The Isoperimetric Problem in \mathbb{R}^{n} with Density r^{p}

Sarah Tammen University of Georgia
February 2016

Williams College NSF SMALL Undergraduate Research Geometry Group
Wyatt Boyer, Bryan Brown, Alyssa Loving, Sarah Tammen

2D

Theorem [G 2008] In \mathbb{R}^{2} with density $r^{p}(p>0)$, for a given weighted area A, the least weighted perimeter P is given by a circle through origin.

2008 Geometry Group: Jon Dahlberg, Alex Dubbs, Ed Newkirk, Hung Tran

Conj. [G 2009] In \mathbb{R}^{n} with density $r^{p}(p>0)$, spheres through the origin are uniquely isoperimetric.

Proof - Gregory Chambers and 2014 Geometry Group, after Chambers' proof of Log Convex Density Conjecture

2009 Geometry Group: Alex Díaz, Nate Harman, Sean Howe,
 David Thompson

Spherical Symmetrization

Spherical Symmetrization preserves weighted volume but reduces weighted perimeter.

On upper half of curve, $|\gamma|$ not increasing

Canonical Circle

- Canonical circle \boldsymbol{C}_{s} is tangent to γ at $\gamma(s)$ and has center on x-axis.
- $\lambda(s):=$ curvature of C_{s}
- $\lambda(s)=\kappa(s) \& C_{s}$ goes through origin $\Longrightarrow \gamma$ is circle through origin.

Basis for Cases

$\kappa(0)=\lambda(0)$, so if C_{0} goes through origin, then γ is circle through origin. Note that C_{0} goes through origin \Longleftrightarrow center at $1 / 2$.

Proof by contradiction - take two cases:

- right case: Center of C_{0} is right of $1 / 2$.
- left case: Center of C_{0} is left of $1 / 2$.

2 Cases

Left Case?

Right Case

Violates Spherical Symmetry

Left Case

Left case also violates spherical symmetry.

Proof, Left Case - Generalized Mean Curvature

For radial density $f(x)=e^{g(x)}$, generalized mean curvature defined by $H_{f}(x)=H_{0}(x)+\frac{\partial g}{\partial \nu}(x)$.

For density r^{p}, $g(x)=\log \left(|x|^{p}\right)$, and

$$
\frac{\partial g}{\partial \nu}=p \frac{x}{|x|^{2}} \cdot \nu(x) .
$$

We define
$\mu=(p / r) \cos \alpha$, where α is angle between position vector and unit outward normal.

Proof, Left Case

const $=$ generalized mean curvature $=\kappa+(n-2) \lambda+\mu$, where $\mu=(p / r) \cos \alpha$

Proof, Left Case (cont'd)

const $=$ generalized mean curvature $=\kappa+(n-2) \lambda+\mu$, where $\mu=(p / r) \cos \alpha$.
$\lambda \geq \bar{\lambda}$,
$\mu>\bar{\mu} \Longrightarrow \kappa<\bar{\kappa}$
Check at top and show that inequalities continue to hold.

Now γ meets at angle $<90^{\circ}$.

Thm. [G 2014] In \mathbb{R}^{n} with density $r^{p}(p>0)$, spheres through the origin are uniquely isoperimetric.

Thank You.

