS is irrelevant). In our model there
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are many heterogeneous agents with more general preferences and the asset
pricing formula is exact, not an approximation.

Cass and Stiglitz (1970) showed in a static setting that the only utility func-
tions for which the mutual fund theorem holds are the quadratic and power
utility functions (if there is no risk-free asset) and the linear risk tolerance

(LRT) utility − u′(w)
u′′(w) = A+Bw (if there is a risk-free asset). Rubinstein (1974)

showed a similar result in a two period economy with additive utility functions.
Our result extends theirs to a dynamic setting with recursive preferences.

Chabi-Yo et al. (2014) study the effect of incomplete markets and skewness
of returns for stochastic discount factors. They show that with a representative
agent, or with complete markets, an SDF which is quadratic in the market
return is valid. However when markets are incomplete so that agents cannot
properly hedge skewness risk, skewness leads to tracking error in the SDF; the
SDF is not spanned by a polynomial of the market return. In our model markets
are complete, which is why the (−γ)-th power of market return is valid.

Guvenen (2009) and Gârleanu and Panageas (2015) both use parsimonious
heterogeneous agent models in attempts to resolve asset pricing puzzles. Guvenen
(2009) presents a two-agent model in which agents have the same degree of
relative risk aversion (γ = 6) but heterogeneous elasticities of intertemporal
substitution (EIS) and limited stock market participation. The model gen-
erates a countercyclical equity premium, but consumption is still too volatile
compared to the data; furthermore, the model does not admit a parsimonious
consumption-based SDF. Gârleanu and Panageas (2015) present a two-agent
stochastic endowment economy in which agents have heterogeneous EIS and
heterogeneous RRA (99% of agents have γ = 10 and the rest have γ = 1.5).
With these parameters the model is able to capture the volatility of asset re-
turns, the equity premium, and the risk-free rate. Their paper shows that
heterogeneous risk aversion (together with heterogeneity in other dimensions) is
useful for matching the behavior of asset returns; our result is complementary
since we use a common risk aversion but heterogeneity in other dimensions.

2 Individual decision

All random variables are defined on a probability space (Ω,F , P ). Time is
discrete and finite,2 t = 0, 1, . . . , T . An agent starts with initial wealth w > 0
and has no income other than those obtained by investing in assets.3

2.1 Assets, information, and preference

Assets There are K assets indexed by k ∈ K = {1, . . . ,K}. Let P k
t , D

k
t

be the price and dividend of asset k at time t. The gross return of asset k
between the end of time t and the beginning of time t+1 is denoted by Rk

t+1 =
(P k

t+1 +Dk
t+1)/P

k
t , and the vector of gross asset returns is denoted by

Rt+1 = (R1
t+1, . . . , R

K
t+1).

2The model can be easily generalized to infinite horizon if we assume that each agent lives
for only finite periods or if we make distributional assumptions (such as Markov shocks) to
guarantee the convergence of the value function. See Toda (2014b) for such an example.

3Since this paper is concerned with frictionless complete asset markets, the agent can sell
off his future endowments and incorporate into the initial wealth.
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Let φk
t be the fraction of wealth invested in asset k at time t and φt = (φ1

t , . . . , φ
K
t )

be the portfolio, so
∑

k φ
k
t = 1. Of course, φk

t > 0(< 0) means a long (short)
position in asset k. The agent can be constrained in the choice of portfolio: let
Πt ⊂ R

K be the set of feasible portfolios. The gross return on portfolio φt ∈ Πt

is denoted by

Rt+1(φt) := R′
t+1φt =

K
∑

k=1

Rk
t+1φ

k
t .

The sequential budget constraint of the agent is therefore

(∀t) wt+1 = Rt+1(φt)(wt − ct) ≥ 0.

Information and preference The agent’s information is represented by the
filtration (an increasing sequence of σ-algebras) {Ft}

T
t=0 ⊂ F . Let wt be the

agent’s wealth at the beginning of time t and Xt = (X1
t , X

2
t , . . . ) be the vector

of state variables at time t other than wealth. What we have in mind for the
state variables are public information such as past returns and volatility, but it
may also include private information such as past consumption (in the case of
habit formation). To obtain the results it is unnecessary to specify Xt explicitly.
The conditional expectation with respect to time t information is denoted by
E [· | Ft] or more compactly Et[·], which are functions of Xt and wt because by
assumption these are all the state variables. Let ct, Ut ∈ R be the consumption
and the continuation utility at time t. We make the following assumptions.

Assumption 1 (Irrelevance of wealth). For any Ft+1-measurable function f ,
we have E [f(Xt+1) | Ft] = g(Xt) for some g, that is, agent’s wealth is irrelevant
for predicting a function of next period’s state variables other than wealth.

Assumption 1 simply means that the agent is so small compared to the
market that his wealth level does not affect asset returns, i.e., the agent is a
price taker.

Assumption 2 (Constant relative risk aversion and homotheticity). The con-

tinuation utilities {Ut}
T
t=0 satisfy the recursion UT = aT (XT )cT and

Ut = ft

(

ct,E
[

U1−γ
t+1

∣

∣

∣
Ft

]
1

1−γ

,Xt

)

, t = 0, . . . , T − 1, (2.1)

where aT > 0 is some function of the state variables XT , γ > 0 is the relative
risk aversion coefficient, and

ft : R++ × R++ × R
dimXt → R+

is strictly increasing and homogeneous of degree 1 in the first two arguments.

ft is called the aggregator (Epstein and Zin, 1989; Boyd, 1990). Since the
risk aversion is over the continuation utility, not consumption, it is the correct
notion of risk aversion (Swanson, 2012). At this point it is helpful to provide
concrete examples.

Example 1 (Additive CRRA utility). If aT (XT ) = 1 and the aggregator is
given by

ft(c, v,Xt) = (c1−γ + βv1−γ)
1

1−γ
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(so the state variables do not directly enter the aggregator), then iterating (2.1)
and using the law of iterated expectations, we obtain

Ut = E

[

T
∑

s=t

βt−sc1−γ
s

∣

∣

∣

∣

∣

Ft

]

1
1−γ

,

which is ordinally equivalent to the standard additive CRRA utility

Et

T
∑

s=t

βt−s c
1−γ
s

1− γ

with discount factor β and relative risk aversion γ.

Example 2 (Recursive CRRA/CEIS utility). If aT (XT ) = 1 and the aggregator
is given by

ft(c, v,Xt) = (c1−σ + βv1−σ)
1

1−σ

(so the state variables do not directly enter the aggregator), then Ut is the con-
stant relative risk aversion (CRRA), constant elasticity of intertemporal substi-
tution (CEIS) recursive utility (Epstein and Zin, 1989) with discount factor β,
relative risk aversion γ, and elasticity of intertemporal substitution 1/σ.

Example 3 (Habit formation). In Examples 1 and 2, the aggregator ft did not
explicitly depend on the state variables Xt, but (2.1) allows such dependence.
For example, if Xt consists of past consumption and the aggregator explicitly
depends on Xt, the recursive utility (2.1) depends on past consumption and
hence we can incorporate some form of habit formation (Abel, 1990). One such
example that satisfies Assumption 2 is

ft(c, v, x) =
[

(c/x)1−σ + βv1−σ
]

1
1−σ ,

where x is the habit stock.

2.2 Optimal portfolio problem

To solve the optimal consumption-portfolio problem we further need an assump-
tion on asset returns and state variables.

Assumption 3 (Conditional independence). For each t, the next period’s state
variables Xt+1 and asset returns Rt+1 are independent conditional on time t
information Ft.

Conditional independence implies, in particular, that the most recent asset
return is not a state variable: Rt /∈ Xt, which is clearly a restriction. An
obvious case in which conditional independence holds is when returns are i.i.d.
and independent of state variables. However, the assumption is still weak enough
to be useful. For example, suppose that returns are lognormal with time-varying
expected return and volatility: logRt+1 ∼ N(µt, σ

2
t ). Here the state variable

is Xt = (µt, σt). Conditional independence holds if, for instance, the expected
return-volatility pair {Xt} is a Markov process and logRt+1 = µt+σtzt+1, where
{zt} is a Gaussian white noise that is independent from the process {Xt}.

4

4In this example we implicitly assumed that there is a single risky asset, but the argument
clearly holds for any number of assets.
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Another example is the GARCH process with no leverage effect. Let logRt+1 =
µ+ ǫt+1 and consider the GARCH(p, q) process

ǫt+1 = σtzt+1,

σ2
t = α0 + α1ǫ

2
t + · · ·+ αqǫ

2
t−q+1 + β1σ

2
t−1 + · · ·+ βpσ

2
t−p,

where {zt} is a white noise. Then the state variables are

Xt = (ǫt, . . . , ǫt−q+1, σt−1, . . . , σt−p),

and the conditional independence assumption does not necessarily hold because
ǫt+1 (part of next period’s state variables) and Rt+1 = exp(µ + ǫt+1) are not
independent conditional on Xt. However, if α1 = 0 (no leverage effect), then ǫt
is no longer a state variable, and conditional independence holds.

The following theorem shows that the optimal portfolio problem can be dis-
entangled from the optimal consumption/saving problem, and that the former
depends only on risk aversion and asset returns.

Theorem 2.1. Under Assumptions 1–3, the value function

Vt(w,Xt)

= sup {Ut |wt = w, (∀s ≥ t) ws+1 = Rs+1(φs)(ws − cs) ≥ 0, φs ∈ Πs} (2.2)

is linear in wealth w and the optimal portfolio problem at time t reduces to

max
φ∈Πt

1

1− γ
E
[

Rt+1(φ)
1−γ

∣

∣Ft

]

. (2.3)

If the portfolio constraint Πt is nonempty, compact, and

E

[

sup
φ∈Πt

Rt+1(φ)
1−γ

∣

∣

∣

∣

∣

Ft

]

< ∞,

then the optimal portfolio problem (2.3) has a solution.

Proof. The proof is by induction. If t = T , then UT = aT (XT )cT , so

VT (w,XT ) = sup {aT (XT )cT | cT ≤ w} = aT (XT )w

is linear in wealth and there are no portfolio decisions to make. Suppose the
claim is true for time s = t+ 1, . . . , T and let Vs(w,Xs) = as(Xs)w. Then we
obtain

Vt(w,Xt)

= sup
0≤c≤w
φ∈Πt

ft

(

c, (w − c) Et[at+1(Xt+1)
1−γRt+1(φ)

1−γ ]
1

1−γ ,Xt

)

= sup
0≤c≤w

ft

(

c, (w − c) Et[at+1(Xt+1)
1−γ ]

1
1−γ sup

φ∈Πt

Et[Rt+1(φ)
1−γ ]

1
1−γ ,Xt

)

= sup
0≤c≤w

ft

(

c, (w − c)bt(Xt) sup
φ∈Πt

Et[Rt+1(φ)
1−γ ]

1
1−γ ,Xt

)

= sup
0≤c̃≤1

wft

(

c̃, (1− c̃)bt(Xt) sup
φ∈Πt

Et[Rt+1(φ)
1−γ ]

1
1−γ ,Xt

)

=: at(Xt)w,
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where we used backward induction in the first equality, conditional independence
(Assumption 3) and monotonicity of ft in the second, the irrelevance of wealth
(Assumption 1) in the third, and the homogeneity of ft (Assumption 2) in the
last, where we set c̃ = c/w. Therefore the value function is linear in wealth.
Since ft is increasing in the second argument, the optimal portfolio problem at
time t is

max
φ∈Πt

E
[

Rt+1(φ)
1−γ

∣

∣Ft

]
1

1−γ ,

which is equivalent to (2.3) because x 7→ x1−γ

1−γ is monotone.

If E
[

supφ∈Πt
Rt+1(φ)

1−γ
∣

∣Ft

]

< ∞,5 then by the Dominated Convergence
Theorem φ 7→ Et[Rt+1(φ)

1−γ ] is continuous. Therefore if the portfolio con-
straint Πt is nonempty and compact, the optimal portfolio problem (2.3) has a
solution.

Theorem 2.1 is related to Kocherlakota (1990), where he proves in a represen-
tative agent, complete markets, endowment economy setting that the CRRA/CEIS
recursive utility model (Example 2) is observationally equivalent to the stan-
dard additive CRRA utility model if consumption growth is i.i.d. His irrelevance
result can be generalized as in the following proposition.

Proposition 2.2. Consider the recursive utility model satisfying Assumption
2 with a time-homogeneous aggregator f(c, v) with no state variables. If asset
returns are i.i.d. and U0 defined by (2.1) converges as T → ∞, then the recursive
utility model is observationally equivalent to the standard additive CRRA utility
model.

Proof. It suffices to show that the optimal portfolio choice and consumption are
observationally equivalent in the two models. By Theorem 2.1, the portfolio
choice is the same. If the recursive utility converges as time periods tends to
infinity, the Bellman equation becomes time-homogeneous. Since the aggrega-
tor f(c, v) is homogeneous of degree 1, the optimal consumption is a constant
fraction of wealth, which is observationally equivalent to the additive CRRA
case.

3 Partial equilibrium

Having solved the single agent problem, in this section we consider an economy
with many agents. In a partial equilibrium setting, we derive a relative asset
pricing formula that depends only on the market portfolio and the relative risk
aversion.

3.1 Description of the economy

The financial market is the same as in Section 2, so asset k has (per share)
price P k

t , dividend Dk
t , and gross return Rk

t+1 = (P k
t+1 +Dk

t+1)/P
k
t . As in any

partial equilibrium analysis, the stochastic processes of price and dividend are
exogenous in the model, not just exogenous from the point of view of individual

5This condition is not very stringent. For example, it holds if γ > 1 (< 1) and the portfolio
return is bounded away from zero (bounded above).
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agents.6 Let W k
t be the market capitalization (per share price P k

t times the
number of shares outstanding) of asset k.

The economy is populated by I agents indexed by i ∈ I = {1, . . . , I} with

recursive preferences defined by (2.1), where the aggregators {(fit)i∈I}
T−1
t=0 and

the state variables {(Xit)i∈I}
T
t=0 are potentially different but the relative risk

aversion γ > 0 and the portfolio constraint Πt ⊂ R
K are common across agents.

Agent i is endowed with initial wealth wi0 > 0 but nothing thereafter. Let Fit

be the private information of agent i at time t and Ft =
⋂

iFit be the public
information.

The sequential partial equilibrium is defined by agent optimization and mar-
ket clearing.

Definition 3.1 (Sequential partial equilibrium). Given asset prices and div-

idends
{

(P k
t , D

k
t )k∈K

}T

t=0
, the profile of individual consumption, wealth, and

portfolio {(cit, wit, φit)i∈I}
T
t=0 and market capitalization

{

(W k
t )k∈K

}T

t=0
consti-

tute a sequential partial equilibrium if

1. given asset returns Rk
t+1 = (P k

t+1 +Dk
t+1)/P

k
t , the portfolio φit solves

max
φ∈Πt

1

1− γ
E
[

Rt+1(φ)
1−γ

∣

∣Fit

]

, (3.1)

2. given the portfolio choice, cit solves the optimal consumption problem
(2.2),

3. asset markets clear, i.e., for each asset k and time t we have
∑I

i=1 φ
k
it(wit−

cit) = W k
t , and

4. individual wealth evolves according to the budget constraint

wi,t+1 = Rt+1(φit)(wit − cit).

Since prices and dividends are exogenous in a partial equilibrium, the prob-
lem of finding the equilibrium is merely a collection of individual optimization
problems. Once we solve for the optimal rules (cit, φit), we obtain the market
capitalization

{

W k
t

}

by adding up the individual holdings of each asset.

3.2 Relative asset pricing

In order to prove the main result, we need one more assumption. We assume
markets are efficient in the sense that private information is useless for predicting
asset returns.

Assumption 4 (Efficient market hypothesis). For each i and t, the distribution
of asset returns Rt+1 = (Rk

t+1)
K
k=1 conditional on private information Fit is the

same as the distribution conditional on public information Ft.

This definition of market efficiency is taken from the first definition in Bewley
(1982). The following proposition shows that if there is an equilibrium, there is
also an equivalent symmetric equilibrium (common portfolio choice).

6We can think of a partial equilibrium as a small open economy.
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Proposition 3.2. Let everything be as above. Suppose that

1. agents have information and recursive preferences satisfying Assumptions
1 and 2,

2. for each agent conditional independence (Assumption 3) holds, and

3. the efficient market hypothesis (Assumption 4) holds.

If there is a partial equilibrium, then there is also an equilibrium with a common
portfolio choice φ∗

t (market portfolio) and the same consumption and wealth as

in the original equilibrium {(cit, wit)i∈I}
T
t=0.

Proof. By the efficient market hypothesis (Assumption 4), we can replace the
private information Fit in (3.1) by the public information Ft. Then the optimal
portfolio problem becomes common across all agents, which is (2.3).

Suppose that {(cit, wit, φit)i∈I}
T
t=0 is a sequential partial equilibrium. Define

the value weighted average portfolio by

φ̄t :=

I
∑

i=1

φit(wit − cit)/

I
∑

i=1

(wit − cit).

By the definition of φ̄t and the market clearing condition, we have

I
∑

i=1

φ̄k
t (wit − cit) =

I
∑

i=1

φk
it(wit − cit) = W k

t

for each k, so the common portfolio φ̄t (market portfolio) clears the market.
Since the function 1

1−γRt+1(φ)
1−γ is quasi-concave in φ and φit solves (2.3)

for each i, so does φ̄t. Therefore
{

(cit, wit, φ̄t)i∈I

}T

t=0
(same consumption and

wealth as in the original equilibrium with common portfolio φ̄t) is also an equi-
librium.

Let φ∗
t := φ̄t be the market portfolio, which is also an individually optimal

portfolio. The following theorem, which is the main result of this paper, shows
that the (−γ)-th power of the return on the market portfolio is a valid stochastic
discount factor.

Theorem 3.3. Let everything be as in Proposition 3.2 and {(cit, wit, φ
∗
t )i∈I}

T
t=0

be a symmetric sequential partial equilibrium, where φ∗
t is the market portfolio.

If the portfolio constraint φ ∈ Πt does not bind at the market portfolio φ∗
t for

asset k, letting Rm,t+1 = Rt+1(φ
∗
t ) be the return on the market portfolio, we

have

E
[

R−γ
m,t+1(R

k
t+1 −Rm,t+1)

∣

∣Ft

]

= 0, (3.2a)

P k
t =

E
[

R−γ
m,t+1(P

k
t+1 +Dk

t+1)
∣

∣Ft

]

E
[

R1−γ
m,t+1

∣

∣

∣
Ft

] , (3.2b)

i.e., the (−γ)-th power of the return on the market portfolio (more precisely,
R−γ

m,t+1/E
[

R−γ
m,t+1

∣

∣Ft

]

) is a valid stochastic discount factor. In particular, the
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one period risk-free rate is

Rf,t =
E
[

R1−γ
m,t+1

∣

∣

∣
Ft

]

E
[

R−γ
m,t+1

∣

∣Ft

] . (3.3)

Furthermore, the equity premium satisfies the covariance pricing formula

E
[

Rk
t+1

∣

∣Ft

]

−Rf,t = −
Cov

[

R−γ
m,t+1, R

k
t+1

∣

∣Ft

]

E
[

R−γ
m,t+1

∣

∣Ft

] . (3.4)

Proof. Consider investing the fraction of wealth 1 − α in the market portfolio
φ∗
t and α in asset k. Clearly α = 0 is optimal by the definition of φ∗

t , so

0 ∈ argmax
α

1

1− γ
E
[

[(1 − α)Rm,t+1 + αRk
t+1]

1−γ
∣

∣Ft

]

. (3.5)

Since by assumption the portfolio constraint φ ∈ Πt does not bind, by taking the
first-order condition of the maximization (3.5) at the optimum α = 0, we obtain
(3.2a). Substituting Rk

t+1 = (P k
t+1 + Dk

t+1)/P
k
t into (3.2a) and rearranging

terms, we obtain (3.2b). Setting P k
t+1 = 0 and Dk

t+1 = 1 in (3.2b), we obtain

the price of the one period risk-free bond 1/Rf
t , and hence (3.3). The derivation

of (3.4) is completely standard.

Theorem 3.3 may appear completely standard at first glance, but it is not.
In a consumption-based representative agent setting (with a standard additive
CRRA utility function), the growth rate of consumption is proportional to the
return on the market portfolio, and (3.2a) is trivial (it is the Euler equation).
What is surprising is that despite the presence of many agents with heteroge-
neous preferences, we derived a simple stochastic discount factor, R−γ

m , which
depends only on the relative risk aversion and the market portfolio.

This result has three important implications. First, since this result does
not depend on any particular utility function and hence on the aggregate or
individual consumption process, the “returns-based asset pricing” approach is
robust to misspecification of the model as opposed to the consumption-based
approach. Since in our model consumption is not directly connected to asset
prices, the low volatility of consumption growth (or the low covariance between
consumption growth and asset returns) needed in order to explain asset prices
(“consumption volatility puzzle”) is not an asset pricing puzzle (that belongs to
finance) but a consumption/saving puzzle (that belongs to macroeconomics).

Second, since the asset pricing formula contains only asset returns data,
which are available in high frequency and high accuracy, our model can be used
in practice. The CAPM can also be interpreted as an approximation to our
model. To see this, note that the (conditional) CAPM implies the existence of
numbers at, bt such that (3.2a) holds by replacing R−γ

m,t+1 with at − btRm,t+1.
By Taylor expanding R−γ around R = 1, we get

R−γ ≈ 1− γ(R− 1) = 1 + γ − γR,

so setting at = 1+γ and bt = γ, CAPM is a linear approximation of our discount
factor.

11



Third, the relative risk aversion γ can be estimated by GMM using only
asset returns data, which (unlike consumption) are highly accurate and available
in high frequency. The commonly used Euler equation, for example, does not
contain more information than (3.2a) for estimating γ even if the Euler equation
is true (i.e., the model is correctly specified). This means that the rejection of a
particular model using consumption data should be interpreted as the rejection
of the particular specification of the model rather than the rejection of the asset
pricing implications of the model.

To the best of our knowledge, documenting the robustness of the ‘(−γ)-
th power of market return’ SDF seems to be new. The closest expression we
found in the literature is Rubinstein (1976), in which he obtains the same dis-
count factor, but assuming (i) a representative agent with an additive CRRA
utility function, (ii) single asset, and (iii) independent returns. In testing the
CRRA/CEIS recursive utility model of Example 2, Epstein and Zin (1991) de-
rived the following equation:

E

[

(ct+1/ct)
−

σ(1−γ)
1−σ R

σ−γ

1−σ

m,t+1(R
k
t+1 −Rm,t+1)

∣

∣

∣

∣

Ft

]

= 0, (3.6)

where 1/σ is the elasticity of intertemporal substitution and we have changed
their notation to be compatible with mine. Since (3.2a) obtains by setting σ = 0
in (3.6), (3.2a) is a stronger implication. However, (3.2a) holds with much more
general preferences than CRRA/CEIS recursive utility (in particular, (3.2a) is
true with any σ). Therefore our result is sharper despite the assumption being
weaker.

Dittmar (2002) stresses the importance of a nonlinear pricing kernel, but his
specification is based on a representative agent model and the coefficients are
hard to interpret.

3.3 Empirical Implications

The conditional moment restriction (3.2a) as well as the unconditional moment
restriction

(∀k = 1, . . . ,K) E[R−γ
m (Rk −Rm)] = 0, (3.7)

are testable implications of the partial equilibrium model and also allow us to
estimate the relative risk aversion γ. Using data from 1926-2011, we obtain
RRA estimates around 2 with standard errors around 0.6, and our results are
virtually identical across the choice of test assets and instruments. In addition,
the conditional and unconditional moment restrictions are not rejected. This
is satisfactory since any proposed solution of asset pricing puzzles that “does
not explain the premium for γ < 2.5 . . . is . . . likely to be widely viewed as a
resolution that depends on a high degree of risk aversion” (Lucas, 1994, p. 335).
Complete details are in Section A.

4 General equilibrium

This section deals with absolute pricing in a general equilibrium setting, which
is similar to Cox et al. (1985). We introduce firms and financial assets (assets
that are in zero net supply) and derive asset pricing formulas.
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4.1 Description of the economy

Firms and assets There is a single perishable good which can be consumed
or invested as capital. There are J firms indexed by j ∈ J = {1, . . . , J}.
Production takes time and exhibits constant returns to scale. If firm j employs
capital K at the end of period t, it produces Aj

t+1K at the beginning of period

t + 1, where Aj
t+1 is the (random) productivity as well as the total return of

capital after depreciation. In particular, if an agent invests one unit of capital in
firm j at time t, he will receive Aj

t+1 at the beginning of the next period. We can
think of firms as stochastic saving technologies. Let At+1 = (A1

t+1, . . . , A
J
t+1)

be the vector of productivities.
There are K assets in zero net supply indexed by k ∈ K = {1, . . . ,K},

with dividend Dk
t at period t (which is, of course, a random variable). Letting

P k
t be the price of asset k in period t (determined in equilibrium), the gross

return between periods t and t+1 is defined by Rk
t+1 = (P k

t+1 +Dk
t+1)/P

k
t . Let

Dt = (D1
t , . . . , D

k
t ) be the vector of dividends.

Let (θ, φ) ∈ R
J
+ × R

K be the portfolio of investment and asset holdings, so
θj and φk are the fraction of wealth invested in firm j and asset k. As before,
there might be a portfolio constraint denoted by Πt ⊂ R

J
+ ×R

K at time t. The
portfolio (θ, φ) ∈ Πt defines the return on portfolio

Rt+1(θ, φ) =

J
∑

j=1

Aj
t+1θ

j +

K
∑

k=1

Rk
t+1φ

k. (4.1)

Equilibrium As usual the sequential general equilibrium is defined by agent
optimization and market clearing.

Definition 4.1.
{

(cit, wit, θit, φit)i∈I , (P
k
t )k∈K

}T

t=0
constitute a sequential gen-

eral equilibrium if

1. given asset returns Rk
t+1 = (P k

t+1+Dk
t+1)/P

k
t , the portfolio (θit, φit) solves

max
(θ,φ)∈Πt

1

1− γ
E
[

Rt+1(θ, φ)
1−γ

∣

∣Fit

]

, (4.2)

2. given the portfolio choice, cit solves the optimal consumption problem
(2.2),

3. markets for assets in zero net supply clear, i.e., for each asset k and time
t we have

∑I
i=1 φ

k
it(wit − cit) = 0, and

4. individual wealth evolves according to the budget constraint

wi,t+1 = Rt+1(θit, φit)(wit − cit).

4.2 Absolute asset pricing

Theorem 4.2. Let Θt =
{

θ ∈ R
J
+

∣

∣ (θ, 0) ∈ Πt

}

be the portfolio constraint on
investment with holdings in assets in zero net supply restricted to be zero. Sup-
pose that
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1. agents have information and recursive preferences satisfying Assumptions
1 and 2,

2. for each agent conditional independence (Assumption 3) holds, i.e., the
distributions of the individual state variables Xi,t+1 and the productivi-
ties and dividends (At+1,Dt+1) are independent conditional on private
information Fit,

3. the efficient market hypothesis (Assumption 4) holds,

4. the aggregators (fit) are sufficiently regular so that the optimal consump-
tion always exists,7 and

5. Θt is nonempty, compact, convex, and

E

[

sup
θ∈Θt

Rt+1(θ, 0)
1−γ

∣

∣

∣

∣

Ft

]

< ∞.

Then there exists a symmetric equilibrium with a common portfolio of invest-
ment θ∗t and no trade in zero net supply assets, where

θ∗t ∈ argmax
θ∈Θt

1

1− γ
E
[

Rt+1(θ, 0)
1−γ

∣

∣Ft

]

. (4.3)

Proof. By Theorem 2.1, the optimal portfolio problem (4.3) has a solution
θ∗t . Let cit be the optimal consumption corresponding to θ∗t , which exists
by assumption. Define the price of asset k, P k

t , by iterating (3.2b), where
Rm,t+1 = Rt+1(θ

∗
t , 0). Then by construction the first-order condition for the

maximization (4.2) (with Ft instead of Fit) holds for every asset k ∈ K. By the
definition of θ∗t , the first-order condition for the maximization (4.2) holds for
every investment j ∈ J . Hence the first-order condition holds for every returns
j and k. Since the first-order condition is sufficient for maximum because the
objective function in (4.2) is quasi-concave, (θ∗t , 0) is optimal in Πt. Since the
individual asset holdings is zero by construction, the markets of assets in zero
net supply clear. Therefore we obtain a sequential equilibrium.

Remark. Since

Rt+1(θ, 0) =

J
∑

j=1

Aj
t+1θ

by the definition of returns on portfolio (4.1), the symmetric equilibrium port-
folio θ∗t in (4.3) can be computed without knowing the asset prices. The asset
prices can then be computed using (3.2b) with Rm,t+1 = Rt+1(θ

∗
t , 0).

Combining Theorems 3.3 and 4.2, we obtain an absolute asset pricing for-
mula.

Corollary 4.3. Let everything be as in Theorem 4.2. Then the conclusion of
Theorem 3.3 holds.

7For instance, the upper semi-continuity of the aggregator f(c, v,X) with respect to the
first two arguments on R

2
+

suffices.
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As in Theorem 3.3, the (−γ)-th power of the return on the market portfolio
(θ∗t , 0) is a valid stochastic discount factor. In order to build a general equilib-
rium model (i.e., not a partial equilibrium model), in Theorem 4.2 we assumed
that firms are AK type technologies and ignored inputs other than capital, for
example labor or raw materials. It is not easy to solve for the general equilib-
rium if we make the model more realistic by introducing other inputs. However,
we can obtain the same results even if there are multiple capital types and
firms have nonlinear production functions as long as there is no capital adjust-
ment costs and the production functions are constant-returns-to-scale (see Toda
(2014a) for such an example).

Corollary 4.3 is surprising in that any preference characteristics other than
risk aversion have no asset pricing implications: asset prices are determined by
the technologies and relative risk aversion alone. In particular, the interest rate
is completely pinned down, no matter how patient or impatient agents are. How
could this be true? The intuition is simple: if there is no uncertainty, because
a linear production technology between today and tomorrow determines the
relative price between today and tomorrow, it is obvious that the interest rate
is determined only by the technology. The risk-free rate formula (3.3) is the
generalization to the case with uncertainty.

5 Concluding remarks

This paper can be summarized as follows: (i) we found a simple, yet economi-
cally motivated stochastic discount factor (R−γ

m ) (ii) we theoretically showed the
robustness of this SDF (iii) we tested the SDF and failed to reject it: a relative
risk aversion coefficient of around 2 is consistent with the historical asset returns
data. (Being primarily a theoretical paper, we kept the empirical analysis to
the bare minimum.) Although this SDF has been already known (Rubinstein,
1976), it has not captured much attention.8 Given the robustness of this SDF,
it deserves a serious consideration. Our paper presents further support for the
returns-based approach.

A clear lesson from this paper is the usefulness of AK models. Combined
with homothetic preferences, AK models admit full analytical tractability, even
with many agents with heterogeneous preferences as long as agents have a com-
mon relative risk aversion. This is true even in an incomplete markets setting, as
shown by Toda (2014b), which derives a similar stochastic discount factor. AK
models have investment as a key element and hence are more realistic, unlike
pure exchange models that can only proxy hunter-gatherer economies.

Our main result is that the (−γ)-th power of market return is robust to
model specification so long as agents have common risk aversion. Naturally, our
proposed SDF is not robust to heterogeneity in risk aversion. The value of our
contribution should nonetheless be evident: heterogeneity in dimensions besides
risk aversion allows for a great deal of tractability. Since our results suggest that
the “asset pricing puzzles” are actually “consumption puzzles”, an important
direction for future research is to emphasize heterogeneity in these dimensions.

8Cochrane (2005) mentions only the log utility case (γ = 1) briefly.
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A Testing the asset pricing implications

In this appendix we estimate the relative risk aversion γ and test the conditional
moment restriction (3.2a) as well as the unconditional moment restriction

(∀k = 1, . . . ,K) E[R−γ
m (Rk −Rm)] = 0, (A.1)

which are testable implications of the partial equilibrium model of Section 3.
Using monthly data from 1926 to 1981, Brown and Gibbons (1985) estimated γ
from the unconditional moment condition (A.1) with only one asset (the risk-free
asset) and obtained γ̂ = 1.79, but they did not test the moment condition (since
γ is exactly identified). The focus of this section is in testing both the conditional
and unconditional moment restrictions, not just estimating the relative risk
aversion coefficient. Testing the general equilibrium model of Section 4 (possibly
using firm data or data on national wealth, GDP, and investment) would be
certainly interesting but is beyond the scope of this paper.

A.1 Data

For nominal asset returns data, we use the monthly and quarterly returns of
NYSE value-weighted portfolio (total market as well as portfolios sorted by
size and book-to-market value) for stocks and Treasury Index, both available
from the Center for Research in Security Prices (CRSP). Nominal returns are
converted to real returns by adjusting with the Consumer Price Index (CPI). As
instrumental variables for testing the conditional moment restriction (3.2a), we
consider past annual dividend yields because they are known to predict returns
(Fama and French, 1988). The data on annual dividend yields is taken from
Robert Shiller’s website.9 More specifically, we consider two sets of test assets:

S10 30 day T-bill rate and 10 portfolios of stocks sorted by size, and

FF25 30 day T-bill rate and Fama-French 25 portfolios of stocks sorted by size
and book-to-market value.

The sample period is January 1926–December 2011 for the 10 stock size port-
folios and July 1931–December 2011 for the Fama-French 25 portfolios because
in the latter case some returns data is unavailable for 1926–1931.

We assume that the gross return on any agent’s wealth portfolio is propor-
tional to the stock market return. Of course we are aware that the stock market
is not the portfolio of total wealth (Roll, 1977; Stambaugh, 1982), but this is
not a bad first approximation. We can justify this assumption as follows. As-
sets are priced by asset market participants, who are typically wealthy and hold
a large number of stock shares. Therefore it is reasonable to expect that the
stock market return is a proxy of the total return on the wealth portfolio of
asset market participants.

A.2 Identification

Let Rt = (R1
t , . . . , R

K
t ) be the vector of gross asset returns, zt ∈ R

L be the
vector of instruments (a constant (zt = 1) for testing the unconditional moment

9http://www.econ.yale.edu/~shiller/data.htm
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restriction (A.1) and the vector of a constant and past dividend yields for testing
the conditional moment restriction (3.2a)),

ut(γ) = R−γ
m,t(Rt −Rm,t1K)⊗ zt ∈ R

KL

be the pricing error (“⊗” denotes the Kronecker product), and

gT (γ) =
1

T

T
∑

t=1

ut(γ)

be its sample average. Let ∇ut(γ),∇gT (γ) be the derivative of ut, gT with
respect to γ, which are also KL× 1 vectors.

It has been recognized that weak identification can be a source of poor perfor-
mance of the GMM estimator, especially in nonlinear models (Stock and Wright,
2000). We follow Wright (2003) for testing the lack of identification. In order to
identify γ0 (the true parameter value), E[∇ut(γ0)] must have full column rank,
which is equivalent to E[∇ut(γ0)] 6= 0 since ∇ut is a vector, not a matrix. For
a fixed γ, under the null that E[∇ut(γ)] = 0, the test statistic

T∇gT (γ)
′Ĉ(γ)−1∇gT (γ)

is asymptotically χ2(KL) distributed, where Ĉ(γ) is a consistent estimator of
the long run variance of∇ut(γ).

10 For Ĉ(γ) we take the Newey and West (1987)
heteroskedasticity and autocorrelation consistent covariance matrix with trun-
cation parameter m =

⌊

T 1/3
⌋

. Table 1 shows the range of γ for which the lack
of identification is not rejected at significance level 0.05 for each combination
of test assets and number of lagged dividend yields used as instrument. Ac-
cording to Table 1, γ may be unidentified if either (i) we use quarterly data,
(ii) we use more than one year of past lagged dividend yields as instrument,
or (iii) γ /∈ [−15, 5]. Therefore in what follows we only use monthly data with
either no lagged dividend yields (unconditional model) or the previous year’s
dividend yield (conditional model), and assume that the true parameter value
γ0 is in the range [−15, 5] and estimate γ over this interval.

Table 1. Range of γ for which lack of identification is not rejected. # lags indicates the number

of lagged dividend yields used as instrument.

Test assets 10 size portfolios (S10) Fama-French 25 (FF25)
Period 1926–2011 1931–2011
Frequency monthly quarterly monthly quarterly
# lags
0 [−26.5, 13.9] [−33.6, 5.0] [−34.2, 12.2] ∅
1 [−37.6, 16.0] [−48.3, 1.4] [−14.8, 5.1] ∅
2 [−27.7, 9.0] ∅ ∅ ∅

10In Wright (2003) the test statistic is more complicated because he develops a general
theory for any number of parameters (one has to perform a minimization over all matrices of
rank less than the number of parameters). Since in our model there is only one parameter,
this step is unnecessary.
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A.3 Estimation

Since weak identification does not seem to be an issue at least for monthly data
with no or one year of lagged dividend yields and γ ∈ [−15, 5], we obtain the
estimate γ̂ by minimizing the continuously updated optimal GMM criterion

JT (γ) = TgT (γ)
′Ω̂(γ)−1gT (γ),

where Ω̂(γ) is the Newey-West HAC estimator of the long run variance of ut(γ).
Table 2 presents the estimate γ̂ of the relative risk aversion (RRA) coefficient,

its standard error, the number of periods and moment restrictions, and the P
value of the J-test for overidentifying restrictions with monthly data. The results
are virtually identical across the choice of test assets (10 stock size portfolios
or Fama-French 25 portfolios) and instruments (no or previous year’s dividend
yield). The RRA estimates are around 2 with standard errors around 0.6 for
all specifications. Therefore the log-utility CAPM (γ = 1) is not rejected. The
moment restriction is not rejected except the unconditional model with FF25,
which implies that there is no equity premium puzzle or risk-free rate puzzle.
This is satisfactory since any proposed solution of asset pricing puzzles that
“does not explain the premium for γ < 2.5 . . . is . . . likely to be widely viewed
as a resolution that depends on a high degree of risk aversion” (Lucas, 1994,
p. 335). Our RRA estimate of around 2 is also in line with estimates using the
Consumption Expenditure Survey (CEX). For example, Brav et al. (2002) and
Vissing-Jørgensen (2002) report RRA of 3–4 and 2.5–3.3, respectively.11

Table 2. GMM estimation results of E[R−γ
m (Rk − Rm)] = 0.

Test assets 10 size portfolios (S10) Fama-French 25 (FF25)
Period 1926–2011 1931–2011
Conditional? no yes no yes
RRA, γ̂ 2.0 2.15 2.05 1.55
S.E. 0.65 0.64 0.58 0.52
T 1032 1032 966 966
# moments 11 22 26 52
P (J test) 0.123 0.125 0.0015 0.106
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