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Abstract

This paper uses a general equilibrium model with collateralized borrowing to show

that increases in risk can have ambiguous effects on leverage, loan margins, loan

amounts, and asset prices. Increasing risk about future payoffs and endowments can

lead to riskier loans with larger balances and lower spreads even when lenders are risk-

averse and borrowers can default. As well, increasing the covariance of either agents’

endowments with the asset payoff can have ambiguous consequences for equilibrium.

Though the effects are ambiguous, key determinants of how increased risk translate

into changes in prices and allocations are the correlation of agents’ endowments with

the asset payoff, agents’ risk aversion, and the location of increased risk in the distribu-

tion of future states. Some restricted changes in the borrower’s or lender’s endowments

can have unambiguous but asymmetric effects on equilibrium.
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1 Introduction

Economists have observed that leverage, at the security level and at the institutional level,

is pro-cyclical and that the VIX, a common measure of market volatility is counter-cyclical.2

Counter-cyclical volatility is commonly understood as the explanation for counter-cyclical

margins for collateralized loans: agents can borrow less against an asset when economic

outcomes become more risky. In fact, it is almost taken as axiomatic that asset prices,

loan levels, and collateral levels fall when risk increases. This paper asks, how tight is the

theoretical link between increased risk and margins, asset prices, and leverage?

This paper provides a simple framework with two agents and collateralized borrowing

to demonstrate that risk ambiguously affects equilibrium margins, leverage, loan levels, and

asset prices. I consider two types or risk: aggregate risk and endowment risk. Aggregate

risk refers to changes in the distribution of future states, which affects the distribution of

the asset payoff as well as agents’ endowments. Endowment risk refers to changing the the

distribution of agents’ endowments while fixing the asset payoff and distribution. Increasing

endowment risk has the effect of increasing the covariance between endowments and the

asset payoff. I characterize how equilibrium margins, leverage, loan levels, and asset prices

change in response to these increases in risk.

The main result of this paper is that increases in risk of either type can increase or

decrease margins, prices, and loan amounts. However, some precise predictions can be made

conditional on knowing the risk aversion of agents, the correlation of future endowments with

the asset, and the location of risk in the distribution. In some instances results depend on

the expected default rate for collateralized loans. These results imply that we may observe

very different margin responses across markets (for example, comparing investment grade

versus subprime mortgages).

There are two intuitions for these results. First, when an asset is used for collateral, the

asset’s payoff is “split” between the borrower and lender: the borrower receives the asset when

there is no default, and the lender receives the asset when the borrower defaults. Thus, each

2see, e.g., Adrian and Shin (2010, 2011)
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agent “prices” the asset but in different states. Second, effects will differ depending on the

concavity of agents’ pricing kernels in the states in which they price the risky asset and debt

contracts. Agents’ pricing kernels are determined by the covariance of their endowments with

the asset and their degrees of risk aversion. Furthermore, because agents’ pricing kernels are

endogenous, increases in risk of either type can endogenously affect how agents price assets

and contracts in equilibrium. Thus, the results stem from incorporating information about

agents’ stochastic discount factors, and not simply from exploiting the “threshold property”

of equilibria with debt contracts.

One of the key results is that increasing the covariance of endowments with the asset

payoff can have ambiguous effects on equilibrium loan levels, margins, and asset prices. This

is perhaps surprising because the insight from the C-CAPM literature is that a higher co-

variance should decrease asset prices. The insight from this model is that with collateralized

borrowing, different agents price assets in different states, and so increasing covariance need

not necessarily affect asset prices in the usual way. In other words, increase aggregate risk

or increased covariance, while having unambiguous implications in standard models, have

ambiguous implications in models with collateralized borrowing.

Many papers have tried to endogenize this link in general equilibrium models, and some

restrictive models deliver counter-cyclical leverage. Because it is generally difficult to prove

results in general equilibrium models with incomplete markets and collateral, the literature

has typically considered two types of simplifications: binomial economies, or risk-neutral

agents with belief disagreements. With binomial economies, all equilibrium traded con-

tracts are essentially default-free, which makes it easy to characterize equilibrium. In this

direction, Fostel and Geanakoplos (2012, 2013) study how equilibrium leverage and margins

depend on risk about the future. These papers build off of Geanakoplos (1997, 2003, 2010),

whose work developed the general equilibrium analysis of collateralized lending and asset

prices. These papers provide a theoretical framework in which leverage falls when risk about

asset payoffs increases.3 When “scary-bad news” hits the economy, leverage falls as tomor-

3Fostel and Geanakoplos (2012) prove the link between risk and leverage in a special class of binomial
economies; however, Fostel and Geanakoplos (2013) show that this link is not general, and in binomial
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row’s bad payoff, which is the amount borrowers promise to repay, is lower. These models

produce countercyclical margins by restricting payoffs be binary. However, this restriction

prohibits analyzing what happens to default rates and equilibrium contracts because loans

are always default free. While we do not need default to understand how risk ambiguously

effects margins and leverage, once default arises, precise (and interesting) predications can

be established. One may wish to relax the no-default restriction for other reasons as well.

Other papers, such as Simsek (2013) and Geerolf (2014) consider many states with risk-

neutral traders. In Simsek (2013), trade arises because agents disagree about the distribution

of the asset’s payoff, and the key result is that the nature of belief disagreements matter more

than just the level of disagreements. What he calls “upside” optimism leads to higher leverage

and asset prices, while “downside” optimism is disciplined by tight margin requirements

and therefore lower leverage and prices. He calls this result the “asymmetric disciplining

of optimism.” Geerolf (2014) uses a continuum of risk-neutral traders with heterogeneous

“point-mass” beliefs to characterize the distribution of margins and contracts traded in

equilibrium.

In my model both agents hold common, objective beliefs about the future, but agents may

differ in their preference toward risk or in their distribution of future endowments; hence,

agents trade because future marginal utilities differ. My paper shows how increased objective

aggregate risk, affecting payoffs and endowments for both agents, affects equilibrium.4 I

also am able to consider the equilibrium consequences of changing the covariance between

endowments and the asset, something that would be irrelevant in a model with risk-neutral

agents.

My paper also relates to a large theoretical literature that concerns the effect of borrowing

constraints on asset prices, such as Kiyotaki and Moore (1997) and Fostel and Geanakop-

los (2008). Many papers with financial frictions directly assume the link between risk and

margins in their models (see, e.g., Brunnermeier and Pedersen (2009) and Adrian and Bo-

economies what seems to matter for leverage is tail risk and not volatility.
4An implication of this analysis is that some of the asset-pricing results in Simsek (2013) are not robust

to changing the lenders’ risk aversion, taking as given the effects on debt riskiness which do follow from his
analysis.
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yarchenko (2012)). In Gorton and Ordoñez (2014), a deleveraging looks like a reduction in

the number of available collateral in the economy, which induces an increase in cross sec-

tional dispersion. The model produces a correlation between risk and deleveraging, but the

causality is different from what I propose in this paper. Toda (2014) considers a general

equilibrium model with collateralized borrowing and shows that in his setup agents always

use maximum leverage. Araujo et al. (2012) study the effect of default and collateral on risk

sharing. Other papers that study repo, collateral, and borrow constraints include Gorton

and Metrick (2012) and Gârleanu and Pedersen (2011).

2 The Model

The economy has two periods, t = {0, 1}. There is a continuum of possible states of nature

in period 1, denoted by s ∈ S = [0, s̄]. Denote the probability distribution function by f(s),

which is positive and continuous over S, and denote the cumulative distribution by F (s).

There is a single consumption good X, which is perishable, and a risky asset Y , which

produces dividends of the consumption good at time 1 and is in unit supply. In state s the

asset pays s, so that the state corresponds to the asset payoff.5 The risky asset Y has price

p in period 0.

There are two types of agents, A and B, and there is a measure 1 of each type of agent.

In period 0 agents are endowed with eA0 and eB0 units of the consumption good X. As well,

agent A is endowed with one unit of the risky asset Y and B has no endowment of Y , denoted

by yA0 = 1, yB0 = 0. Allocating endowments in this way simplifies the analysis, but it is not

critical. What is important is that agent B does not have the full asset. In period 1 agents

are endowed with eAs and eBs units of X in state s.6

The von-Neumann-Morgenstern expected utility to agent i over consumption of X is

given by

U i(x0, xs) = x0 + E[ui(xs)]. (1)

5The risky asset is a Lucas tree.
6Equivalently, we can let eis for i = A,B be the certainty-equivalent of the distribution of endowments in

state s.
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Both agents have linear utility over period-0 consumption. Over period-1 consumption,

agents have C2 utility functions that are increasing and (weakly) risk-averse; u′i(x) > 0, and

u′′i (x) ≤ 0.

Financial Contracts and Collateral

The financial contracts available for agents to trade at time 0 are collateralized debt contracts.

Without loss of generality, the set of contracts is restricted to a set containing contracts using

exactly one unit of Y as collateral. The set of contracts is denoted by J and a contract is

defined by the promised face value j ∈ J to be repaid in period 1.

Because collateral is the only enforcement mechanism, agents default (repay less than j)

whenever the value of the collateral is less than the value of the promise. Therefore, because

the payoff of Y is s in state s, the actual payoff to contract j in state s is min{j, s}.

The sale of a contract corresponds to borrowing the sale price, and the purchase of a

promise is tantamount to lending the price in return for the promise. I denote the sale of

promise j by ϕj > 0 (borrowing), and the purchase of the same contract by θj > 0 (lending).

The significance of the collateral is that the borrower must own the collateral at time 0 in

order to make the promise j. The sale of ϕj > 0 units of contract type j ∈ J requires the

ownership of ϕj units of Y , whereas the purchase of θj number of contracts does not require

any ownership of Y .

Each contract j ∈ J trades for a price q(j). An investor can borrow q(j) today by selling

contract j in exchange for a promise of j tomorrow, provided the investor owns the collateral.

Budget Constraint

Given asset and contract prices at time 0, (p, (q(j))j∈J), each agent i chooses consumption

of X in each state, denoted by x0 ≥ 0 and xs ≥ 0, positions in the risky asset Y , denoted by

y ≥ 0, and contract trades θj ≥ 0, ϕj ≥ 0 in state 0, in order to maximize utility (1) subject
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to the budget set defined by

Bi(p, (q(j))j∈J) =
{

(x0, y, θ, ϕ, xs)} ∈ R+ ×R+ ×RJ
+ ×RJ

+ ×R+ :

pyi + xi0 +

∫
j∈J

θijq(j)dj ≤ ei0 + pyi0 +

∫
j∈J

ϕijq(j)dj. (2)

xis +

∫
j∈J

ϕij min{j, s}dj ≤ eis + yis+

∫
j∈J

θij min{j, s}dj, (3)∫
j∈J

ϕijdj ≤ yi
}
. (4)

The budget set Bi(p, (q(j))j∈J) = {(x0, y, θ, ϕ, xs)}, is the set of consumption decisions and

portfolios that satisfy budget constraints in period 0 and 1 and the collateral constraint in

period 0. Equation (2) is the budget constraint for agent i in period 0, equation (3) is the

state-s budget constraint, and equation (4) is the collateral constraint, which applies only

to borrowing.

At time 0 expenditures on the assets purchased (or sold) can be at most equal to the

money borrowed selling contracts using the assets as collateral. The assets put up as col-

lateral must indeed be owned. In the final states, consumption must equal dividends of the

assets held minus debt repayment. Notice that short selling of assets is not possible.

Agents choose portfolios in Bi(p, (q(j))j∈J) to maximize expected utility. In other words,

the problem for each agent is to solve

max x0 + E[ui(xs)]

s.t. (x0, y, θ, ϕ, xs) ∈ Bi(p, (q(j))j∈J)

Equilibrium

A Competitive Collateral Equilibrium in this economy is a price of asset Y, contract prices,

asset purchases, contract trade and consumption decisions by all the agents such that markets

for the consumption good in all states clear, assets and promises clear in equilibrium at time

0, and agents optimize their utility given their budget sets.
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Definition 1 (Competitive Collateral Equilibrium (CE)). A Competitive Collateral

Equilibrium is a collection of prices (p, (q(j))j∈J) and allocations (xi0, y
i, θi, ϕi, xis)i∈{A,B} such

that agents’ positions solve their problems, and markets clear:

yA + yB = 1,

ϕAj + ϕBj = θAj + θBj ∀j ∈ J,

xA0 + xB0 = eA0 + eB0 ,

xAs + xBs = eAs + eBs + s ∀s ∈ S.

(xi0, y
i, θi, ϕi, xis) ∈ Bi(p, (q(j))j∈J),∀i

(x0, y, θ, ϕ, xs) ∈ Bi(p, (q(j))j∈J)⇒ U i(x) ≤ U i(xi),∀i

3 Characterizing Equilibrium

Because the purpose of the model is to study collateralized borrowing, I restrict preferences

and endowments so that agent B leverages her endowment to buy the risky asset on margin

using risky debt (default must be possible). The following conditions are sufficient for equi-

librium to take this form. The first ensures that agent B values consumption in high-payoff

states more than agent A does, and the second condition ensures that agent B is not very

wealthy. For expositional ease, the first condition is stronger than necessary (but also less

technical than the weaker condition required, which is stated in the Appendix).

Condition 1 (Marginal Utilities): Agents’ marginal utilities satisfy the following:

u′A(eAs ) is stricly decreasing for s ∈ S, (C1a)

u′B(eBs + s) is weakly increasing for s ∈ S, (C1b)

∃s∗ ∈ (0, s̄) s.t.
u′B(eBs∗ + s∗)

u′A(eAs∗)
= 1. (C1c)

This set of conditions captures two key features: differences in risk aversion, and/or dif-
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ferences in covariances between endowments and the asset.7 Condition (C1c) implies that

B is the natural buyer of the asset because she values consumption in high-payoff states

comparatively more than A does.8 Notice that conditions (C1a) and (C1b) imply

u′′A(eAs )
deAs
ds

< 0, and u′′B(eBs + s)

(
deBs
ds

+ 1

)
≥ 0. (5)

Agent A is risk-averse and her endowments increase with the asset payoff. Agent B can

either be risk-averse with endowments that decrease with the asset payoff, or she can be

risk-neutral without any condition on her endowments. As stated earlier, these conditions

are stronger than necessary. What is required is some combination of either (1) for agent A

to be sufficiently more risk-averse than agent B or (2) for agents to have the same preferences

but for their endowments to covary differently. This insight, of course, follows directly from

the asset pricing literature, which plays a central role in the Capital Asset Pricing Model as

well as its more modern variants. Naturally, combinations of differences in risk aversion and

endowment covariances will satisfy Condition 1.

Condition 2 (Endowments): Given s∗ defined above,

eB0 <
E
[
u′A(eAs + s)|s ≥ s∗

]
E [u′B(eBs )|s ≥ s∗]

E[u′B(eBs + s) max(s− s∗, 0)]. (C2)

This condition ensures that agent B is not so wealthy that she can buy the asset outright,

but she must use all of her wealth with risky debt to buy the asset. As a result, the collateral

constraint binds for B.9

Given these conditions, in equilibrium agents trade a single contract j = γ. Agent A sells

the asset and buys contract γ, while agent B uses all her wealth (does not consume in period

7Notice that because agents are weakly risk-averse, condition (C1a) implies that u′A(eAs +s) is also strictly
decreasing, and condition (C1b) implies that u′B(eBs ) is weakly increasing.

8By conditions (C1a) and (C1b), this ratio is strictly greater than 1 for any s > s∗, particularly if agent
B consumes less than eBs + s and if A consumes more than eAs , which will be true in equilibrium.

9If (C2) did not hold, then agent B would be sufficiently wealthy so that her leveraged return would
equal one and the collateral constraint would not bind. In this case, equilibrium traded contract and asset
price would be determined by setting the leveraged return in equation (8) equal to one, which, given the
quasi-linear preferences, is the marginal utility of consumption at time 0 when consumption is non-negative.
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0) to buy the asset on margin by selling contract γ. A single contract is traded in equilibrium

because marginal utilities differ uniformly across states (Condition 1): if any contract j 6= γ

were priced so that one agent would be willing to trade it, the other agent would not be

willing to. Since agents have linear utility over x0, the marginal utility of wealth for agent

A is 1, and the marginal utility of wealth for agent B will be greater than 1 (equal to her

leveraged return).

Two conditions determine the asset price p and the equilibrium contract γ: market clear-

ing for the asset, and an optimality condition for the contract. The rest of this section

presents the key equilibrium equations. The Appendix contains the full derivation of equi-

librium conditions.10 Given an equilibrium contract γ and the equilibrium form described

above, agents’ consumptions are given by xAs = eAs + min(s, γ), xBs = eBs + max(s− γ, 0). For

notational ease, define the stochastic discount factors by

µAs = u′A(xAs ), µBs = u′B(xBs ).

Naturally, these marginal utilities are endogenous and depend on γ.

Optimality Conditions

Since agent A consumes at time 0 and has linear utility over x0, agent A has marginal utility

of wealth equal to one. Therefore, if agent A buys contract j

q(j) =

∫ j

0

sµAs dF (s) + j

∫ s̄

j

µAs dF (s) = E[µAs min(s, j)], (6)

which is a standard asset-pricing equation using first-order conditions.11

Next, let RB(j) be the leveraged return agent B gets from purchasing the risky asset

10Because agents marginal utilities in each state are endogenous—they depend on the endogenous portfolio
allocations—solving for the competitive equilibrium allocation is not equivalent to solving a bargaining
problem or a principal-agent economy in which one agent prices contracts and the other chooses which
contract to trade. This result was formally proved in earlier versions of the paper.

11Notice that the assumption of linear preferences of x0 is not critical but simplifies the results. By
assuming linearity we essentially rule out any income effects for asset pricing. One could relax this restriction
and replace it with bounds on e0 to achieve the same results throughout the paper.
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and selling contract j. The expected marginal return delivered from an asset bought against

contract j is
∫ s̄
j
µBs (s − j)dF (s). (The asset bought on margin delivers s − j, and only in

states s ≥ j, and these payments are valued using agent B’s marginal utility.) Because the

downpayment, or margin, associated with buying the asset against contract j is p− q(j), the

leveraged return is thus

RB(j) =

∫ s̄
j
µBs (s− j)dF (s)

p− q(j)
=

E[µBs max(s− j, 0)]

p− q(j)
. (7)

Each contract delivers a different leveraged return. Making a larger promise (using a

larger j) allows agent B to borrow more against each unit of the asset, since q(j) is increasing

in j, and thus B can get more leverage and buy more assets. However, a larger promise means

that agent B gets a smaller payment whenever the asset pays off s > j—with a higher j,

agent B receives a net dividend in fewer states and receives a smaller payment in those states.

There is a unique contract j = γ that maximizes the leveraged return for agent B.

The intuition is that the contract prices q(j) are priced using agent A’s marginal utilities,

while agent B calculates the expected marginal return using her own marginal utilities. By

Condition 1, the ratio of marginal utilities is increasing, which means that increasing j

beyond a certain point does not decrease the downpayment fast enough to make up for the

foregone return. The contract γ exactly balances making the largest promise possible with

receiving the largest expected value of payments from the asset.

The equilibrium traded contract satisfies

RB(γ)E
[
µAs |s ≥ γ

]
= E

[
µBs |s ≥ γ

]
=⇒ RB(γ) =

∫ s̄
γ
µBs dF (s)∫ s̄

γ
µAs dF (s)

. (8)

The intuition for equation (8) is as follows. If agent B promises an additional ε, agent A’s

utility improves by µAs in state s ≥ γ for a total increase of
∫ s̄
γ
µAs dF (s). As a result, agent

B can increase her borrowing by this amount, since agent A is willing to give an additional∫ s̄
γ
µAs dF (s) in period-0 for the larger promise. Agent B can leverage that amount to receive

a marginal return of RB(γ). Thus, the total benefit to agent B is RB(γ)
∫ s̄
γ
µAs dF (s) =

11



RB(γ)E
[
µAs |s ≥ γ

]
(1− F (γ)) . The marginal cost to agent B of promising an additional ε

is the lost utility in states s ≥ γ, i.e.,
∫ s̄
γ
µBs dF (s) =

∫ s̄
γ
µBs dF (s) = E

[
µBs |s ≥ γ

]
(1− F (γ)) .

Combining these conditions so that marginal cost equals marginal benefit yields the result.

Given Conditions 1 and 2, γ > s∗ and therefore the leveraged return RB(γ) > 1, and thus

the collateral constraint binds.12

An alternative interpretation is that agents are effectively trading upper and lower

“tranches” corresponding to the asset payoffs above and below γ, where the collateral con-

straint implicitly defines the positions agents can take in the upper tranche. Thus, the

intuition is that the numerator is the valuation of the lower tranche sold by the borrower to

the lender, and the denominator is the valuation of the upper tranche sold by the lender to

the borrower. The previous intuition goes through: the return B gets from buying an up

tranche by selling a down tranche satisfies equation (8) for the optimal tranches.

We can implicitly solve for the asset price that satisfies equation (8) for any given contract

j. Using the definition of Rb(j) and solving for p defines:

popt(j)− q(j) =

∫ s̄
j
µAs dF (s)∫ s̄

j
µBs dF (s)

∫ s̄

j

µBs (s− j)dF (s) + q(j). (9)

Equation (9) defines the asset price p that makes contract j the optimal contract. This is

the first equilibrium condition.

Market Clearing

The second equilibrium condition is that the asset market clears. Since agent B does not

consume in period 0,13 we can use her budget constraint together with the collateral con-

straint to define her asset holdings as a function of the debt price and the asset price. Using

the equation for the debt price, market clearing requires

pmc(j) = eB0 + E[µAs min(s, j)]. (10)

12This optimality condition has an analog in Simsek (2013), but the difference is that the integrals are
over endogenous values.

13Because her leveraged return is greater than the marginal utility of consumption in period 0.
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Agent B will purchase the one risky asset, which costs p, using her wealth eB0 and proceeds

from borrowing. Since there is one asset to use as collateral, and since the collateral constraint

binds, she will borrow one unit of contract j, yielding q(j) to spend in period 0.

In fact, the interpretation that agents trade upside and downside tranches is precisely why

B can buy the entire asset even though she is constrained and agents’ marginal utilities are

endogenous. By Condition 1, B always values consumption in high-payoff states relatively

more than A does. By buying the asset and making a very large promise (trading a high

γ debt contract), B effectively buys the asset only in upside states, while A buys the asset

in downside states (via default). Thus, B’s low wealth and collateral constraint affects the

states in which she buys the asset rather than the quantity of assets she buys.

The equilibrium price p clears the asset market for the optimally chosen debt contract

j, which occurs when pmc(j) = popt(j) (satisfying (9) and (10)). Thus we can define z(j) =

popt(j)− pmc(j), which is analogous to excess demand:

z(j) =

∫ s̄
j
µAs dF (s)∫ s̄

j
µBs dF (s)

∫ s̄

j

µBs (s− j)dF (s)− eB0 . (11)

By Conditions 1 and 2, z(j) is strictly decreasing and has a unique zero in (s∗, s̄).

Equilibrium Margins and Leverage

The margin is the fraction of the asset price that must be paid for using wealth—it is the

downpayment. Leverage is the inverse of the margin—it is how many units of an asset each

unit of wealth buys. Denote the margin associated with debt contract γ as mγ = p−q(γ)
p

.

Leverage for contract γ is Lγ = 1/mγ. Since in equilibrium p = q(γ) + eB0 , we know that

mγ =
eB0
p

and Lγ = p
eB0
. That is leverage increases with asset prices, and margins decrease.

Since p = q(γ) + eB0 , the asset price, margin, and leverage are entirely determined by the

debt price q(γ).
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4 Increased Risk

This section considers two sources of risk: aggregate risk, and covariance between endow-

ments and the asset. The first considers changes in the distribution of aggregate states f(s),

which affects the distribution of both the asset payoff and of agents’ endowments. Second, I

consider changes in the distribution of an agent’s endowments in period 1, which determines

the covariance between an agent’s endowments and the asset payoff.

I use a mean-preserving spread (MPS) to denote increased risk. As is well-known, if Z is

a random variable and Z̃ is an MPS of Z, then Z̃ can be defined as Z plus a mean-zero noise

term, and this is a stronger condition than an increase in variance. Thus a mean-preserving

spread is a desirable criterion for measuring risk.14 I model an increase in aggregate risk as

an MPS of f(s), and I model an increase in endowment risk as an MPS of the distribution

of future endowments over s. An MPS of endowments implies an increase in the covariance

between endowments and the asset payoff.

There are three classes of results that all imply ambiguous effects of increases in risk,

either aggregate or endowment. First, even when changes in risk do not change the equilib-

rium debt contract γ (or holding γ fixed as a partial-equilibrium exercise), the effect on asset

prices depends on the concavity of agents’ pricing kernels and the location of the MPS. The

concavity (or convexity) of each agent’s pricing kernel depends on the interaction between

risk aversion and the distribution of endowments. However, because agents’ preferences and

endowments can in general take any shape (subject to Condition 1), there is no unconditional

prediction about how risk affects prices and margins in equilibrium.

Second, changes in risk can ambiguously affect the equilibrium contract γ: the face value

of the equilibrium debt contract γ can either increase or decrease as a result of increases

in risk. This result is reminiscent of the result in Simsek (2013) that margins change in

14Formally, a distribution F̃ differs from F by a mean-preserving spread if

1.
∫
zdF̃ (z) =

∫
zdF (z)

2.
∫ y

0
F̃ (z)dz ≥

∫ y

0
F (z)dz

That is, ε = f̃ − f is a mean-preserving spread.
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response to upside or downside belief disagreements (that the type of disagreement matters

more than the level)—and there is a close correspondence with my results concerning changes

in agents’ endowment risk. Nonetheless, the result that increases in aggregate risk, which

is a fundamental affecting both agents’ valuations, is not an immediate implication of the

result about changing types of belief disagreements.

Third, given how the equilibrium debt contract changes, the effect on how pricing kernels

change in equilibrium depends fundamentally on agent’s degree of risk aversion. Thus, even

for a precise prediction in how the equilibrium contract γ changes, the effects on prices and

margins will depend on the lender’s risk aversion in particular.

4.1 Aggregate Risk

I first state the results for aggregate risk, modifying f(s), and then revisit endowment

risk/covariance later this section.

Expectations and Pricing Kernels

The first result is that even when changes in risk do not change the equilibrium debt contract

γ, the effect on asset prices depends on the concavity of agents’ pricing kernels (their marginal

utilities in each state, which are influenced by risk aversion and endowments). A change in

the distribution f(s) will affect debt prices for all contracts. Define Qγ(s) = µAs min(s, γ).

Then the price of debt contract γ can be written as q(γ) = E[Qγ(s)]. That is, Qγ(s) is the

kernel used to price the debt payments, agent A’s marginal utility times the debt payment.

If Qγ(s) is concave, then the expectation will decrease after applying an MPS; it if is convex

it will increase after an MPS. Generally, we cannot say anything about this effect because

Qγ(s) can take any shape, and the function may be concave or convex over different regions.

However, to fix ideas, consider when agent A has constant relative risk aversion (CRRA)

with uA(x) = x1−σA
1−σA

, and let agent A’s endowment be given by eAs = κs with κ > 0 so that
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the endowment and the asset is positively correlated. Then, we have

sµAs = κ−σAs1−σA , γµAs = κ−σAs−σAγ

The concavity/convexity of Qγ(s) is determined by σA. For s < γ, Qγ(s) is constant for

σA = 1; Qγ(s) is increasing and concave for σA < 1; and Qγ(s) is decreasing and convex for

σA > 1. For s > γ, Qγ(s) is decreasing and convex always; there is a concave kink at γ.

As a result, the location of aggregate risk—whether it affects states s < γ (“downside

risk”) or affects states s > γ (“upside risk”)—matters for how the price of debt, and thus the

asset price, changes. From equation (11), any change in f(s) isolated to states s < γ does

not change which contract is traded in equilibrium. Thus we can state clearly downside risk

does not change γ, and the change in the debt and asset price depend systematically on the

risk aversion of agent A, the lender (higher debt prices, i.e., more lending, when σA > 1, and

lower debt prices, i.e., less lending, when σA < 1). This is stated formally in Proposition 6

in the Appendix.

This may be surprising. When the risk only concerns states when default occurs, and

in which the lender is effectively holding the asset, more risk aversion leads to more lending

and a higher asset price. However, this follows immediately from the standard asset-pricing

equation using marginal utility and probabilities to discount asset payments. This effect

on asset prices, which I’ll call the expectation effect, arises from taking expectations of the

pricing kernel using a different distribution.

Consider instead an MPS that affects states s > γ, or “upside risk.” This change has

potentially two effects. First, since Qγ(s) is convex right of γ (for any degree of risk aversion)

the expectation effect will tend to increase the price of debt—holding the face value of the

equilibrium contract fixed. Second, the MPS will generally affect the equilibrium contract.

From equation (11), the equilibrium traded contract depends on E
[
µAs |s ≥ γ

]
and also on

E[µBs (s−γ)|s≥γ]
E[µBs |s≥γ]

[1− F (γ)].

One possibility is that B is risk-neutral, implying µBs is constant. In this case z(j)

would increase after an MPS because E
[
µAs |s ≥ γ

]
, which is convex, would increase. Thus,
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increased upside risk in the good tail would increase γ and tend to increase q(γ) for two

reasons: q(j) is increasing in j and γ increases, and Qγ(s) is convex in the region of the MPS

(there is a third effect, which is that µAs will endogenously change with γ, which we discuss

later in this section). Only the states with full debt repayment are affected—but in these

states, the asset ends up owned by the risk-neutral agent. The asset price increases because

B can borrow more against the asset. Agent A is willing to lend more no matter the degree

of risk aversion.

More generally, though, agent B’s pricing kernel will have important consequences for

equilibrium. When, for example, agent B’s endowment is negatively correlated with the

asset payoff so that B’s marginal utilities are increasing, µBs (s − γ) is likely to be convex.

(Furthermore, differentiating shows that µBs (s − γ) is more convex than µBs .) Thus, there

would be an additional kick increasing borrowing rates because agent B would have a higher

expected marginal return after an MPS. However, the first-order effect is the expectation

effect coming from the lender’s marginal utility.

Changing the Equilibrium Contract

The second result is that γ, the face value of the equilibrium traded contract, can ei-

ther increase or decrease when the distribution is modified by an MPS. It is convenient

to parametrize the function z(j; f) by the payoff distribution f(s). Let the distribution f̃(s)

differ from f(s) by an MPS. Denote the equilibrium traded contracts in each case respectively

by γ̃ and γ. In other words, z(γ; f) = 0 and z(γ̃; f̃) = 0.

Proposition 1. There exists a distribution f̃(s) which is an MPS of f(s) such that γ̃ > γ,

and there exists f̃(s) such that γ̃ < γ. In other words, one can find an MPS to either increase

or decrease the equilibrium contract.

The proof is in Appendix B. The intuition is that an MPS can shift mass to either

side of γ and can do so in way that increases or decreases the value of the “upper tranche”

associated with buying the asset on margin. Thus, the default level of the equilibrium traded
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contract can either increase or decrease when the asset’s risk increases. Notice that when γ

increases, agents are making bigger promises.15

Changing the Pricing Kernel

Knowing what happens to the equilibrium γ is only one part of knowing what happens to

equilibrium levels of borrowing and asset prices. Pricing kernels change when the face value

of the equilibrium traded contract changes, and the effect depends fundamentally on agents’

degrees of risk aversion. When γ changes in equilibrium, there is an additional effect on asset

prices arising from what I call the pricing kernel effect as marginal utilities endogenously

change because agents hold different portfolios. When risk changes the equilibrium traded

contract, agents’ future consumption changes, and thus how they value payments in each

state changes. In particular, this implies that in equilibrium, the same contract may have

a different value because the marginal utility of consumption in each state will potentially

change.

To see the pricing kernel effect, consider

dq(γ)

dγ
=

∫ s̄

γ

u′A(xs)dF (s) +

∫ s̄

γ

γu′′A(xs)
dxs
dγ

dF (s)

=

∫ s̄

γ

u′A(xs) (1− γARA(s)) dF (s)

where ARA(s) = −u′′(xs)
u′(xs)

is absolute risk aversion at s. The pricing kernel effect states that

lending increases with γ if the lender’s risk aversion is not too large. When the lender’s risk

aversion is high, the pricing kernel decreases more than the increase in the payment so that

lending falls even though the promise is larger.

When endowments are negligible compared to the asset payoff s, we can say even more.

Let eis → 0, then xAs = min{s, γ}, xBs = max{s − γ, 0}, implying that agent A’s marginal

15One might be tempted to compare this result to the result in Simsek (2013) regarding the type-versus-
degree of belief disagreement. However, this result is about changing risk that affects both agents so that
both agents simultaneously value the asset and debt contracts differently; whereas the belief disagreement
result is about changing how agents differentially value assets and debt contracts.
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utility is constant above γ because consumption is constant above γ. The optimality condi-

tion for the equilibrium contract simplifies to u′A(γ)RB(γ) = E
[
µBs |s ≥ γ

]
, and the pricing

kernel effect is given by

dq(γ)

dγ
= u′A(γ) (1−RRA(γ)) (1− F (γ)) ,

where RRA(γ) is the relative risk aversion. When the lender’s risk aversion is greater than

1, an equilibrium with riskier loans (higher γ) has more lending in equilibrium. Given the

pricing kernel effect, increases in γ will tend to raise debt prices (i.e. more lending) when

RRA < 1, and to lower debt prices (less lending) when RRA > 1.

Define the spread on the loan by Rγ = γ
q(γ)

. When the lender’s risk aversion is high,

equilibria with higher γ also have higher spreads, since q(γ) falls. That is, loan amounts will

be higher when spreads and riskiness are lower. The net effect on prices of an increase in risk

depends on the combination of the pricing kernel and expectations effects, which can either

reinforce and counteract each other depending on the degree of risk aversion. Similarly, when

γ increases, agent B receives lower consumption in each state, which increases her marginal

utility in each state.

In practice, we would expect lenders to have a variety of other sources of income. For

instance, they might have labor income, or they might have other assets (e.g., stocks, bonds,

or houses). Once we account for these other sources of wealth, a model in which lenders’

stochastic discount factor is exogenous might very well be the more appropriate model

(though the exogenous marginal utilities need not be constant, i.e., need not correspond

to risk-neutrality). For instance, if subprime borrowers in practice were to borrow with safer

loans, I would expect this to have very little effect on the wealth of the lenders in the sub-

prime market (which tend to be very rich individuals). Nonetheless, to the extent that many

assets can be systematically correlated, or if these loan sizes are substantial, the equilibrium

consequences for the pricing kernel is at least worth noting.
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4.2 Endowment Risk

The previous subsection considered increases in risk that affect the endowments of each

agent together with the asset payoff. However, we can consider modifications in agents’

endowments for a given payoff s, which has the effect of changing the covariance between

endowments and the asset payoff. This exercise is meaningful precisely because agents are

(weakly) risk-averse and so agents’ marginal utilities and asset demands will in part depend

on their endowments.

Modifying endowments by a mean-preserving spread has two effects: first, the covariance

between endowments and the asset payoff increases; second, agent’s marginal utilities, to

a first approximation, change by a mean-preserving contraction. Suppose for example that

endowments are shifted from eis to ẽis so that

ẽis = eis + εs,

where εs acts as MPS according to f(s). That is, we shift endowments from middle states

toward tail states in such a way as to keep the expected endowment constant; the distribution

f(s) does not change. This has the effect of increasing the covariance. Let E[ei] =
∫ s̄

0
eisdF (s)

and E[s] =
∫ s̄

0
sdF (s). Then

cov(ẽis, s) =

∫ s̄

0

sẽisdF (s)− E[ẽi]E[s] (12)

=

∫ s̄

0

s
(
eis + εs

)
dF (s)− E[ei]E[s] (13)

= cov(eis, s) +

∫ s̄

0

sεsdF (s). (14)

Since
∫ s̄

0
εsdF (s) = 0,

∫ s̄
0
sεsdF (s) > 0 and therefore cov(ẽis, s) > cov(eis, s).

Modifying endowments naturally means modifying marginal utilities. For simplicity,

consider the effect of εs on marginal utilities when agents consume their endowments. For a

small perturbation,

u′i(ẽ
i
s) = u′i(e

i
s) + u′′i (e

i
s)εs. (15)

20



Since u′′i (x) ≤ 0, a decrease in endowments leads to an increase in marginal utilities and vice

versa. In fact, if the MPS is small or if marginal utility is linear (e.g., consider quadratic

utility), then a mean-preserving spread of the endowments yields a mean-preserving contrac-

tion (“MPC”) of marginal utilities. To simplify exposition, in the rest of the paper I will

suppose that the third-order effect is small enough to ignore.16

With this in mind, we can revisit the results we considered for asset risk instead applied

to endowment risk. Define

gA(s) = µAs f(s), gB(s) = µBs f(s). (18)

We can rewrite z(j) and the debt price q(j) as

z(j) =

∫ s̄
j
gA(s)ds∫ s̄

j
gB(s)ds

(EgB [max(s− j, 0)])− eB0 , q(j) = EgA [min{s, j}] ,

which are pseudo-expectations taken over gA(s) and gB(s).

Generally when agent A’s endowments change by an MPS, which is an MPC of agent

A’s marginal utility, q(j) = EgA [min{s, j}] increases since min{s, j} is concave.17 When the

16To the extent that the change in the endowments is large (i.e., εs are large) then an MPS of endowments
will contract marginal utilities in a way that does not necessarily preserve the mean. A second-order
expansion makes this clear.

u′i(ẽ
i
s) = u′i(e

i
s) + u′′i (eis)εs +

u′′′i (eis)

2
ε2
s (16)

Additionally, consider the integral that uses equation (15):∫ s̄

0

u′i(ẽ
i
s)dF (s) =

∫ s̄

0

u′i(e
i
s)dF (s) +

∫ s̄

0

u′′i (eis)εsdF (s) (17)

Since εs is an MPS,
∫ s̄

0
εsdF (s) = 0. The value of the final integral depends on the third-derivative and how

the endowment varies with s. For example,

d
(
u′′i (eBs )

)
ds

= u′′′i (eBs )
deBs
ds

Whenever the third-derivative of utility is positive, as is the case for CRRA, the second-derivative is
increasing and negative. Thus, if the agent’s endowment increases with the state, then

∫ s̄

0
u′′i (eis)εsdF (s) < 0,

but if the agent’s endowment is decreasing with the state, then
∫ s̄

0
u′′i (eis)εsdF (s) > 0. In these cases marginal

utilities are not modified in a mean-preserving way.
17There is an additional force if A’s marginal utilities are sufficiently convex. In this case, the expected
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endowment MPS is isolated to upside or downside risk, i.e., strictly applying to states above

γ or below γ, then there is no change in the debt price because the debt payoff is piecewise-

linear. The effect, from equation (17), depends on how agent A’s endowment varies with the

asset payoff. When A’s marginal utility is linear, there is no change in
∫ s̄
j
gA(s)ds. However,

when A’s utility is CRRA and the endowment is positively correlated with the asset payoff,

then lending will decrease, q(γ) will decrease.

Changing agent B’s endowment below γ has no effect on equilibrium. Thus an increase

in downside endowment risk will affect borrowing so long as the lender is affected, but

downside endowment risk for the borrower has no effect. However, upside endowment risk

for the borrower has an entirely different effect. An MPS of B’s endowment affecting states

s > γ will have a very modest effect on
∫ s̄
γ
gB(s)ds, as discussed. However,

∫ s̄
γ

(s− γ)gB(s)ds

will certainly change because s− γ is an increasing function.

As well, agents’ endowments can change to ambiguously effect the equilibrium traded

contract γ. Changing endowments for agent A or B can ambiguously affect γ.

Proposition 2. There exists an MPS of agent A’s endowments ẽAs such that γ̃ > γ, and

there exists ẽAs such that γ̃ < γ.

Proposition 3. Suppose s̄− γ > 1. Then there exists an MPS of agent B’s endowments ẽBs

such that γ̃ > γ, and there exists ẽBs such that γ̃ < γ.

The proofs are in the Appendix. The intuition is that endowments can change so that

states above and below the default threshold γ can be valued relatively more or less by

either agent as marginal utilities change. This is perhaps surprising because the insight from

the C-CAPM literature is that a higher covariance should decrease asset prices. The insight

from this model is that with collateralized borrowing, different agents price assets in different

states, and so increasing covariance need not necessarily affect asset prices in the usual way.

marginal utility decreases because the second-derivative is increasing, as in equation (17).
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Endowment Tail Risks

These existence results suggests that it is worth limiting the way that risk can increase. I

will consider two types of modifications to agents’ endowments that move mass strictly into

the tails, though in different ways. The important result of this section is that equilibrium

responds differently to changes in endowments for agents A and B, and that the result can

depend on whether default is likely or unlikely for collateralized debt contracts.

The first result considers modifying agent A’s endowments in a way that strictly moves

mass away from the mean and toward the tails. The concept is flexible enough to encompass

nonparametric changes in distributions, but captures the idea of what happens when the

variance increases for a parametric distribution. I use the term strict for this type of MPS.

Definition 2 (Strict Mean-Preserving Spread). Let ε be an MPS. Then ε is strict if

the following conditions hold.

1. Consider any s1 < E(s). If ε(s1) > 0, then for all s < s1, ε(s) ≥ 0

2. Consider any s2 > E(s). If ε(s2) > 0, then for all s > s2, ε(s) ≥ 0

Since ε is an MPS (and must integrate to zero), clearly ε(s) < 0 for some s ∈ S; in

particular, ε(s) ≤ 0 in a neighborhood (perhaps a large one) around E(s). In other words, if

there are states “in the tails” with greater mass as a result of the MPS, then states farther

into the tails have weakly greater mass, too; mass moves to the tails from the mean, and not

from farther in the tails.

When lenders endowments become riskier in this “strict sense,” the equilibrium outcome

depends on the riskiness of the equilibrium traded contract before the change. What is

important is that the effect depends on the types of the loan. When repayment is likely, as

is the case with prime mortgages and investment grade bonds, increased endowment risk,

relative to the asset payoff, decreases margins. The asset has become relatively less risky for

the lender and so margins decrease. But for loans in which repayment is not likely, as might

be the case for subprime loans or for lower tranches of CDO’s, risk works in a different way.

In this case, increasing endowment risk relative to the asset payoff leads to higher margins.
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The asset is less risky relative to endowments, but margins increase, because in this case

repayment is a tail event and so decreased risk (relative to endowments) makes repayment

less likely (in a weighted marginal utility sense).

Proposition 4 (Asymmetric Effect of Strict Lender Endowment Risk). Let ẽAs differ

from eAs by a strict MPS while still satisfying Conditions 1 and 2. The following are true:

1. If γ ≤ E(s), then γ̃ ≥ γ

2. If γ ≥ E(s), then γ̃ ≤ γ

Proof. Because ẽAs is an MPS of eAs , then g̃A(s) is an MPC of gA(s). When γ ≤ E(s), then∫ s̄
γ
gA(s)ds ≤

∫ s̄
γ
g̃A(s)ds. More endowment risk decreases the marginal utility weighting in

states above γ. From this we have that z(j; e) ≤ z(j; ẽ). Since the z(j) is increasing, the face

value of the equilibrium contract increases, γ̃ ≥ γ. The reverse is true when γ ≥ E(s).

The second type of endowment change considers upside and downside states, or the skew-

ness of endowments, for borrowers. Above a threshold, sR, endowments become increasingly

larger, and below sR endowments become increasingly smaller. While the expected endow-

ment is the same, the conditional expected endowment is better for states above sR. Using

this definition, we can unambiguously describe what happens to the equilibrium borrowing

contract, borrowing amounts, and the asset price when the borrower’s endowments become

more skewed to the upside relative to the lender’s endowments.

Definition 3 (Upside Skew of Endowments). Endowments ẽs is skewed more to the

upside than es if the expected endowment is the same, E
[
ẽs
]

= E
[
es
]
, and the ratio of

endowments satisfy the following (weak) single crossing condition. For some sR ∈ S

ẽs
es

is increasing for s > sR,
ẽs
es

is decreasing for s < sR.

Proposition 5. If agent B’s endowments become more skewed to the upside, i.e. eBs is

changed to ẽBs , while still satisfying Conditions 1 and 2, then γ̃ ≤ γ, i.e., the face value of
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the equilibrium contract will weakly decrease. As a result, borrowing will decrease and the

asset price p will decrease. Margins and leverage respond accordingly.

The proof is in Appendix B. Thus, relative upside and downside endowment/asset risk

have entirely different implications for equilibrium margins and asset prices. The intuition

for this result comes from the CAPM together with the fact that the borrower is buying an

“upper tranche.” When endowments change in this way, marginal utilities are lower precisely

when the asset pays the most, and so agent B values the asset payoffs less. If endowments

change in the opposite way, then marginal utilities will be higher precisely when the asset

pays the most and so the asset will be more valuable to B, increasing B’s willingness to

borrow to buy the asset.

4.3 Numerical Examples

In light of these results, what conditions would produce countercyclical leverage? How

should we expect γ to change and which pricing effect—the expectations effect or the pricing

kernel effect—dominates when γ increases? Should we expect γ to increase or decrease? To

answer these questions, I numerically investigated the comparative statics for three different

parametric distributions when borrowers are risk-neutral, lenders have CRRA utility with

relative risk aversion σA, and endowments are negligible.18 Because the distribution functions

do not have closed-form expectations, analytical results are hard to come by. I increase risk

by increasing the standard deviations of the distribution of asset payoffs, corresponding to

an increase in the asset risk.

My results suggest that margins are countercyclical when σA < 1. When volatility

(the standard deviation) increases, the equilibrium loan γ increases and loan amounts q(γ)

decrease. This result is robust to whether γ is above or below the expected asset payoff.

With CRRA utility for these parametric distributions, the expectation effect dominates the

pricing kernel effect. When σA < 1, increased risk leads to lower loan amounts, lower asset

18The three distributions solved are: Symmetric Truncated Normal (S = [0, 10] and µ = 5); Symmetric
Logit-Normal (S = [0, 10] and µ = 0); Symmetric Beta Distributions (S = [0, 10] and α = β).

25



prices, lower leverage, and higher margins, which is what we expect given empirical research.

When σA > 1, γ increases and q(γ) increases because the expectation effect dominates,

which means that increased risk leads to higher asset prices and higher leverage. Thus, for

standard examples widely used in the literature, risk does not lead to lower prices and higher

margins, but the reverse.

What drives the results in each case is the shape of marginal utilities below γ. In these

examples, the pricing kernel is concave whenever σA < 1. What this suggests is that for

models of this type to produce countercyclical margins, we will likely need concave pricing

kernels for lenders.

5 Conclusion

I have considered a general equilibrium model with heterogeneous agents and collateralized

borrowing to show that changes in aggregate risk or in endowment risk can have ambiguous

effects on leverage, loan margins, loan amounts, and asset prices. As is well known, agents’

endogenous stochastic discount factors matter for asset pricing, though this effect has not

been extensively studied in the collateral equilibrium literature. While the set of states in

which default occurs determines margins, leverage, and asset prices, there is no systematic

relationship between increased risk and when default occurs. However, the correlation of

agents’ endowments with the asset payoff and agents’ risk aversion are key determinants of

how increased risk affects equilibrium outcomes.

Future work should seek to address under what conditions changes in risk lead to counter-

cyclical margins, as well as what changes in the economic environment lead to countercyclical

margins with endogenous loan riskiness. Numerical results suggest that in this model, for

a variety of distribution functions, margins are countercyclical and leverage is pro-cyclical

when lenders have relative risk aversion less than one (vice versa). This may strike many as

an unsatisfactory result. It may be worthwhile to consider how leverage and risk are related

in a model with multiple agents and assets—and therefore with multiple leverage levels.
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Appendices

A Solving for Collateral Equilibrium

In this section I first state the weaker, but more technical, condition required for equilibrium

to have the form already outlined. I then show that given this condition agents trade a single

contract, that the contract satisfies the optimality conditions already listed, and that z(j) is

strictly decreasing with an interior root.

The following weaker condition can replace conditions (C1a) and (C1b).

Condition 1-Weak: The following ratio of agents’ marginal utilities is strictly increasing

in s:

for any s′ > s∗,
u′B(eBs + s− s′)
u′A(eAs + s′)

is strictly increasing for s ∈ S. (C1weak)

This condition ensures that in equilibrium µBs
µAs

is strictly increasing for s ≥ γ. This condition

holds if

for any s′ > s∗, − u′′A(eAs + s′)

u′A(eAs + s′)

(
deAs
ds

)
> −u

′′
B(eBs + s− s′)
u′B(eBs + s− s′)

(
deBs
ds

+ 1

)
. (19)

Letting ARAi = −u′′i
u′i

, this condition holds if

inf
s′>s∗

ARAA(eAs + s′)

(
deAs
ds

)
> sup

s′>s∗
ARAB(eBs + s− s′)

(
deBs
ds

+ 1

)
. (20)

The intuition for this equation is that the ratio of marginal utilities is increasing, where we

require stronger conditions on bounds for absolute risk aversion since marginal utilities are

endogenous.

Let the equilibrium contract traded be γ with price q(γ). I first derive bounds on contract

prices so that given the optimality condition in equation (8), no other contract is traded in

equilibrium. Then, given these bounds, I show that the traded contract indeed satisfies
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equation (8).

Since A lends in equilibrium, it follows from the first-order-conditions for j that for all

j ∈ J

q(j) ≥
∫ j

0

µAs sdF (s) + j

∫ s̄

j

µAs dF (s). (21)

with strict equality for j = γ. Remember that A consumes in period 0 and has linear utility

over x0; therefore A’s marginal utility of wealth is 1. Thus, agent A will not trade in j > γ

so long as

q(j)− q(γ) ≥
∫ j

γ

µAs (s− γ)dF (s) +

∫ s̄

j

µAs (j − γ)dF (s). (22)

Next, define Vj =
∫ s̄
j
µBs (s − j)dF (s). Agent B will not trade in a contract j so long as

RB(j) ≤ RB(γ):
Vγ

p− q(γ)
≥ Vj
p− q(j)

. (23)

Rearranging terms, this requires that

p− q(j) ≥ Vj
RB(γ)

≥Vj − Vγ + Vγ
RB(γ)

≥ Vγ
RB(γ)

− Vγ − Vj
RB(γ)

≥p− q(γ)− Vγ − Vj
RB(γ)

.

This implies that

q(j)− q(γ) ≤
∫ j

γ

µBs
RB(γ)

(s− γ)dF (s) +

∫ s̄

j

µBs
RB(γ)

(j − γ)dF (s). (24)

Putting together equations (22) and (24), there exists a price q(j) such that neither agent

trades in contract j so long as

∫ j

γ

(
µBs

RB(γ)
− µAs

)
(s− γ)dF (s) +

∫ s̄

j

(
µBs

RB(γ)
− µAs

)
(j − γ)dF (s) > 0. (25)

28



Since the optimal contract satisfies equation (8), and since the ratio of marginal utilities

µBs
µAs

is strictly increasing in s (by Condition 1-Weak), µBs
RB(γ)

− µAs > 0 and so this equation

holds; therefore agents will trade in a single contract. By a symmetric argument, contract

prices exist for j < γ so that agents will not trade in j.

Because the bounds from equations (22) and (24) are sharp at γ, we can use the equation

for q(j) to determine the slope of the contract prices at j = γ. Agent B will choose the

contract j to maximize RB(j). Differentiating RB(j) with respect to j at j = γ yields

dRB(j)

dj
=

d

dj

[
Vj

p− q(j)

]
=

(p− q(j)) dVj
dj

+ Vj
dq(j)
dj

(p− q(j))2 . (26)

Using q(γ) =
∫ γ

0
µAs sdF (s) + γ

∫ s̄
γ
µAs dF (s) = E[µAs min(s, γ)], the derivative at j = γ is

q′(j) =

∫ s̄

j

µAs dF (s).

By the definition of Vj, the derivative is

V ′j (j) = −
∫ s̄

j

µBs dF (s).

Setting dRB(j)
dj

= 0 yields

Vj
p− q(j)

= −
V ′j (j)

q′(j)
,

which yields the optimality condition

RB(γ) =
E
[
µBs |s ≥ γ

]
E [µAs |s ≥ γ]

.

To show that equilibrium occurs for some x ∈ (0, s̄), I first show that z(j) = popt(j) −
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pmc(j) is strictly decreasing, which follows from Condition 1. Differentiating z(j) yields

dz(j)

dj
=− µAj f(j)

∫ s̄
j
µBs (s− j)dF (s)∫ s̄
j
µBs dF (s)

+ µBj f(j)

∫ s̄
j
µAs dF (s)(∫ s̄

j
µBs dF (s)

)2

∫ s̄

j

µBs (s− j)dF (s)

−
∫ s̄
j
µAs dF (s)∫ s̄

j
µBs dF (s)

∫ s̄

j

µBs dF (s).

Thus,

dz(j)

dj
=z(j)

(
µBj f(j)∫ s̄

j
µBs dF (s)

−
µAj f(j)∫ s̄

j
µAs dF (s)

− 1

)

Since µBs
µAs

is strictly increasing, this implies that

µBγ
µAγ

<

∫ s̄
j
µAs dF (s)∫ s̄

j
µAs dF (s)

,

and therefore dz(j)
dj

< 0.

Finally, evaluating z(j) at the boundaries shows that equilibrium must be interior. Eval-

uating popt and pmc at s = 0 and s = s̄, we have

popt(s̄) = q(s̄) < pmc(s̄) = q(s̄) + eB0 ,

and

pmc(0) = q(0) + eB0 = eB0 .

And popt(0) =
E[µAs ]
E[µBs ]

E
[
sµBs

]
, which by Conditions 2 is greater than eB0 . Thus, z(0) > 0 and

z(s̄) < 0. As a result, it follows that A consumes in period 0 but B does not.

30



B Proofs and Propositions

Proof of Proposition 1

Proof. I will show that there are MPS such that z(j; f) increases or decreases when evaluated

using the new probabilities. Define the simpler function

h(j; f) =

∫ s̄

j

(s− j)dF (s)

The behavior of z(j; f) closely follows the behavior of h(j; f).

First, consider a mean-preserving spread that takes mass from the left of γ and places

some of that mass to the right of γ, as shown in Figure 1. Risk about future states has

increased under f̃(s), and in the new equilibrium γ will increase.

0 gamma
0

s∈ S

 

 
f(s)

f(s) with MPS

Asset Payoff

Figure 1: Increased Risk Increases Equilibrium Loan γ.

Because under the new distribution f̃(s) ≥ f(s) for s ≥ γ

∫ s̄

γ

(s− γ)dF̃ (s) >

∫ s̄

γ

(s− γ)dF (s)
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Thus h(j; f̃) > h(j; f).

It is little more work to show that z(j; f̃) > z(j; f). Define

z1(j) =
E
[
µAs |s ≥ j

]
E [µBs |s ≥ j]

, z2(j) = E[µBs max(s− j, 0)]

so that

z(j) = z1(j)z2(j)− eB0

First, h(j; f̃) > h(j; f) implies z2(j; f̃) > z2(j; f). For small changes we can write

∆z = ∆z1z2 + z1∆z2

Next, if the change in the probability distribution is local to γ, then the change in z1(j) is

on the order of
µAγ∫ s̄

γ
µAs dF (s)

−
µBγ∫ s̄

γ
µBs dF (s)

Since µBs
µAs

is strictly increasing by Condition 1, this implies that

µBj
µAj

<

∫ s̄
j
µAs dF (s)∫ s̄

j
µAs dF (s)

As a result, ∆z1 > 0 and hence z(j; f̃) > z(j; f). (Intuitively, since the ratio of marginal

utilities is increasing, increasing the mass of the distribution close to γ gives more weight to

marginal utilities that are not so different.) Finally, since z(j) is decreasing in j, γ̃ > γ.

Second, consider the following MPS that moves mass to the left of γ. Pick a small

d, c > 0 and s1 < γ − c. For s ∈ (γ, γ + d) set f̃(s) = f(s)− a1. For s ∈ (γ + d, γ + 2d) set

f̃(s) = f(s) + a2. And for s ∈ (s1, s1 + c) set f̃(s) = f(s) + a3. This is an MPS so long as

a2d+ a3c = a1d

a2(3d2 + 2γd)− a1(2γd+ d2) + a3(2s1c+ c2)
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The first line says that the distribution integrates to 1 and the second says that the mean

is unchanged. If a1 = Na2, then s1 = γ − 2c
N−1

. As long as N > 3, h(j; f̃) < h(j; f). By

the same argument, local to γ a sufficient choice of parameters ensure that z(j; f̃) < z(j; f),

and therefore γ̃ < γ.

Proof of Proposition 2

Proof. Define z(j; ẽAs ) as parametrized by A’s endowment. Consider
∫ s̄
j
gA(s)ds, which is the

only component of z(j) that depends on A’s endowment. One can shift endowments to the

right of γ, just as we shifted probability mass to the right of γ in the proof for Proposition

1, which decreases gA(s) for s ≥ γ. As a result

∫ s̄

γ

g̃A(s)ds <

∫ s̄

γ

gA(s)ds

Thus z(j; ẽAs ) < z(j; eAs ). Similarly, we can shift endowments as in the second part of the

proof for Proposition 1 so that

∫ s̄

γ

g̃A(s)ds >

∫ s̄

γ

gA(s)ds.

Proof of Proposition 3

Proof. The proof is very similar to the previous one, this time shifting mass either close to γ

or close to s̄. When mass is shifted close to γ, then s−γ is small over the region where gB(s)

changes, and so
∫ s̄
j
gB(s)ds changes by more than

∫ s̄
j

(s − j)gB(s)ds. Conversely, shifting

mass close to s̄ implies that s − γ > 1 over the region where gB(s) changes, and therefore∫ s̄
j
gB(s)ds changes by less than

∫ s̄
j

(s− j)gB(s)ds.
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Proof of Proposition 5

Proof. Since marginal utilities move inversely with endowments, when the endowment be-

comes more skewed to the upside, then marginal utilities become more skewed to the down-

side. As a result,

g̃B(s)

gB(s)
is decreasing for s > sR,

g̃B(s)

gB(s)
is increasing for s < sR

Define

GB(j) =

∫ s̄

j

gb(s)ds, G̃B(j) =

∫ s̄

j

g̃B(s)ds

downside skewness implies that g̃B(s) and gB(s) satisfy the following “hazard rate” property


g̃B(s)

G̃B(s̄)− G̃B(s)
≤ gB(s)

GB(s̄)−GB(s)
if s < sR,

g̃B(s)

G̃B(s̄)− G̃B(s)
≥ gB(s)

GB(s̄)−GB(s)
if s > sR,

Additionally, we can write equation (11) as

z(j) =

(∫ s̄

j

gA(s)ds

)(∫ s̄

j

(s− j) gB(s)

GB(s̄)−GB(j)
(s)ds

)
− eB0

The term
∫ s̄
j

(s − j) gB(s)
GB(s̄)−GB(j)

(s)ds is the analog of the conditional expectation above

sR, taken with respect to gB(s), which is a pseudo-distribution. Since the hazard rate is

decreasing above sR, the “conditional expectation” is lower after the endowments are skewed

upside.

Lemma: Let f̃(s) be upside skewed relative to f(s). Then E[s|s > x; f̃(s)] ≤ E[s|s >

x; f(s)] for each x ∈ (0, s)

Proof. Define t(x) = E[s|s > x; f̃(s)]− E[s|s > x; f(s)]. I need to show that t(x) ≥ 0 for all
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x ∈ (0, s). Note that

t′(x) =
f̃(x)

1− F̃ (x)

(
EB[s|s > x; f̃(s)]− x

)
− f(x)

1− F (x)
(EB[s|s > x; f(s)]− x)

=

(
f̃(x)

1− F̃ (x)
− f(x)

1− F (x)

)(
EB[s|s > x; f̃(s)]− x

)
+

f(x)

1− F (x)
t(x)

Over the range (0, sR), f̃(s)

1−F̃ (s)
≥ f(s)

1−F (s)
. Thus, I can write our expression as the differential

equation t′(x) = A(x) + B(x)t(x) where A(x) ≥ 0 and B(x) > 0 with initial condition

t(0) = 0. This implies that t(x) ≥ 0 over this range.

Over the range (sR, s), the hazard-rate ordering is reversed. Using that E[s|s > x; f̃(s)]−

x > t(x) we have that

t′(x) ≤ f̃(x)

1− F̃ (x)
t(x) for each x ∈ (sR, s)

Suppose then that there exists s1 < s such that t(s1) < 0. Choose ŝ = sup {s ∈ [s1, s]|t(s) ≤ t(s1)}.

Note that t(s) = 0 and t(ŝ) = t(s1) < 0. We have that t′(ŝ) ≤ f̃(ŝ)

1−F̃ (ŝ)
t(ŝ) < 0. But if t(ŝ) is

decreasing, that means that ŝ can’t be the largest s as defined above. Thus t(x) ≥ 0 over

this range as well.

A direct result is that, since the skewness is reversed,

∫ s̄

j

(s− j) g̃B(s)

G̃B(s̄)− G̃B(j)
(s)ds ≤

∫ s̄

j

(s− j) gB(s)

GB(s̄)−GB(j)
(s)ds,

and therefore z(j; ẽ) ≤ z(j; e). Since z(j) (weakly) decreases, γ̃ ≤ γ, i.e., the face value of

the equilibrium contract (weakly) decreases in equilibrium. Since agent A’s marginal utilities

are unaffected, we know that q(γ̃) ≤ q(γ) and therefore p̃ ≤ p.

Downside Aggregate Risk

Proposition 6. Let f̃(s) differ from f(s) by an MPS such that f(s) = f̃(s) for s ≥ γ. Then

γ̃ = γ. The change in the price of debt depends on A’s risk aversion: when σA < 1, debt has
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a lower price, q(γ; f̃(s)) < q(γ; f); when σA > 1 debt has a higher price q(γ; f̃(s)) > q(γ; f);

where σA = 1, the debt price does not change, q(γ; f̃(s)) = q(γ; f).

Proof. States above γ are unchanged, which means trivially that z(j; f) = z(j; f̃) is un-

changed. Therefore γ̃ = γ and the equilibrium contract is the same. However, Qγ(s) is not

linear below γ, and therefore the expectation will be different, i.e. q(j) will be different. The

expectation is higher under f̃(s) when Qγ(s) is convex and it is lower when Qγ(s) is concave,

which is determined by σA, as discussed.
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Gârleanu, N. and L. H. Pedersen (2011): “Margin-based Asset Pricing and Deviations

from the Law of One Price,” Review of Financial Studies, 24, 1980–2022.

Geanakoplos, J. (1997): “Promises Promises,” in Santa Fe Institute Studies in the Sci-

ences of Complexity-proceedings volume, Addison-Wesley Publishing Co, vol. 27, 285–320.

——— (2003): “Liquidity, Default and Crashes: Endogenous Contracts in General Equi-

librium,” in Advances in Economics and Econometrics: Theory and Applications, Eight

World Conference, Econometric Society Monographs, vol. 2, 170–205.

——— (2010): “The Leverage Cycle,” in NBER Macroeconomics Annual 2009, ed. by K. R.

D. Acemoglu and M. Woodford, University of Chicago Press, vol. 24, 1–65.

Geerolf, F. (2014): “A Theory of Power Law Distributions for the Returns to Capital

and of the Credit Spread Puzzle,” Working Paper.

Gorton, G. and A. Metrick (2012): “Securitized banking and the run on repo,” Journal

of Financial Economics, 104, 425 – 451.
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