SECOND EXAM SOLUTIONS

MATH 251, WILLIAMS COLLEGE, FALL 2006

Abstract

These are the instructor's solutions. For statements of the problems, see the posted exam. You should take these more as a quick guide on how to do the problems than as a representative complete solution set.

1. Problem One

We must choose a way to divide the 10 ones in $10=1+1+1+1+1+1+1+1+1+1$, into five numbers. This involves putting in four "gaps" and choosing their locations. Thus there are $C(10+4,4)=C(14,4)=91$ such solutions.

If we assume that the solutions must be in positive integers, then none can be zero. We let $a=a^{\prime}+1, b=b^{\prime}+1, c=c^{\prime}+1, d=d^{\prime}+1, e=e^{\prime}+1$. Then $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}$ are any nonnegative integer but they must satisfy

$$
10=a^{\prime}+1+b^{\prime}+1+c^{\prime}+1+d^{\prime}+1+e^{\prime}+1=a^{\prime}+b^{\prime}+c^{\prime}+d^{\prime}+e^{\prime}+5
$$

or $a^{\prime}+b^{\prime}+c^{\prime}+d^{\prime}+e^{\prime}=5$. This can be solved like the last part of this problem. There are $C(5+4,4)=C(9,4)=126$ possible solutions.

For this part, we realize that we are in the same situation as the last part, but that a^{\prime} must take one of the values $0,2,4$. (These are the only ways to make a odd and still have all the unknowns positive.) Thus we are counting the solutions to the equations $0+b^{\prime}+c^{\prime}+d^{\prime}+e^{\prime}=5,2+b^{\prime}+c^{\prime}+d^{\prime}+e^{\prime}=5$ and $4+b^{\prime}+c^{\prime}+d^{\prime}+e^{\prime}=5$. Therefore, there are $C(8,3)+C(6,3)+C(4,3)=80$ solutions.

2. Problem Two

First, we choose which set we will use first to make a linear arrangement-there are 2 possibilities. Then we must interlace a pair of n-permutations of sets of size n. There are $n!\cdot n$! ways to choose such an arrangement. When placing them around a table, we introduce rotational symmetry. In effect, we no longer care which of the $2 n$ places is our starting point, so we divide out by this set of symmetries to get $2(n!)^{2} /(2 n)=n!(n-1)$! ways to arrange the sets in the prescribed fashion.

3. Problem Three

The type of proposition that can be vacuously true is an implication $p \rightarrow q$. This happens when the premise of the implication is never true. The concept relies on the fact that the truth value of $p \rightarrow q$ will be true if p is false, no matter what what the value of q is. An example of a vacuously true statement is

If my house cat weighs 10,000 pounds, then I have blue hair.
This statement is always true, exactly because I never have to worry about the premise being valid. (I don't even have a cat, let alone such a large one.)

4. Problem Four

The right hand side is the number of ways to choose n objects from a set X of size $m+n$. We partition X into sets A of size m and B of size n. Then there are several mutually exclusive ways to make this choice. For each integer k between 1 and n we shall make a choice of k elements of A to belong to the set and then a choice of k elements of B not to belong to the set. Since B has n elements, this puts $n-k$ elements into our set, making the required total of n. But for each k, this is a sequence of two independent choices. The first can be done in $C(m, k)$ ways and the second in $C(n, k)$ ways. So, combining the rule of sequential counting for each k with the rule of disjunctive counting for the exclusive cases, we get the identity.

5. Problem Five

Suppose that $f: A \rightarrow B$ is invertible with inverse $g: B \rightarrow A$. By definition, we have that $f \circ g=1_{B}$ and $g \circ f=1_{A}$.

Let x, y be elements of A such that $f(x)=f(y)$. Then

$$
x=g(f(x))=g(f(y))=y
$$

Hence, f is injective.
Let $b \in B$. Let $a=g(b)$. Then $f(a)=f(g(b))=b$, so $b \in \operatorname{range}(f)$. Since b was arbitrary, we see that f is surjective.

Now suppose that f is bijective. We define a function $g: B \rightarrow A$ as follows. Since f is surjective, for an element $b \in B$, there exists a point $a \in A$ such that $f(a)=b$. Since f is injective, this element is unique! Therefore, it makes sense to define $g(b)$ as the unique element a such that $f(a)=b$ (that is, this is an unambiguous rule).

We must show that g is the inverse of f. Let $b \in B$. Then $f(g(b))=f(a)=b$ because $a=g(b)$ is the unique element of A such that $f(a)=b$. Thus, $f \circ g=1_{B}$. Now consider a point $a \in A$. Then $g(f(a))$ is the unique point x in A such that $f(x)=f(a)$. Since f is injective, we see that $x=a$. Hence $g \circ f=1_{A}$.

Many of you successfully used the following alternate route: Study the inverse relation $f^{-1} \subset B \times A$ and recall the requirement for a relation to be a function: a relation R is a function if and only if every element of the domain appears in exactly one pair in R.

6. Problem Six

We work with the inclusion-exclusion principle. There are $n!$ total permutations. How many fix a set of symbols $i_{1}, i_{2}, \ldots, i_{k}$? Each of these is a permutation of the other $n-k$ elements!

So for each one of the $C(n, 1)=n$ elements, there are $(n-1)$! permutations.
In fact for each of the $C(n, k)$ subsets of k elements, there are $(n-k)$! permutations which fix exactly those elements.

So by the principle of inclusion-exclusion, we see that there are

$$
\begin{aligned}
n!-C(n, 1) \cdot(n-1)!+ & C(n, 2) \cdot(n-2)!-\cdots+(-1)^{n} C(n, n) \cdot 1! \\
= & n!\left(\frac{1}{0!}-\frac{1}{1!}+\frac{1}{2!}-\cdots+(-1)^{n} \frac{1}{n!}\right)
\end{aligned}
$$

derangements of a sequence of length n.

7. Problem Seven

We consider the 30 people as locations to which we should distribute a set of check marks, one mark for each relationship they are in. If there are 104 pairs of acquaintances, there are 208 check marks, since each pair involves 2 people. So we see that there must be at least one person with floor $(208 / 30)=7$ relationships. Here floor (x) is the floor function.

An alternate argument: If there were only 6 relationships per person, we would only have $6 * 30=180$ check marks.

Now suppose that every person has at least seven acquaintances. Then there must be at least $7 * 30=210$ check marks, and hence 105 pairs of acquaintances. This is a contradiction, so there must be one person with fewer than 7 acquaintances.

