The Isoperimetric Problem in \mathbb{R}^n with Density r^p

Williams College NSF SMALL Undergraduate Research Geometry Group Wyatt Boyer, Bryan Brown, Alyssa Loving, Sarah Tammen **Theorem [G 2008]** In \mathbb{R}^2 with density r^p (p > 0), for a given weighted area A, the least weighted perimeter P is given by a circle through origin.

2008 Geometry Group: Jon Dahlberg, Alex Dubbs, Ed Newkirk, Hung Tran

Sarah Tammen

Isoperimetric Problem in \mathbb{R}^n with Density r^p

Conj. [G 2009] In \mathbb{R}^n with density r^p (p > 0), spheres through the origin are uniquely isoperimetric.

Proof - Gregory Chambers and 2014 Geometry Group, after Chambers' proof of Log Convex Density Conjecture

2009 Geometry Group: Alex Díaz, Nate Harman, Sean Howe, David Thompson

Spherical Symmetrization

Spherical Symmetrization preserves weighted volume but reduces weighted perimeter.

On upper half of curve, $|\gamma|$ not increasing

Canonical Circle

- Canonical circle C_s is tangent to γ at $\gamma(s)$ and has center on x-axis.
- $\lambda(s) := \text{curvature of } C_s$
- $\lambda(s) = \kappa(s) \& C_s$ goes through origin $\implies \gamma$ is circle through origin.

Basis for Cases

 $\kappa(0) = \lambda(0)$, so if C_0 goes through origin, then γ is circle through origin. Note that C_0 goes through origin \iff center at 1/2.

Proof by contradiction - take two cases:

- right case: Center of C_0 is right of 1/2.
- left case: Center of C_0 is left of 1/2.

2 Cases

Left Case?

Right Case

Violates Spherical Symmetry

Isoperimetric Problem in \mathbb{R}^n with Density r^p

Left Case

Left case also violates spherical symmetry.

Proof, Left Case - Generalized Mean Curvature

For radial density $f(x) = e^{g(x)}$, generalized mean curvature defined by $H_f(x) = H_0(x) + \frac{\partial g}{\partial \nu}(x)$.

Proof, Left Case

const = generalized mean curvature = $\kappa + (n-2)\lambda + \mu$, where $\mu = (p/r) \cos \alpha$

Isoperimetric Problem in \mathbb{R}^n with Density r^p

Proof, Left Case (cont'd)

const = generalized mean curvature = $\kappa + (n-2)\lambda + \mu$, where $\mu = (p/r) \cos \alpha$.

 $\begin{array}{l} \lambda \geq \overline{\lambda} \\ \mu > \overline{\mu} \implies \kappa < \overline{\kappa} \end{array}$

Check at top and show that inequalities continue to hold.

Now γ meets at angle $< 90^{\circ}$.

Thm. [G 2014] In \mathbb{R}^n with density r^p (p > 0), spheres through the origin are uniquely isoperimetric.

Thank You.

3