
SECOND EXAM SOLUTIONS

MATH 251, WILLIAMS COLLEGE, FALL 2006

Abstract. These are the instructor’s solutions. For statements of the prob-
lems, see the posted exam. You should take these more as a quick guide on
how to do the problems than as a representative complete solution set.

1. Problem One

We must choose a way to divide the 10 ones in 10=1+1+1+1+1+1+1+1+1+1,
into five numbers. This involves putting in four ”gaps” and choosing their loca-
tions. Thus there are C(10 + 4, 4) = C(14, 4) = 91 such solutions.

If we assume that the solutions must be in positive integers, then none can be
zero. We let a = a′+1, b = b′+1, c = c′+1, d = d′+1, e = e′+1. Then a′, b′, c′, d′, e′

are any nonnegative integer but they must satisfy

10 = a′ + 1 + b′ + 1 + c′ + 1 + d′ + 1 + e′ + 1 = a′ + b′ + c′ + d′ + e′ + 5,

or a′ + b′ + c′ + d′ + e′ = 5. This can be solved like the last part of this problem.
There are C(5 + 4, 4) = C(9, 4) = 126 possible solutions.

For this part, we realize that we are in the same situation as the last part, but
that a′ must take one of the values 0, 2, 4. (These are the only ways to make a odd
and still have all the unknowns positive.) Thus we are counting the solutions to the
equations 0+ b′+ c′+d′+e′ = 5, 2+ b′+ c′+d′+e′ = 5 and 4+ b′+ c′+d′+e′ = 5.
Therefore, there are C(8, 3) + C(6, 3) + C(4, 3) = 80 solutions.

2. Problem Two

First, we choose which set we will use first to make a linear arrangement–there
are 2 possibilities. Then we must interlace a pair of n-permutations of sets of size n.
There are n! · n! ways to choose such an arrangement. When placing them around
a table, we introduce rotational symmetry. In effect, we no longer care which of
the 2n places is our starting point, so we divide out by this set of symmetries to
get 2(n!)2/(2n) = n!(n− 1)! ways to arrange the sets in the prescribed fashion.

3. Problem Three

The type of proposition that can be vacuously true is an implication p → q. This
happens when the premise of the implication is never true. The concept relies on
the fact that the truth value of p → q will be true if p is false, no matter what what
the value of q is. An example of a vacuously true statement is

If my house cat weighs 10,000 pounds, then I have blue hair.
This statement is always true, exactly because I never have to worry about the
premise being valid. ( I don’t even have a cat, let alone such a large one.)
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4. Problem Four

The right hand side is the number of ways to choose n objects from a set X of
size m + n. We partition X into sets A of size m and B of size n. Then there are
several mutually exclusive ways to make this choice. For each integer k between 1
and n we shall make a choice of k elements of A to belong to the set and then a
choice of k elements of B not to belong to the set. Since B has n elements, this
puts n − k elements into our set, making the required total of n. But for each k,
this is a sequence of two independent choices. The first can be done in C(m, k)
ways and the second in C(n, k) ways. So, combining the rule of sequential counting
for each k with the rule of disjunctive counting for the exclusive cases, we get the
identity.

5. Problem Five

Suppose that f : A → B is invertible with inverse g : B → A. By definition, we
have that f ◦ g = 1B and g ◦ f = 1A.

Let x, y be elements of A such that f(x) = f(y). Then

x = g(f(x)) = g(f(y)) = y.

Hence, f is injective.
Let b ∈ B. Let a = g(b). Then f(a) = f(g(b)) = b, so b ∈ range(f). Since b was

arbitrary, we see that f is surjective.
Now suppose that f is bijective. We define a function g : B → A as follows. Since

f is surjective, for an element b ∈ B, there exists a point a ∈ A such that f(a) = b.
Since f is injective, this element is unique! Therefore, it makes sense to define g(b)
as the unique element a such that f(a) = b (that is, this is an unambiguous rule).

We must show that g is the inverse of f . Let b ∈ B. Then f(g(b)) = f(a) = b
because a = g(b) is the unique element of A such that f(a) = b. Thus, f ◦ g = 1B .
Now consider a point a ∈ A. Then g(f(a)) is the unique point x in A such that
f(x) = f(a). Since f is injective, we see that x = a. Hence g ◦ f = 1A.

Many of you successfully used the following alternate route: Study the inverse
relation f−1 ⊂ B × A and recall the requirement for a relation to be a function:
a relation R is a function if and only if every element of the domain appears in
exactly one pair in R.

6. Problem Six

We work with the inclusion-exclusion principle. There are n! total permutations.
How many fix a set of symbols i1, i2, . . . , ik? Each of these is a permutation of the
other n− k elements!

So for each one of the C(n, 1) = n elements, there are (n− 1)! permutations.
In fact for each of the C(n, k) subsets of k elements, there are (n− k)! permuta-

tions which fix exactly those elements.
So by the principle of inclusion-exclusion, we see that there are

n!− C(n, 1) · (n− 1)!+C(n, 2) · (n− 2)!− · · ·+ (−1)nC(n, n) · 1!

= n!
(

1
0!
− 1

1!
+

1
2!
− · · ·+ (−1)n 1

n!

)

derangements of a sequence of length n.
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7. Problem Seven

We consider the 30 people as locations to which we should distribute a set of
check marks, one mark for each relationship they are in. If there are 104 pairs of
acquaintances, there are 208 check marks, since each pair involves 2 people. So we
see that there must be at least one person with floor(208/30) = 7 relationships.
Here floor(x) is the floor function.

An alternate argument: If there were only 6 relationships per person, we would
only have 6 ∗ 30 = 180 check marks.

Now suppose that every person has at least seven acquaintances. Then there
must be at least 7 ∗ 30 = 210 check marks, and hence 105 pairs of acquaintances.
This is a contradiction, so there must be one person with fewer than 7 acquain-
tances.


