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Hamiltonian mechanics
Consider R2n with coordinates x1, . . . , xn and y1, . . . , yn. This is the
state space of a particle in Rn, where the xi are position
coordinates and the yi are momentum coordinates.
Let H : R2n → R be a smooth function, which one can think of as a
“Hamiltonian” or “energy” function. In classical mechanics, a
particle has position coordinates xi and momentum coordinates yi
depending on time t , evolving according to Hamilton’s equations

dxi

dt
=
∂H
∂yi

,
dyi

dt
= −∂H

∂xi
.

That is, (x1(t), . . . , xn(t), y1(t), . . . , yn(t)) is a trajectory of the
Hamiltonian vector field

XH =
n∑

i=1

(
∂H
∂yi

∂

∂xi
− ∂H
∂xi

∂

∂yi

)
.
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Change of coordinates

Suppose we change to new coordinates x̂1, . . . , x̂n, ŷ1, . . . , ŷn.
When will the equations of motion in the new coordinates be given
by

dx̂i

dt
=
∂H
∂ŷi

,
dŷi

dt
= −∂H

∂x̂i
?

Define the standard symplectic form by

ω =
n∑

i=1

dxi dyi .

The Hamiltonian vector field is characterized by

ω(XH , ·) = dH.

It follows that a change of coordinates ϕ : R2n → R2n preserves
the equations of motion if ϕ∗ω = ω.
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Symplectomorphisms and symplectic embeddings

Let U and V be domains in R2n.

Definition
A symplectomorphism from U to V is a diffeomorphism ϕ : U → V
such that ϕ∗ω = ω.
A symplectic embedding of U into V is a smooth embedding
ϕ : U → V such that ϕ∗ω = ω.

Example
If n = 1, then a symplectic embedding is just an area-preserving
smooth embedding.
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Symplectic versus volume-preserving

Remark
For any n, if there exists a symplectic embedding ϕ : U → V , then
vol(U) ≤ vol(V ).

Proof. Observe that

ωn =
1
n!

dx1 dy1 · · · dxn dyn.

Thus ϕ pulls back the volume form to the volume form. So

vol(U) = vol(ϕ(U)) ≤ vol(V ).

Question
Is there any significant difference between symplectic embeddings and
volume-preserving embeddings?
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The Gromov nonsqueezing theorem
Notation:

Identify R2n with Cn with coordinates zi = xi +
√
−1yi .

For a > 0, define the ball

B(a) =

{
z ∈ Cn

∣∣∣∣ π|z|2 ≤ a
}
.

Define the cylinder

Z (a) =

{
z ∈ Cn

∣∣∣∣ π|z1|2 ≤ a
}
.

Theorem (Gromov, 1985)
Suppose there exists a symplectic embedding ϕ : B(r)→ Z (R). Then
r ≤ R.

Note that there are volume-preserving embeddings B(r)→ Z (R) for
r > R. (One can use a diagonal linear map.)
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Outline of proof of Gromov nonsqueezing
Suppose there exists a symplectic embedding B(r)→ Z (R). Let ε > 0.
One uses the theory of pseudoholomorphic curves to produce a
surface Σ ⊂ B(r) such that:

(a) 0 ∈ Σ.
(b) ∂Σ ⊂ ∂B(r).
(c) The tangent space to Σ at each point is invariant
under multiplication by

√
−1.

(d) Area(Σ) < R + ε.
Condition (c) and Wirtinger’s inequality imply that Σ is area-minimizing
(relative to its boundary). Conditions (a) and (b) and the monotonicity
lemma for minimal surfaces then imply that

r ≤ Area(Σ).

By condition (d), we get r < R + ε. Since ε was arbitrary, we conclude
that r ≤ R.
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Gromov nonsqueezing and the uncertainty principle

Let ρ : R2n → R2 denote the projection on to the x1, y1 plane.

Theorem (equivalent formulation of Gromov nonsqueezing)

If ϕ : B(r)→ R2n is a symplectic embedding, then

Area(ρ(ϕ(B(r)))) ≥ r .

If one has an unknown point in the ball B(r), then there is some
uncertainty in the values of the position x1 and the momentum y1.
The theorem asserts that one cannot reduce this uncertainty (as
measured by the area of the set of possible values of x1 and y1)
by a symplectic change of coordinates.
Thus, one can regard Gromov nonsqueezing as a classical
analogue of the Heisenberg uncertainty principle in quantum
mechanics.

Michael Hutchings (UC Berkeley) Fun with symplectic embeddings Frankfest 9 / 24



More general symplectic embedding questions

General question

Given domains U,V ⊂ R2n, when does there exist a symplectic
embedding U → V?

This is hard even for simple examples such as:

Definition
Let a1, . . . ,an > 0. Define the ellipsoid

E(a1, . . . ,an) =

{
z ∈ Cn

∣∣∣∣ n∑
i=1

π|zi |2

ai
≤ 1

}
.

Define the polydisk

P(a1, . . . ,an) =

{
z ∈ Cn

∣∣∣∣ π|zi |2 ≤ ai , ∀i = 1, . . . ,n
}
.
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Four-dimensional ellipsoids
Theorem (McDuff, 2010)
int(E(a,b)) symplectically embeds into E(c,d) if and only if

N(a,b) ≤ N(c,d).

Here N(a,b) denotes the sequence of all nonnegative integer
linear combinations of a and b, written in increasing order with
repetitions. For example,

N(1,1) = (0,1,1,2,2,2,3,3,3,3, . . .),
N(1,2) = (0,1,2,2,3,3,4,4,4,5,5,5, . . .).

It follows that E(1,2) symplectically embeds into E(a,a) = B(a) if
and only if a ≥ 2.
Given arbitrary a,b, c,d , it is nontrivial to decide whether
N(a,b) ≤ N(c,d).
The higher dimensional analogue of the “only if” part of this
theorem is false (Guth, Hind-Kerman).
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Embedding a 4d ellipsoid into a ball

Given a ≥ 1, define f (a) to be the infimum over c such that E(a,1)
symplectically embeds into B(c).

Theorem (McDuff-Schlenk)

For 1 ≤ a ≤
(

1+
√

5
2

)4
, the function f is piecewise linear, described

explicitly by a “Fibonacci staircase”.

The interval
[(

1+
√

5
2

)4
, (17/6)2

]
is divided into finitely many

subintervals, on each of which either f is linear or f (a) =
√

a.
If a ≥ (17/6)2, then f (a) =

√
a.

Note that f (a) ≥
√

a is the volume constraint, because
vol(E(a,1)) = a/2 and vol(B(c)) = c2/2.
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Embedding a 4d polydisk into a ball

For a ≥ 1, define g(a) to be the infimum over c such that P(a,1)
symplectically embeds into B(c). The obvious inclusion
P(a,1) ⊂ B(a + 1) shows that g(a) ≤ a + 1. When a > 2, “symplectic
folding” (due to Schlenk) can be used to show that g(a) ≤ 2 + a/2.

Theorem (H., 2014)
If 1 ≤ a ≤ 2 then g(a) = a + 1.
If 2 ≤ a ≤ 12/5 then g(a) = 2 + a/2.

The method of proof may be able to improve 12/5 to
(
√

7− 1)/(
√

7− 2).
Hind-Lisi previously showed that g(2) = 3.
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Embedding a 4d polydisk into a cube

Theorem (H., 2014)
If 1 ≤ a ≤ 2, then P(a,1) symplectically embeds into P(c, c) if and
only if a ≤ c.

If a ≤ c then there is an obvious inclusion P(a,1)→ P(c, c).
If a > 2 then one can do better: one can use symplectic folding to
show that P(a,1) symplectically embeds into P(c, c) whenever
c > 1 + a/2.
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Symplectic capacities
Definition
A symplectic capacity (for domains in R2n) is a function c, associating
to each domain U a real number c(U) ≥ 0, such that:

If there exists a symplectic embedding U → V , then c(U) ≤ c(V ).
if r > 0 is a constant then c(rU) = r2c(U).

Example
The Gromov width of U is defined by

cGr(U) = sup {a | ∃ symp. emb. B(a)→ U} .

Example
Define the uncertainty of U by

cunc(U) = inf {a | ∃ symp. emb. U → Z (a)} .
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Viterbo’s conjecture

Gromov nonsqueezing is equivalent to cGr(Z (a)) = a, and also to
cunc(B(a)) = a.
It follows from the definitions that if c is any symplectic capacity
with c(B(a)) = c(Z (a)) = a and U is any domain then

cGr(U) ≤ c(U) ≤ cunc(U).

Viterbo’s conjecture
If U is a convex domain then cGr(U) = cunc(U). Equivalently, all
capacities c such that c(B(a)) = c(Z (a)) = a agree on all convex sets.

Ostrover et al have shown that Viterbo’s conjecture implies the
Mahler conjecture in convex geometry.
The conjecture becomes false if one allows nonconvex sets.
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More symplectic capacities

The Gromov width cGr and the uncertainty cunc are easy to define,
but hard to compute.
One can define other, more computable symplectic capacities,
using various flavors of “contact homology”.
For example, one can use “embedded contact homology” to
define the ECH capacities of domains U ⊂ R4.

The ECH capacities of a domain U ⊂ R4 are a sequence of real
numbers

0 = c0(U) ≤ c1(U) ≤ c2(U) ≤ · · · ≤ ∞.
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Some properties of ECH capacities
If there exists a symplectic embedding U → V , then
ck (U) ≤ ck (V ) for all k .
The ECH capacities of an ellipsoid are given by

(ck (E(a,b)))k=0,1,... = N(a,b).

The ECH capacities of a polydisk are

ck (P(a,b)) = min{am + bn | m,n ∈ N, (m + 1)(n + 1) ≥ k + 1}.

If U1, . . . ,Um are disjoint, then

ck

(
m∐

i=1

Ui

)
= max

k1+···+km=k

m∑
i=1

cki (Ui).

Asymptotics and volume:

lim
k→∞

ck (U)2

k
= 4 vol(U).
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Example: the volume property for the ellipsoid
Let’s check that

lim
k→∞

ck (E(a,b))2

k
= 4 vol(E(a,b)).

Let TL denote the triangle bounded by the the x and the y axes
and the line ax + by = L.
ck (E(a,b)) is the smallest real number L such that the triangle TL
contains at least k + 1 lattice points.
Thus ck (E(a,b)) = L implies Area(TL) ≈ k .
But

Area(TL) =
L2

2ab
.

Thus

lim
k→∞

ck (E(a,b))2

k
= 2ab.

Since vol(E(a,b)) = ab/2, it works.

Michael Hutchings (UC Berkeley) Fun with symplectic embeddings Frankfest 19 / 24



The Reeb vector field
Let U be a star-shaped domain in R2n with smooth boundary Y .
“Star-shaped” here means that ∂U is transverse to the radial vector
field. Also, let

λ =
1
2

n∑
i=1

(xi dyi − yi dxi).

Definition
The Reeb vector field on Y is the unique vector field R such that:

ω(R, v) = 0 for all v tangent to Y .
λ(R) = 1.

If H : R2n → R is any smooth function having Y as a regular level set,
then R is a rescaling of the Hamiltonian vector field XH on Y .

Definition
A Reeb orbit is a periodic orbit γ of R.
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Some conjectures about Reeb dynamics

Old conjecture

For any compact star-shaped domain in R2n, the boundary has at least
n Reeb orbits. (Known for n = 2.)

If γ is a Reeb orbit, define its symplectic action A(γ) > 0 to be its
period. Equivalently,

A(γ) =

∫
γ
λ =

∫
D
ω

where D is a smooth disk with boundary ω.

Conjecture (consequence of Viterbo’s conjecture)
If U is a convex compact star-shaped domain, then there is a Reeb
orbit γ on ∂U with

A(γ)n ≤ n! vol(U).
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Reeb dynamics and symplectic capacities

Fact (Hofer et al)
There is a symplectic capacity c (the first Ekeland-Hofer capacity) such
that if U is compact and convex, then c(U) is the minimal symplectic
action of a Reeb orbit on ∂U.

More generally, most computable symplectic capacities are
defined in terms of symplectic actions of Reeb orbits on the
boundary.
In particular, the k th ECH capacity ck (U) is a positive integer
linear combination of symplectic actions of Reeb orbits on ∂U.
Monotonicity under symplectic embeddings holds because
pseudoholomorphic curves interpolating between Reeb orbits
have positive symplectic area.
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Reeb dynamics on the boundary of an ellipsoid
Recall the 4d ellipsoid

E(a,b) =

{
z ∈ C2

∣∣∣∣ π|z1|2

a
+
π|z2|2

b
≤ 1

}
.

In polar coordinates zi = rie
√
−1θi , the Reeb vector field on

∂E(a,b) is

R =
2π
a

∂

∂θ1
+

2π
b

∂

∂θ2
.

Thus γ1 = (z2 = 0) is a Reeb orbit of symplectic action a, and
γ2 = (z1 = 0) is a Reeb orbit of symplectic action b.
If a/b is irrational, then there are no other Reeb orbits. Thus the
ECH capacities are all of the positive integer linear combinations
of symplectic actions of Reeb orbits.
For more general domains, ECH capacities are certain
distinguished linear combinations of symplectic actions, selected
homologically.
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Conclusion

Already in the four-dimensional case, there is much work to do to
compute symplectic capacities and understand when symplectic
embeddings are possible, with mysterious connections to number
theory and combinatorics. There are many projects suitable for
undergraduate research.
For more information see Beyond ECH capacities,
arXiv:1409.1352, and the references therein.
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