The simple linear regression model relates two population variables, Y and x, in a linear fashion. To be more specific, it sets

$$ Y = \beta_0 + \beta_1 x + \epsilon, \quad \text{where } \epsilon \sim N(0, \sigma^2). $$

Another way to write this is that

$$ Y|\ x \sim N(\beta_0 + \beta_1 x, \sigma^2). $$

In this simple linear regression model, there are three parameters: β_0, β_1, and σ^2. The interpretation of these model parameters are given below.

- β_1: β_1 is the change in the expected value of Y for a unit increase in x. The reason for this is as follows:
 $$ E(Y) = E(\beta_0 + \beta_1 x + \epsilon) = \beta_0 + \beta_1 x \quad \text{and} \quad dE(Y)/dx = \beta_1. $$

- β_0: $\beta_0 = \beta_0 + \beta_1 \times 0$ is the expected response of Y when $x = 0$.

- σ^2: σ^2 is the variability in Y at a particular value of x.

To estimate the parameters β_0, β_1, and σ^2, we first collect n paired observations, $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$. The estimates of β_0 and β_1 are those values of β_0 and β_1 which minimize the sum of the squared distances between the predicted responses (the line) and the observed responses. These are called the least squares estimators and are the values of β_0 and β_1 which minimize

$$ SS(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2. $$

The estimates of β_0 and β_1 are found by setting

$$ \frac{\partial SS(\beta_0, \beta_1)}{\partial \beta_0} = \frac{\partial SS(\beta_0, \beta_1)}{\partial \beta_1} = 0, $$

and with some algebra are shown to be

$$ \hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}, \quad \text{and} \quad \hat{\beta}_0 = \bar{y} - \bar{x}\hat{\beta}_1 $$

A simple linear regression model can be fit in R using the following commands (in this case I will be regressing price on age).

```r
> age = c(1,1,3,4,4,5,6,7,7,8,8,10,10,13)
> price = c(13990,13495,12999,9500,10495,8995,9495,6999,6950,7850,6999,5995,4950,4495,2850)
> lm(price ~ age)
```

Homework: These problems are due at the beginning of class on 5/7/10.

1. Devore, page 384, #12.

Homework Solutions:
1. Proof:

\[
\sum_{i=1}^{I} \sum_{j=1}^{J} (x_{i,j} - \bar{x}_i)^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} (x_{i,j} - 2\bar{x}_i + \bar{x}_i)^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j}^2 - 2\bar{x}_i \sum_{i=1}^{I} x_{i,j} + \sum_{i=1}^{I} \sum_{j=1}^{J} \bar{x}_i^2
\]

\[
= \sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j}^2 - 2\bar{x}_i \sum_{i=1}^{I} x_{i,j} + IJ\bar{x}_i^2
\]

\[
= \sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j}^2 - IJ \left(\frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j} \right)^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j}^2 - \frac{1}{IJ} \left(\sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j} \right)^2
\]

2. \(MSE = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} (x_{i,j} - \bar{x}_i)^2}{I(J-1)}\) where \(\sigma^2 = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} (x_{i,j} - \bar{x}_i)^2}{I(J-1)}\).

3. In this case, \(SSTr = 8(4.39 - 5.19)^2 + 8(4.52 - 5.19)^2 + 8(5.49 - 5.19)^2 + 8(6.36 - 5.19)^2 = 20.38\), and using the formula given in (1)

\[
SST = \sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j}^2 - \frac{1}{IJ} \left(\sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j} \right)^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j}^2 - \frac{1}{IJ} \left(IJ \bar{x}_i \right)^2 = 911.91 - \frac{1}{4 \times 8} \left(4 \times 8 \times 5.19 \right)^2 = 49.9548.
\]

So the ANOVA table looks like:

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment/Group</td>
<td>3</td>
<td>20.38</td>
<td>6.79</td>
<td>6.429</td>
</tr>
<tr>
<td>Error</td>
<td>28</td>
<td>29.5724</td>
<td>1.056</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>49.9548</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The \(p\)-value in this case is \(P(F \geq 6.429)\) where \(F \sim F_{3,28}\), and this is calculated in R as \(1 - pf(6.429, 3, 28) = .0018\). Since this is less than .05, we reject \(H_0\) in favor of \(H_a\).

4. The complete ANOVA table is given below:

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment/Group</td>
<td>2</td>
<td>152.18</td>
<td>76.09</td>
<td>5.56</td>
</tr>
<tr>
<td>Error</td>
<td>71</td>
<td>970.96</td>
<td>13.675</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
<td>1123.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The \(p\)-value is calculated as \(P(F > 5.56)\) where \(F \sim F_{2,71}\). This is calculated in R as \(1 - pf(5.56, 2, 71) = .00571\), so \(H_0\) would be rejected in favor of \(H_a\) at \(\alpha = .05\).

5. (a) For this problem, \(\bar{x}_i = 30.82\), and \(SSE = 8 \times 4.99^2 + 8 \times 5.33^2 + 8 \times 3.33^2 + 8 \times 2.94^2 + 8 \times 2.74^2 = 724.94\), and \(SSTr = 9(29.3 - 30.82)^2 + 9(28 - 30.82)^2 + 9(30.2 - 30.82)^2 + 9(32.4 - 30.82)^2 + 9(34.2 - 30.82)^2 = 221.2\), and the ANOVA table is:

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment/Group</td>
<td>4</td>
<td>221.1</td>
<td>55.278</td>
<td>3.43</td>
</tr>
<tr>
<td>Error</td>
<td>40</td>
<td>644.4</td>
<td>16.11</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>865.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The \(p\)-value is \(P(F > 3.43)\) where \(F \sim F_{4,40}\). This is calculated in R as \(1 - pf(3.43, 4, 40) = .0167\), so we would reject \(H_0\) in favor of \(H_a\).

(b) For this problem, \(\bar{x}_i = 29.3\), \(SSE = 804.35\), \(SSTr = 132.48\), and the ANOVA table is

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment/Group</td>
<td>4</td>
<td>132.48</td>
<td>33.12</td>
<td>1.65</td>
</tr>
<tr>
<td>Error</td>
<td>40</td>
<td>804.35</td>
<td>20.108</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>936.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This \(p\)-value is calculated as \(P(F > 1.65)\) where \(F \sim F_{4,40}\), and this is calculated in R as \(1 - pf(1.65, 4, 40) = .18\)