# Comparison Geometry for Manifolds with Density

#### William Wylie



Department of Mathematics Syracuse University

#### Joint work with D. Yeroshkin (Syracuse)

# FrankFest 2016 : "Isoperimetric Problems and Manifolds with Density"

February 6, 2016

# Manifold with Density

A manifold with density is a Riemannian manifold (M, g) equipped with a positive density function,  $e^{-f}$ .

For example, consider a surface embedded in  $\mathbb{R}^3$ , made of a material of variable density  $e^{-f}$ .

"Perelmans proof of the Poincaré Conjecture requires placing a positive, continuous "density" function on the manifold. Manifolds with density appear a number of places in mathematics ....The grand goal is to generalize all of Riemannian geometry to manifolds with density."

- Frank Morgan

# Levi-Civita Connection

Fundamental Thm of Riemannian Geometry On any Riemannian manifold (M, g) there is a unique smooth affine connection,  $\nabla$  which is torsion free and compatible with g.

Let  $\phi: M \to \mathbb{R}$ , define

$$\nabla_X^{d\phi}Y = \nabla_XY - d\phi(X)Y - d\phi(Y)X.$$

 $\nabla^{d\phi}$  is a torsion free affine connection which is *projectively equivalent* to  $\nabla$ , i.e. it has the same geodesics up to re-parametrization. (Weyl '21).

Let  $\gamma(r)$  a geodesic for  $\nabla$ , then  $s(r) = \int_0^r e^{-2\phi} dt$  is the parameter for a  $\nabla^{d\phi}$ -geodesic,  $\tilde{\gamma}(s)$ .

#### Curvature

A connection is sufficient to define a curvature tensor and a Ricci tensor.

• 
$$R^{d\phi}(X,Y)Z = \nabla_X^{d\phi}\nabla_Y^{d\phi}Z - \nabla_Y^{d\phi}\nabla_X^{d\phi}Z - \nabla_{[X,Y]}^{d\phi}Z$$

• 
$$\operatorname{Ric}^{d\phi}(Y,Z) = \operatorname{tr}(X \to R^{d\phi}(X,Y)Z).$$

The N-Bakry-Émery Ricci tensor is

$$\operatorname{Ric}_{f}^{N} = \operatorname{Ric} + \operatorname{Hess} f - \frac{df \otimes df}{N - \dim(M)}.$$

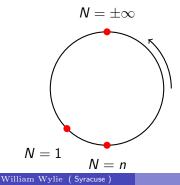
When  $N = \infty$  we write  $\operatorname{Ric}_{f}^{\infty} = \operatorname{Ric} + \operatorname{Hess} f$ .

(W.-Yeroshkin) Suppose  $(M^n, g)$  is a Riemannian manifold with n > 1 and  $f \in C^2(M, \mathbb{R})$ . If  $\phi = \frac{f}{n-1}$ , then  $\operatorname{Ric}^{d\phi} = \operatorname{Ric}_f^1$ .

"Negative" synthetic dimension  $\operatorname{Ric}_{f}^{N} = \operatorname{Ric} + \operatorname{Hess} f - \frac{df \otimes df}{N - \dim(M)}.$ 

*N* is called the "synthetic dimension" parameter. Traditionally *N* is assumed to be  $N > \dim(M)$  or  $N = \infty$  but it also makes perfect sense when  $N < \dim(M)$ .

The conditions  $\operatorname{Ric}_{f}^{N} \geq \lambda g$ , N < 0 and N < 1 have been studied recently in (Ohta '13, Kolesnikov-Milman '13, Milman, '14).



As N increases,  $\operatorname{Ric}_{f}^{N} \geq \lambda g$  becomes a weaker condition.

5 / 10

### Comparison Geometry

# Bigger curvature $\rightsquigarrow$ smaller manifold.

Myers' Theorem Let  $(M^n, g)$  be a complete Riemannian manifold with  $\operatorname{Ric} \geq (n-1)Kg$ , K > 0, then  $\operatorname{diam} \leq \frac{\pi}{\sqrt{K}}$ . In particular, M is compact and  $\pi_1(M) < \infty$ .

(Qian, '97) Myers' Theorem holds when  $\operatorname{Ric}_{f}^{N} \geq (N-1)Kg$ , K > 0 and N > n.

Gauss Space  $(\mathbb{R}^n, g_{flat})$  with  $f(x) = \frac{1}{2}|x|^2$  has  $\operatorname{Ric}_f^{\infty} = g$  but M is noncompact.

(Morgan, '05) Let  $(M^n, g)$  be a complete Riemannian manifold supporting a function f with  $\operatorname{Ric}_f^{\infty} \geq \lambda g$ ,  $\lambda > 0$ , then  $\int_M e^{-f} dvol_g < \infty$ . In particular,  $\pi_1(M) < \infty$ .

# Myers' Theorem for $\operatorname{Ric}_{f}^{1}$ ?

For all manifolds N,  $\mathbb{R} \times N$  supports and Riemannian metric and density such that  $\operatorname{Ric}_{f}^{1} \geq Kg$ , K > 0.

Let  $\gamma(r)$  be a unit speed geodesic for g.

 $s(r) = \int_0^r e^{\frac{-2(f \circ \gamma)(t)}{n-1}} dt$  is the parameter for a  $\nabla^{\frac{df}{n-1}}$ -geodesic,  $\widetilde{\gamma}(s)$ . Therefore,

$$\operatorname{Ric}^{\frac{df}{n-1}}\left(\frac{d\widetilde{\gamma}}{ds},\frac{d\widetilde{\gamma}}{ds}\right) \geq (n-1)\mathcal{K} \quad \Leftrightarrow \quad \operatorname{Ric}_{f}^{1}\left(\frac{d\gamma}{dr},\frac{d\gamma}{dr}\right) \geq (n-1)\mathcal{K}e^{\frac{-4f}{n-1}}.$$

**Thm A** (W.-Yeroshkin) Let (M, g) is a complete Riemannian manifold. If there is a function f such that  $\nabla^{\frac{df}{n-1}}$  is geodesically complete and  $\operatorname{Ric}_{f}^{1} \geq (n-1)Ke^{\frac{-4f}{n-1}}g$ , K > 0 then (M, g) is compact.

A connection is called *geodesically complete* if the geodesics exist for all time.

**Corollary** Let  $(M^n, g)$ , is a complete Riemannian manifold such that  $\operatorname{Ric}_f^1 \geq \lambda g$ ,  $\lambda > 0$  and  $|f| \leq k$  then M is compact.

Improves result of (Wei-W., '09) for  $\operatorname{Ric}_{f}^{\infty} \geq \lambda g$ ,  $|f| \leq k$ .

If *M* is orientable then  $e^{-\frac{n+1}{n-1}f} dvol_g$  is parallel with respect to  $\nabla^{\frac{df}{n-1}}$ .

**Thm B** (W.-Yeroshkin) Let  $(M^n, g)$ , is a complete Riemannian manifold such that  $\operatorname{Ric}_f^1 \ge (n-1) \operatorname{Ke}^{\frac{-4f}{n-1}}g$ ,  $\operatorname{K} > 0$  then  $\int_M e^{-\frac{n+1}{n-1}f} d\operatorname{vol}_g < \infty$ . In particular,  $\pi_1(M) < \infty$ .

We also obtain versions of Lichnerowicz-Cheeger-Gromoll Splitting Theorem, Bishop-Gromov volume comparison, Laplacian comparison, Cheng's maximal diameter theorem for  $\operatorname{Ric}_{f}^{1}$ .

In particular, we obtain results for  $\operatorname{Ric}_{f}^{1} \geq \lambda g$ ,  $|f| \leq k$  that were previously only known for  $\operatorname{Ric}_{f}^{\infty} \geq \lambda g$ .

# Other Structures coming from connection

(M,g) Riemannian manifold,  $\nabla^{d\phi}$  weighted connection.

#### Weighted Sectional Curvature

Let U, V be an orthonormal pair of vectors,

$$g(R^{d\phi}(V,U)U,V) = \overline{sec}_{\phi}^{U}(V) = sec(U,V) + Hess\phi(U,U) + g(\nabla\phi,U)^{2}$$

Studied earlier in (W. '13, Kennard-W, '14).

New Splitting Theorem (W.-Yeroshkin) Suppose (M, g) is a simply connected, complete Riemannian manifold. If  $\nabla^{d\phi}$  admits k linearly independent parallel vector fields, then M splits as one of the following:

$$\begin{aligned} M &= \mathbb{R}^{k} \times N \qquad g_{M} = g_{Eucl} + e^{2\psi}g_{N} \qquad \phi = \psi_{Eucl} + \phi_{N} \\ M &= \mathbb{H}^{k} \times N \qquad g_{M} = g_{Hyp} + e^{2\psi}g_{N} \qquad \phi = \psi_{Hyp} + \phi_{N} \end{aligned}$$

# Thank you for your attention!

# References for $\operatorname{Ric}_{f}^{N}$ , $N < \dim(M)$

- Ohta, S., (K, N)-convexity and the curvature-dimension condition for negative N., arXiv:1310.7993.
- Kolesnikov, A. & Milman, E., Poincaré and Brunn-Minkowski inequalities on weighted Riemannian manifolds with boundary, arXiv:1310.2526.
- Milman, E., Beyond traditional Curvature-Dimension I: new model spaces for isoperimetric and concentration inequalities in negative dimension, arXiv:1409.4109.
- Wylie, W., A warped product version of the Cheeger-Gromoll splitting theorem, arXiv:1506.03800.
- Woolgar, E. & Wylie, W., Cosmological singularity theorems and splitting theorems for *N*-Bakry-Emery spacetimes, J. Math. Physics, 57(2), 2016.