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Abstract. We consider the isoperimetric problem in planar sectors with den-
sity rp, and with density a > 1 inside the unit disk and 1 outside. We char-
acterize solutions as a function of sector angle. We provide a very general
symmetrization theorem, and apply it to Rn with radial density.

Contents

1. Introduction 1
2. Isoperimetric Problems in Manifolds with Density 4
3. Existence of Isoperimetric Regions in Manifolds with Density 5
4. Isoperimetric Regions in Sectors with Density 12
5. The Isoperimetric Problem in Sectors with Density rp 13
6. Constant Generalized Curvature Curves 23
7. The Isoperimetric Problem in Sectors with Disk Density 30
8. Symmetrization 38
9. Isoperimetric Problems in Rn with Radial Density 43
10. Computations with Maple 44
References 48

1. Introduction

A density is a function weighting both perimeter and area. We study the isoperi-
metric problem on planar sectors with certain densities. The isoperimetric problem
seeks to enclose prescribed (weighted) area with least (weighted) perimeter. Solu-
tions are known for very few surfaces with densities (see Sect. 2 below). Our �rst
major theorem after Dahlberg et al. [DDNT, Thm. 3.16] characterizes isoperimet-
ric curves in a θ0-sector with density rp, p > 0:

Theorem. (5.19) Given p > 0, there exist 0 < θ1 < θ2 < ∞ such that in the
θ0-sector with density rp, isoperimetric curves are (see Fig. 1.1):

1. for 0 < θ0 < θ1, circular arcs about the origin,
2. for θ1 < θ0 < θ2, unduloids,
3. for θ2 < θ0 <∞, semicircles through the origin.

We give bounds on θ1 and θ2, but are unable to determine them exactly. Section 6
gives further results on constant generalized curvature curves. Sectors with density
rp are related to Lp spaces (see e.g. Cor. 5.27), have vanishing generalized Gauss
curvature [CHHSX, Def. 5.1], and have an interesting singularity at the origin
where density vanishes. Adams et al. [ACDLV] previously studied sectors with
Gaussian density.

Our second major theorem after Cañete et al. [CMV, Thm. 3.20] characterizes
isoperimetric curves in a θ0-sector with density a > 1 inside the unit disk and
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Figure 1.1. The three minimizers for sectors with density rp: a
circular arc about the origin for small sectors, an unduloid for
medium sectors, and a semicircle through the origin for large sec-
tors.

density 1 outside the unit disk. An interesting property of this problem is that it
deals with a noncontinuous density. There are �ve di�erent kinds of minimizers
depending on θ0, a, and the prescribed area, shown in Figure 7.1.

Section 8 provides a general symmetrization theorem, including Steiner, Schwarz,
and spherical symmetrization in products, warped products, and certain �ber bun-
dles. Section 9 provides applications to Rn with radial densities.

1.1. The Sector with Density rp. In the plane with density rp, Carroll et al.
[CJQW, Sect. 4] prove that for p < −2, isoperimetric curves are circles about the
origin bounding area on the outside, and prove that for −2 ≤ p < 0, isoperimetric
regions do not exist. Dahlberg et al. [DDNT, Thm. 3.16] prove that for p > 0,
isoperimetric curves are circles through the origin. By a simple symmetry argument
(Prop. 4.2), isoperimetric circles about the origin and circles through the origin in
the plane correspond to isoperimetric circular arcs about the origin and semicircles
through the origin in a π-sector. In this paper, we consider θ0-sectors for general
0 < θ0 <∞.

For p ∈ (−∞,−2)∪ (0,∞), existence in the θ0-sector follows from standard com-
pactness arguments (Prop. 3.11). Lemma 5.6 limits the possibilities to circular
arcs about the origin, semicircles through the origin, and unduloids (nonconstant
positive polar graphs with constant generalized curvature). Proposition 5.2 shows
that if the circle is not uniquely isoperimetric for some angle θ0, it is not isoperi-
metric for all θ > θ0. Corollary 5.14 shows that if the semicircle is ever minimiz-
ing, it is uniquely minimizing for all angles greater. Therefore, transitional angles
0 ≤ θ1 ≤ θ2 ≤ ∞ exist. Minimizers that depend on sector angle have been seen
before, as in the characterization by Lopez and Baker [LB, Thm. 6.1, Fig. 10]
of perimeter-minimizing double bubbles in the Euclidean cone of varying angles,
which is equivalent to the Euclidean sector. Theorem 5.19 provides estimates on
the value of θ1 and θ2.

We conjecture (Conj. 5.20) that θ1 = π/
√
p+ 1 and θ2 = π(p + 2)/(2p + 2).

Proposition 5.18 proves that the circle about the origin has positive second variation
for all θ0 < π/

√
p+ 1, and Proposition 5.10 proves the semicircle through the origin
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Figure 1.2. Using Maple we can predict the transition of mini-
mizers from the circular arc through unduloids to the semicircle as
per Conjecture 5.20 as can be seen above for p = 1.

is not isoperimetric for all θ0 < π(p+ 2)/(2p+ 2). Numerics (Fig. 1.2) also support
our conjecture.

An easy symmetrization argument (Prop. 4.2) shows that the isoperimetric
problem in the θ0-sector is equivalent to the isoperimetric problem in the 2θ0-cone,
a cone over S1. We further note that the isoperimetric problem in the cone over
S1 with density rp is equivalent to the isoperimetric problem in the cone over the
product of S1 with a p-dimensional manifold M among regions symmetric under a
group of isometries acting transitively onM . This provides a classical interpretation
of the problem, which we use in Proposition 5.9 to obtain an improved bound for
θ1 in the p = 1 case by taking M to be the rectangular two-torus.

1.2. Constant Generalized Curvature Curves. Section 6 provides further de-
tails on constant generalized curvature curves in the sector with density rp, which
are of interest since minimizers must have constant generalized curvature (see Sect.
2). Proposition 6.14 shows that if the unduloid periods are bounded above and
below by certain values, then we can determine the exact values of θ1 and θ2 (see
Conj. 5.20).

1.3. The Sector with Disk Density. Section 7 considers a sector of the plane
with density a > 1 inside the unit disk and 1 outside. Cañete et al. [CMV, Sect. 3.3]
consider this problem in the plane, which is equivalent to the π-sector. Proposition
7.2 gives the �ve possibilities of Figure 7.1. Our Theorems 7.8, 7.9, and 7.10 classify
isoperimetric curves in a θ0-sector, depending on θ0, density a, and area.

1.4. Symmetrization. In section 8, we provide two general symmetrization the-
orems in arbitrary dimension and codimension, in products, warped products, and
certain �ber bundles, including Steiner, Schwarz, and spherical symmetrization.
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Proposition 8.3 extends a symmetrization theorem of Ros [R1, Sect. 3.2] to warped
products with a product density, and is general enough to include spherical sym-
metrization as well as Steiner and Schwarz symmetrization. Proposition 8.6 extends
symmetrization to Riemannian �ber bundles with equidistant Euclidean �bers such
as certain lens spaces.

1.5. Rn with Radial Density. Section 9 considers the isoperimetric problem in
Rn with radial density. We use spherical symmetrization to reduce the problem to
a two dimensional isoperimetric problem in a plane with density. We speci�cally
consider Rn with density rp and provide a conjecture (Conj. 9.3) and a nonexistence
result (Prop. 9.5).

1.6. Computations. Section 10 discusses the Maple program we used to produce
numerical estimates for the minimizers. As depicted in Figure 1.2, the program
predicts that for a given value of p, isoperimetric curves start as circular arcs for
small sector angles and then transition smoothly to the semicircle.

1.7. Open Questions.

(1) How can one prove Conjecture 5.20 on the values of the transitional angles
θ1 and θ2?

(2) Could the values of θ1 and θ2 be proven numerically for �xed p?
(3) If a circular arc about the origin is isoperimetric in the θ0-sector with density

rp, is it isoperimetric in the same θ0-sector with density rq, q < p?
(4) Are circles about the origin isoperimetric in the Euclidean plane with

perimeter density rp, p ∈ (0, 1)? (See Rmk. after Conj. 5.25.)
(5) In the θ0-sector with density rp, do curves with constant generalized curva-

ture near that of the semicircle have half period T ≈ π (p+ 2) / (2p+ 2)?
(See Conj. 5.20 and Prop. 6.12 for the corresponding result near the circu-
lar arc.)

(6) Are spheres through the origin isoperimetric in Rn with density rp, p > 0?
(See Conj. 9.3.)
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2. Isoperimetric Problems in Manifolds with Density

A density on a Riemannian manifold is a nonnegative, lower semicontinuous
function Ψ(x) weighting both volume and hypersurface area. In terms of the un-
derlying Riemannian volume dV0 and area dA0, the weighted volume and area are
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given by dV = ΨdV0, dA = ΨdA0. Manifolds with densities arise naturally in geom-
etry as quotients of other Riemannian manifolds, in physics as spaces with di�erent

mediums, in probability as the famous Gauss space Rn with density Ψ = ce−a
2r2 ,

and in a number of other places as well (see Morgan [M1, Ch. 18, M5]).
The generalized mean curvature of a manifold with density Ψ(x) = eψ(x) is

de�ned to be

Hψ = H − 1
n− 1

dψ

dn
,

whereH is the Riemannian mean curvature, as this corresponds to the �rst variation
of weighted area [M5, Intro.], [M1, Ch. 18]. In two dimensions, the focus of this
paper, this reduces to

λ = κ− dψ

dn
,

where κ is the Riemannian curvature.
The isoperimetric problem on a manifold with density seeks to enclose a given

weighted area with the least weighted perimeter. As in the Riemannian case, for
a smooth density isoperimetric hypersurfaces have constant generalized curvature.
The solution to the isoperimetric problem is known only for a few manifolds with
density including Gauss space (see [M1, Ch. 18]) and the plane with a handful of
di�erent densities (see Cañete et al. [CMV, Sect. 3], Dahlberg et al. [DDNT, Thm
3.16], Engelstein et al. [EMMP, Cor. 4.9], Rosales et al. [RCBM, Thm. 5.2], and
Maurmann and Morgan [MM, Cor. 2.2]).

3. Existence of Isoperimetric Regions in Manifolds with Density

In this section we extend some techniques used for proving existence of isoperi-
metric regions in Rn with density to certain noncomplete smooth manifolds. Our
motivating example is a two dimensional cone with density rp and the singular
vertex removed. The main result is a general existence condition for minimizers in
non-complete manifolds (Thm. 3.9). We use this to prove existence and regularity
of minimizers in the cone with density rp (Prop. 3.11). We also show existence and
regularity of minimizers in the sector with disk density (Prop. 3.12).

We will be using the language of geometric measure theory but the results and
the ideas of the important proofs should be accessible even to someone completely
unfamiliar with the �eld. For such a reader we provide the following brief glossary:

• n-dimensional current − a very general concept of a surface that allows
some nice compactness properties.

• n-dimensional mass − the equivalent of n-dimensional volume for an n-
dimensional current. In our case it will always be equivalent to n-dimensional
Hausdor� measure. We shall denote the mass of a current A byM(A).

• n-dimensional locally integral current − an n-dimensional current with lo-
cally �nite mass and locally �nite boundary mass.

For a general reference for this section see [M1, Ch. 3-5,9].
There is a standard method for proving the existence of isoperimetric regions

in Rn with some density (or possibly di�erent densities for n-dimensional mass
and (n − 1) dimensional mass). Namely, take a sequence of regions with a �xed
weighted n-dimensional mass W0 whose boundary masses approach the in�mum
weighted (n − 1)-dimensional mass and then apply the compactness theorem of
geometric measure theory to obtain a convergent subsequence. The trick of the
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Figure 3.1. An example of mass escaping to in�nity: the se-
quence of unit balls eventually lies outside any ball about the ori-
gin.

argument is then to show that the limit actually has n-dimensional weighted mass
W0. This is accomplished by showing that no weighted mass �escapes to in�nity�
in the limit, i.e., eventually remains outside any ball. For an example of how mass
could escape, consider R2 with unweighted area and perimeter. Then we obtain
a sequence of regions containing area 1 and approaching the in�mum perimeter
by simply taking unit balls centered around (m,m), m ∈ N as in Figure 3.1. In
this case all of the area escapes to in�nity, and in fact this sequence converges to
0. Nevertheless, for many densities the argument can be carried through; see for
example [RCBM, Sec. 2].

The essential idea of this technique is that weighted mass converges nicely inside
compact sets and so it is only the behavior outside all compact sets that we have
to worry about. The main obstacle in extending it to a non-complete Riemannian
manifold is that now compactness fails in more places than just in�nity. Speci�-
cally, at any point where it is not complete and the density blows up there is also
the potential for weighted mass to disappear. In attempting to extend this proof
technique our �rst steps are a technical build-up to Lemma 3.7 which provides the
appropriate statement of this fact. It gives us two di�erent places where weighted
mass can escape: the regions where completeness fails, and in�nity as before. We
then make the trivial observation that weighted mass cannot disappear to any re-
gion of �nite weighted mass. This leads to the main result of this section which is a
general existence theorem with some straightforward hypotheses for isoperimetric
regions where (n− 1)-dimensional mass is unweighted but n-dimensional mass.

We will begin, however, on more solid ground with the non-existence of isoperi-
metric regions in the 2-dimensional cone over a circle with density rp for p ∈ [−2, 0).
This case provides valuable insight and motivation towards proving existence in
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general. Our proof of non-existence is adapted with minor modi�cations from the
planar proof in [CJQW, Prop. 4.2]. The �rst step is a change of coordinates.

Lemma 3.1. A circular cone with density rp is equivalent to a circular cone with
Euclidean perimeter and area density rq where q ∈ (−∞,−2) ∪ (0,∞) for p ∈
[−2, 0)\{−1} and q ∈ (−2, 0) for p ∈ (−∞,−2) ∪ (0,∞).

Proof. Making the change of coordinates w = zp+1/p+1 gives Euclidean perimeter
density and area density cr−p/p+1. �

Theorem 3.2. In the circular cone with density rp for p ∈ [−2, 0) no isoperimetric
regions exist.

Proof. For p 6= −1 we make the change of coordinates from Lemma 3.1 so that we
are in a cone with area density rq, q ∈ (−∞,−2)∪ (0,∞). Our method of showing
nonexistence will be to �x a weighted area W0 and then demonstrate that for any
ε > 0 there exists a region with perimeter less than or equal ε containing area W0.
To do this we consider two cases:

For q ∈ (−∞,−2], we note that any ball about the origin contains in�nite
weighted area. Thus we can take annuli around the origin with arbitrarily small
perimeter bounding weighted area W0.

For q ∈ (0,∞), take a ball anywhere in the cone of perimeter ε. If it contains
weighted area greater than W0 shrink it until it contains weighted area W0. If it
contains weighted area less than W0 simply slide it out towards in�nity until it has
weighted area W0, which will happen at some point since the ball of radius ε can
have arbitrarily large weighted area if it is far enough from the origin.

For p = −1 we make the change of coordinates w = log z and remark that the
same construction as in [CJQW, Prop. 4.2] for the plane works here. �

Remark. This same proof can be generalized to show that isoperimetric regions do
not exist in higher dimensional spherical cones with standard (n − 1)-dimensional
mass and n-dimensional mass weighted by the density rq for appropriate q.

There are two di�erent reasons existence fails in this proof (thinking in the
context of cones with Euclidean perimeter but some area density): in the one case
there is in�nite area around the origin, and in the other the density approaches
in�nity at in�nity. For any q ∈ (−2, 0) there is �nite area around the origin and
the density approaches 0 at in�nity. Carroll et al. [CJQW, Props. 4.3, 4.4] show
existence in the plane for these cases and the natural conjecture is that existence
also holds for any other circular cone. This basic observation that we want �nite
area about the origin and the area density to approach 0 at in�nity will be useful
to keep in mind as we formalize and generalize to higher dimensions.

De�nition 3.3. LetMn be a smooth n-dimensional manifold, not necessarily com-
plete, and Z ⊂ Mn a smooth compact n-dimensional submanifold with boundary.
Then for any locally recti�able current S on Mn de�ne

FZ(S) = inf{M(A)+M(∂B)|spt(S−(A+∂B))∩Z = ∅, A ∈ RmM
n, B ∈ Rm+1M

n}.

We give a basis for the local �at topology on Ilocm Mn with the following open
balls:

BZ,δ(T ) = {S ∈ Ilocm Mn|FZ(S − T ) < δ}
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where T ∈ Ilocm Mn, δ > 0, and Z ⊂ Mn is a smooth compact n-dimensional
submanifold with boundary. In particular, a sequence Sj ∈ Ilocm Mn converges to
L ∈ Ilocm Mn if and only if for every smooth compact submanifold with boundary
Z ⊂Mn and every δ > 0 there is a N such that for all j > N we have FZ(Sj−L) <
δ.

Remark. This is the natural generalization of the local �at topology given by Mor-
gan [M1, 9.1] for Rn. It is important to switch from closed balls to smooth compact
n-dimensional submanifolds because in a noncomplete manifold we can end up with
a non-compact ball of radius R around a point − for instance a ball containing a
deleted neighborhood of the vertex in the cone without its vertex.

Theorem 3.4 (Compactness Theorem). For a smooth n-dimensional Riemannian
manifold Mn and an open cover Ui the set

{S ∈ Ilocm Mn|M(S|Ui) ≤ c,M(∂S|Ui) ≤ c for all i}

is compact.

Remark. The Compactness Theorem is standard for integral currents in Rn (see
[M1, 5.5]). Its extension to manifolds is discussed in a remark following the theorem
and its extension to locally integral currents in Rn is discussed in [M1, 9.1].

For �nding isoperimetric regions in manifolds with density we will want to con-
sider usually not mass but rather weighted mass. That is, we take a positive lower
semi-continuous density function f and then weighted mass Wf will be de�ned on
a recti�able set A by taking the sup where we integrate forms weighted by f . The
next two lemmas establish some useful properties of weighted mass.

Lemma 3.5. If Sj ∈ Ilocm Mn is converging to L then Wf (L) ≤ lim infj→∞Wf (Tj)
and Wf (∂L) ≤ lim infj→∞Wf (∂Tj).

Proof. Follows from the de�nition of weighted mass that it is lower semicontinuous.
�

Lemma 3.6. If Sj ∈ Ilocn Mn is converging to L then for any smooth n-dimensional
compact submanifold with boundary Z ⊂ Mn and lower semi-continuous positive
density f we have limj→∞Wf (Sj |Z) = Wf (L|Z).

Proof. In codimension 0 FZ(S) simpli�es to inf{M(A)|spt(S − A)) ∩ Z = ∅, A ∈
Rn} = M(S|Z). So we see weighted mass is continuous on currents whose support
is contained in Z. �

The next lemma formalizes the idea that weighted mass can only disappear
outside compact sets.

Lemma 3.7. Let Mn be a smooth n-dimensional manifold and let Zk be an in-
creasing sequence of smooth n-dimensional compact submanifolds with boundary
such that

⋃
k>0 Zk = Mn. Then if Sj ∈ Ilocn Mn is converging to L and

lim
k→∞

lim
j→∞

Wf (Sj |(Mn\Zk)) = 0,

then

Wf (L) = lim
j→∞

Wf (Sj).
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Proof. Because the Zk increase to Mn we have limk→∞Wf (L|Zk
) = Wf (L). So,

by Corollary 3.6 we get

lim
k→∞

lim
j→∞

Wf (Sj |Zk
) = Wf (L)

which gives

lim
k→∞

lim
j→∞

(Wf (Sj)−Wf (Sj |(Mn\Zk)) = Wf (L)

and so splitting up the interior limit we obtain the desired result. �

The following establishes the simple observation that weighted mass cannot es-
cape to any region of �nite weighted mass.

Lemma 3.8. Let Uk be a decreasing sequence of open subsets of Mn whose inter-
section is empty such that for some k0 we have that Wf (Uk0) is �nite. Then if

Sj ∈ Ilocn Mn is converging,

lim
k→∞

lim
j→∞

Wf (Sj |Uk
) = 0.

Proof. Note ∪k>k0Uk0\Uk = Uk0 and so limk→∞Wf (Uk0\Uk) = Wf (Uk0) and
thus limk→∞Wf (Uk) = 0. Since Wf (Sj |Uk

) is bounded uniformly in j by Wf (Uk)
we obtain the desired result. �

Theorem 3.9 will give us some conditions under which isoperimetric regions exist.

Theorem 3.9. SupposeMn is a smooth connected possibly non-complete n-dimensional
Riemannian manifold with isoperimetric function I such that limA→∞ I(A) = ∞.
Suppose furthermore that every closed geodesic ball of �nite radius in M has �nite
volume and �nite boundary area and there is some C ∈ Z+ and x0 ∈ M such that
the complement of any closed geodesic ball of �nite radius about x0 contains �nitely
many connected components and at most C unbounded connected components. Then
for standard boundary area and any lower semi-continuous positive volume density
f such that

(1) for some x0 ∈Mn sup{f(x)|dist(x, x0) > R} goes to 0 as R goes to ∞;
(2) for some ε > 0,{x|B(x, ε) is not complete} has �nite weighted volume;

isoperimetric regions exist.

Proof. We �rst note that the second condition on the density and the condition
that closed balls of �nite radius have �nite mass also implies that closed balls of
�nite radius have �nite weighted mass since we can bound the weighted mass of
a ball by the maximum density outside some neighborhood of the points where it
fails to be complete times its mass plus the �nite weighted mass contained in that
neighborhood.

Now �x a weighted mass W0 and let P0 be the in�mum (n − 1)-dimensional
boundary mass for W0. Then consider a sequence Sj of locally integral currents
such that Wf (Sj) = W0 and limj→∞M(∂Sj) = P0. We can apply Theorem 3.4
by noting that we can assume M(∂Sj) < P0 + 1 and then taking any open cover
with bounded n-dimensional mass. So, we will assume that Sj is converging to
a limit L. By Lemma 3.5 we know that M(∂L) ≤ P0 and so it su�ces to show
that Wf (L) = W0. To this end we would like to apply Lemma 3.7. So, we must
construct a suitable sequence of compact sets. To do this we will take an increasing
sequence of closed balls about x0, add any bounded connected components outside
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of it, and subtract o� a decreasing sequence of open sets containing the areas where
Mn fails to be complete.

We de�ne Uε = int{x|B(x, ε) is not complete} and note that ∩ε>0Uε = ∅ since
Mn is locally di�eomorphic to Rn. These are the sets we will subtract o�. Next
we we de�ne Vt to be the union of B(x0, t) with every bounded connected compo-
nent in the complement Mn\B(x0, t). Since there are only �nitely many bounded
connected components outside of any such ball we obtain an increasing sequence of
compact sets by taking Zk = Vk\U1/k for all k ∈ Z+. By Condition 3 and Lemma
3.8 no area can escape to U1/k and so it now su�ces to show that no area can
escape to in�nity, i.e., Mn\Vk as k →∞.

So let us consider what these sets Mn\Vk consist of with the goal of isolating
�ends� of the manifolds in which we can work independently to show no weighted
mass disappears. By de�nition each connected component is unbounded and by
our original hypothesis there are at most C of these connected components. Fur-
thermore, for j < k each connected component of Mn\Vk is contained in some
connected component of Mn\Vj and since every connected component of Mn\Vj
is unbounded there is at least one connected component of Mn\Vk contained in
each connected component of Mn\Vj . But since there are at most C connected
components of Mn\Vj for any j, we see that eventually these components stabi-
lize in the following sense: there exists some k0 such that Mn\Vk0 consists of m
connected components A1, ..., Am such that for any k > k0 Ai\Vk has only one con-
nected component for each i ∈ {1, ...,m} and furthermore Mn\Vk consists exactly
of the m connected components A1\Vk, ..., Am\Vk. These Ai are the ends we will
examine. It will su�ce to consider each of them separately, and so from now on we
work only with A1.

If Wf (A1) <∞ then we are done by Lemma 3.8. If not then our plan of attack
will be to uniformly bound the weighted mass contained in Sj |A1 and then use
the fact that the density goes to 0. Now, spt(∂(Sj |A1)) ⊂ spt(∂Sj) ∪ ∂Vk0 and so
since M(∂Vk0) is �nite and M(∂Sj) is uniformly bounded we get M(∂(Sj |A1)) is
uniformly bounded. So if we can show that M(Sj |A1) <∞ then we can apply the
isoperimetric pro�le approaching in�nity to get a uniform bound on M(Sj |A1). The
bound on M(∂(Sj |A1)) gives us that each connected component of spt(∂(Sj |A1))
must be contained in some ball about x0. The fact that A1 minus this ball is
connected means that everything outside of the ball is contained on one side of
of this component and thus each component of spt(∂(Sj |A1)) bounds one region
of �nite mass and one region of potentially in�nite mass. Now if M(Sj |A1) were
in�nity but each component of Sj |A1 had �nite mass we would reach a contradiction
to our isoperimetric pro�le going to in�nity because we could produce regions of
arbitrarily large mass with boundary mass less than our bound on the boundary
mass of Sj |A1 . So, if M(Sj |A1) = ∞ then SJ |A1 contains a component of in�nite
mass. But then its complement in A1 has �nite mass and thus will have �nite
weighted mass (here we need the fact that balls have �nite weighted mass and
the above established fact that the boundary of each component of Sj |A1 bounds
one region with �nite mass contained inside some ball and the other with possibly
in�nite mass). Since Wf (Sj |A1) is also �nite and Wf (A1) is less than the sum
of these two �nite weighted masses we get a contradiction to our assumption that
Wf (A1) was in�nite. Thus M(Sj |A1) < ∞ and so we can use the fact that the
isoperimetric pro�le is approaching in�nity to get a uniform bound C on M(Sj |A1)
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Figure 3.2. The Snell refraction rule for curves passing through
the boundary of the unit disk. [CMV, Fig. 1] , used by permission,
all rights reserved.

. Since

M(Sj |A1\Vk
) ≤ M(Sj |A1\Vk

) · sup{f(x)|x ∈ A1\Vk}
≤ C · sup{f(x)|x ∈ A1\Vk},

and the sup goes to 0 as k goes to in�nity we are done. �

Remark. The condition on balls where completeness fails in Theorem 3.9 can be
softened slightly: if we consider the metric completion of Mn, M̄n, and let K =
M̄n\Mn, then all that is required is a sequence of open neighborhoods decreasing
to K with �nite weighted mass.

We state now a regularity result by Morgan [M6, Cor. 3.8, Sect. 3.10].

Theorem 3.10. For n ≤ 6, let S be an n-dimensional isoperimetric hypersurface
in a manifold M with smooth Riemannian metric and smooth positive area and
perimeter densities. Then S is a smooth submanifold.

The next proposition gives the existence and regularity of minimizers in the main
case that we examine in the rest of the paper.

Proposition 3.11. In the circular cone with density rp for p ∈ (−∞,−2)∪ (0,∞)
isoperimetric curves exist and are smooth.

Proof. By Lemma 3.1 this is equivalent to a circular cone with Euclidean perimeter
and area density rq for q ∈ (−2, 0). Furthermore it su�ces to consider the cone
with deleted vertex. Then it is easy to see that we meet the criteria of Theorem
3.9. Smoothness follows from Theorem 3.10. �

We �nish with the existence and regularity of minimizers for a certain piecewise
constant density examined in Section 7.

Proposition 3.12. In the θ0-sector with density a > 1 inside the unit disk D
and 1 outside, isoperimetric curves exist for any given area. These isoperimetric
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curves are smooth except at the boundary of D, where they obey the following Snell
refraction rule (see Fig. 3.2):

cosα+

cosα−
=

1
a
,

where a+ is the angle of intersection from inside of D and α− is the angle of
intersection from outside of D.

Proof. Cañete et al. [CMV, Thm. 3.18] prove existence for the plane. The same
result and proof hold for the θ0-sector. The regularity and Snell refraction rule
follow from [CMV, Prop. 2.14]. �

4. Isoperimetric Regions in Sectors with Density

We study properties of isoperimetric regions in planar sectors with radial densi-
ties. Proposition 4.2 shows there is a one-to-one correspondence between minimizers
in the θ0-sector and in the 2θ0-cone, modulo rotations. Propositions 4.4 and 4.5
provide some regularity results.

Lemma 4.1. Given an isoperimetric region in the 2θ0-cone with density f(r), there
exist two rays from the origin separated by an angle of θ0 that divide both the area
and perimeter of the region in half.

Proof. First we show that there are two such rays that separate the area of the
region in half. Take any two rays from the origin separated by an angle of θ0.
Rotate them around, keeping an angle of θ0 between them. The area between them
varies continuously as we rotate the rays, and thus so does their di�erence, A. By
the time we rotate the rays by an angle of θ0, A has changed to −A. By the
intermediate value theorem, at some point the di�erence must be 0, implying there
are two rays separated by an angle θ0 that divide the area in half. If one side had
less perimeter than the other, we could re�ect it to obtain a region with the same
area and less perimeter than our original region, violating the condition that it was
isoperimetric. �

Proposition 4.2. An isoperimetric region of area 2A in the cone of angle 2θ0

with density f(r) has perimeter equal to the twice the perimeter of an isoperimetric
region of area A in the sector of angle θ0 with density f(r). Indeed, the operation
of doubling a sector to form a cone provides a one-to-one correspondence between
isoperimetric regions in the sector and isoperimetric regions in the cone, modulo
rotations.

Proof. Given an isoperimetric region in the sector, take its re�ection into the cone
to obtain a region in the cone with twice the area and twice the perimeter. This
region must be isoperimetric for the cone, for if there were a region in the cone
with less perimeter for the same area we could divide its area in half by two rays
separated by an angle θ0 as in Lemma 4.1, take the side with at most half the
perimeter to obtain a region in the θ0-sector with the same area and less perimeter
than our original isoperimetric region.

Conversely, given an isoperimetric region in the cone, divide its area and perime-
ter in half by the two rays described in Lemma 4.1. Both regions must be isoperi-
metric in the sector, for if there were a region with less perimeter for the same
area, taking its double would yield a region in the cone with less perimeter than
our original region for the same area. �
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We shall �nd many occasions to use the following proposition of Dahlberg et al.

Proposition 4.3. [DDNT, Lem. 2.1] Consider R2−{0} with smooth radial density

eψ(r). A constant-generalized-curvature curve is symmetric under re�ection across
every line through the origin and a critical point of r.

Proof. This holds from the uniqueness of ordinary di�erential equations. We note
that the same proof holds in the sector with radial density. �

Proposition 4.4. In the θ0-sector with smooth density f(r), isoperimetric curves
meet the boundary perpendicularly.

Proof. By Proposition 4.2 there is a one-to-one correspondence between minimizers
in the sector and the cone, meaning the double of this curve in the cone of angle
2θ0 is minimizing and hence smooth (Prop. 3.11). Therefore, the original curve
meets the boundary perpendicularly. �

Proposition 4.5. In the θ0-sector with smooth density f(r), if isoperimetric curves
are nonconstant polar graphs, they do not contain a critical point on the interior.

Proof. Assume there is an isoperimetric curve r with a critical point on the interior.
By Proposition 4.4, ṙ(0) = ṙ(θ0) = 0. Since constant generalized curvature curves
are symmetric under re�ection across a line through the origin and a critical point
of r (Prop. 4.3), in the cone of angle 2θ0 this curve has at least four critical points.
By symmetry, critical points must be strict extrema. Let C be a circle about the
axis intersecting the curve in at least four points. C divides the curve into at least
two regions above C and two regions below C. Interchanging one region above C
with a region below C results in a region with the same perimeter and area whose
boundary is not smooth. Since isoperimetric curves must be smooth, r cannot be
a minimizer. �

Corollary 4.6. If an isoperimetric curve r(θ) in the θ0-sector with density is a
nonconstant polar graph, r must be strictly monotonic.

Remark. Proposition 4.5 and Corollary 4.6 strengthen some arguments of Adams
et al. [ACDLV, Lem. 3.6].

5. The Isoperimetric Problem in Sectors with Density rp

Our main theorem, Theorem 5.19, characterizes isoperimetric regions in a pla-
nar sector with density rp, p > 0. The subsequent results consider an analytic
formulation of the problem.

Proposition 5.1. In the half plane with density rp, p > 0, semicircles through the
origin are the unique isoperimetric curves.

Proof. By Proposition 4.2, there is a one-to-one correspondence between minimizers
in the θ0-sector and the 2θ0-cone; in particular there is a correspondence between
minimizers in the half plane and minimizers in the 2π-cone, i.e., the plane. Since
circles through the origin are the unique minimizers in the plane (see Sect. 1.1),
semicircles through the origin are the unique minimizers in the half plane. �

Proposition 5.2. For density rp, if the circle about the origin is not uniquely
isoperimetric in the θ0-sector, for all θ > θ0 it is not isoperimetric.
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Proof. Let r be a non-circular isoperimetric curve in the θ0-sector, and let C be a
circle bounding the same area as r. For any angle θ > θ0, transition to the θ-sector
via the map α → αθ/θ0. This map multiplies area by θ/θ0, and scales tangential
perimeter. Therefore, if r had the same or less perimeter than C in the θ0-sector,
its image under this map has less perimeter than a circle about the origin in the
θ-sector. �

Proposition 5.3. In the θ0-sector with density rp, p > 0, an isoperimetric region
contains the origin, and its boundary is a polar graph.

Proof. Work in Euclidean coordinates via the mapping w = zp+1/(p + 1). Here
perimeter is Euclidean perimeter and the area density is cw−q where q = p/(p+ 1).
Since the area density is strictly decreasing away from the origin, an isoperimetric
region must contain the origin. Any minimizer is bounded by a smooth curve
of constant generalized curvature (Thm. 3.10), and since generalized curvature
is just Riemannian curvature divided by the area density [CJQW, Def. 3.1], the
Riemannian curvature does not change sign, and the curve is convex. Thus an
isoperimetric curve is a polar graph in Euclidean coordinates and hence in the
original coordinates. Note that all constant generalized curvature curves are convex
in Euclidean coordinates. �

De�nition 5.4. An unduloid is a nonconstant positive polar graph with constant
generalized curvature.

Here we state another result from Dahlberg et al. that will be useful in classifying
the potential minimizers for the θ0-sector with density rp.

Proposition 5.5. [DDNT, Prop. 2.11] In a planar domain with density rp, p > 0,
if a constant generalized curvature closed curve passes through the origin, it must
be a circle.

Lemma 5.6. In the θ0-sector with density rp, isoperimetric curves are either circles
about the origin, semicircles through the origin, or unduloids.

Proof. By Proposition 5.3, minimizers must be polar graphs with constant gener-
alized curvature bounding regions that contain the origin. Therefore it can either
be constant, a circle, or nonconstant, an unduloid. If the curve goes through the
origin, it must be part of a circle through the origin (Prop. 5.5). However, to meet
regularity conditions, the curve must be an integer number of semicircles. Since
one semicircle is better than n semicircles, the minimizer will be a single semicircle
through the origin. �

Proposition 5.7. [DDNT, Lem. 3.7] In the plane with density rp, p > 0, the
least-perimeter `isoperimetric' function I(A) satis�es

I(A) = cA
p+1
p+2 .

Remark. While this result is stated in the plane, it also holds in the sector.

Theorem 5.8. In the θ0-sector with density rp, p > 0, circular arcs are isoperi-
metric for θ0 = π/(p+ 1).

Proof. Transition to Euclidean coordinates, where θ0-sector gets mapped to the half
plane. Assume some r(θ) other than the circle is isoperimetric. By Proposition 4.5,
r(0) 6= r(π), and ṙ(θ) = 0 at 0 and π, and nowhere else. Re�ect r over the x-axis,
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obtaining a closed curve. By the four-vertex theorem, this curve has at least four
extrema of classical curvature. Generalized curvature in Euclidean coordinates is
Riemannian curvature divided by the area density [CJQW, Def. 3.1]. That is:

κϕ = crp/p+1κ

for some c > 0. At an extremum of Riemannian curvature we see

0 =
d

dθ
κϕ = κ′crp/p+1 + c′r−1/p+1ṙκ = c′r−1/p+1ṙκ,

which implies either ṙ = 0 or κ = 0. However, if κ = 0, the curve is the geodesic,
which is a straight line in Euclidean coordinates, which cannot be isoperimetric.
Therefore ṙ = 0, meaning r must have a critical point other than 0 and π, so it
cannot be isoperimetric. �

Remark. After �nding this proof and examining the isoperimetric inequality in
Proposition 5.27, we came across a more geometric proof. We show that in the
Euclidean θ0-sector with area density cr−p/p+1, circles about the origin are isoperi-
metric for θ0 = π. When p = 0, a semicircle about the origin is a minimizer. Now,
for any p > 0, suppose some region R is a minimizer. Take a semicircle about
the origin bounding the same Euclidean area; clearly it will have less perimeter.
However, it also has more weighted area, because we have moved sections of R that
were further away from the origin towards the origin. Since the area density is
strictly decreasing in r, we must have increased area. Therefore the circle about
the origin is the minimizer for the Euclidean θ0-sector with area density cr−p/p+1

for θ0 = π, implying circular arcs are the minimizers in the π/(p + 1)-sector with
density rp.

Proposition 5.9. When p = 1 circles about the origin are minimizing in the sector
of 2 radians with density rp.

Proof. Morgan [M3, Prop. 1] proves that in cones over the square torus T2 =
S1(a) × S1(a) balls about the origin are minimizing as long as |T2| ≤ |S2(1)|. We
note that this proof still holds for rectangular tori T2 = S1(a) × S1(b), a ≥ b so
long as the ratio a : b is at most 4 : π. Taking the cone over the rectangular torus
with side lengths 4 and π, and modding out by the shorter copy of S1 we get the
cone over an angle 4 with density πr. Since balls about the origin are minimizers
in the original space, this implies that their images, circles about the origin, are
minimizing in this quotient space. �

Remark. Morgan and Ritoré [MR, Rmk. 3.10] ask whether |Mn| ≤ |Sn(1)| is enough
to imply that balls about the origin are isoperimetric in the cone overM . Trying to
take the converse to the above argument we found an easy counterexample to this
question. Namely takingM to be a rectangular torus of area 4π with one very long
direction and one very short direction, we see that balls about the origin are not
minimizing, as you can do better with a circle through the origin cross the short
direction.

Along the same lines of Proposition 5.9 one might hope to get bounds for other
values of p by examining when balls about the origin are minimizing in cones over
S1(θ)×Mp for M compact with a transitive isometry group and then modding out
by the symmetry group of M to get the cone over S1(θ) with density proportional
to rp. In order to see when balls about the origin are minimizing in the cone over
T2, Morgan uses the Ros product theorem with density [M2, Thm. 3.2], which
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requires the knowledge of the isoperimetric pro�le of the link (in his case T2). One
such manifold of the form S1 ×M for which the isoperimetric problem is solved
is S1 × S2 [PR, Thm. 4.3]. The three types of minimizers in S1 × S2 are balls or
complements of balls, tubular neighborhoods of S1 × {point}, or regions bounded
by two totally geodesic copies of S2. By far the most di�cult of the three cases
to deal with are the balls, where unlike the other two cases we cannot explicitly
compute the volume and surface area. Fixing the volume of S1 × S2 as 2π2 = |S3|
we can apply the same argument Morgan uses in [M3, Lemma 2] to show that if
the sectional curvature of S1×S2 is bounded above by 1 (by taking S2 large and S1

small), then balls in S1×S2 do worse than balls in S3, as desired, but unfortunately
tubular neighborhoods of S1 then sometimes beat balls in S3 for certain volumes,
making it so we cannot apply the Ros product theorem. So without a better way
to deal with balls in S1 × S2 without such a strong assumption on the sectional
curvature, this method does not work even for the p = 2 case. Perhaps there is
some other way to prove when balls about the vertex are isoperimetric in the cone
over S1 × S2 without the Ros product theorem.

Proposition 5.10. In the θ0-sector with density rp, semicircles through the origin
are not isoperimetric for θ0 < (π/2) (p+ 2) / (p+ 1).

Proof. In Euclidean coordinates, semicircles through the origin terminate at the
angle θ = (π/2) (p+ 1). Since the semicircle approaches this axis tangentially, for
any θ0 < (π/2) (p+ 2)/(p+ 1), there is a line normal to the boundary θ0(p+ 1) in
Euclidean coordinates which intersects the semicircle at a single point b. Replacing
the segment of the semicircle from b to the origin with this line increases area while
decreasing perimeter. Therefore semicircles are not minimizing. �

Lemma 5.11. If the θ0-sector with density rp has isoperimetric ratio I0 and

I0 < (p+ 2)p+1θ0

[(
1

p+ 2

)
+
(
p+ 1
p+ 2

)
θ0

]p+2

,

then there exists an ε > 0 such that the isoperimetric ratio of any (θ0 + t)-sector
with 0 ≤ t < ε is greater than or equal to I0.

Proof. Consider an isoperimetric curve γ in the (θ0 + t)-sector bounding area 1. By
re�ection we can assume it is nonincreasing (Cor. 4.6). We partition the (θ0 + t)-
sector into a θ0-sector followed by a t-sector and we let α0 denote the area bounded
by γ in the θ0-sector and αt the area bounded by γ in the t−sector. Note α0+αt = 1.
Then we can bound the isoperimetric ratio It of the (θ0 + t)-sector by using the
isoperimetric ratios I0 for the θ0-sector and Rt for the t-sector as follows:

I
1/(p+2)
t = P (γ) ≥ (I0α

p+1
0 )1/(p+2) + (Rtα

p+1
t )1/(p+2).

Since the radius is nonincreasing we know that the θ0-sector contains at least its
angular proportion of the area and thus α0 ≥ θ0/(θ0 + t). We now substitute
αt = 1− α0 and look at the right side of the inequality as a function of α0:

ft(α0) = (I0α
p+1
0 )1/(p+2) + (Rt(1− α0)p+1)1/(p+2).

This function is concave, so it attains its minimum at an endpoint. Since α0 is

bounded between θ0/(θ0 + t) and 1, we see that I1/(p+2)
t is greater than or equal to

the minimum of ft(θ0/(θ0 + t)) and f(1). Since f(1) = I
1/(p+2)
0 , we want to show
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that there is some ε such that t < ε implies ft(θ0/(θ0 + t)) ≥ f(1) = I
1/(p+2)
0 . So

we de�ne a new function

g(t) = ft(θ0/(θ0 + t))− I1/(p+2)
0 .

We want to show that there is some positive neighborhood of 0 where g(t) > 0.
For t < π/(p + 1), isoperimetric regions are circular arcs, so for t ∈ (0, δ), Rt =
(p + 2)p+1t and g is di�erentiable. Furthermore, limt→0 g(t) = 0 and so it su�ces
to prove that limt→0 g

′(t) > 0. We calculate

lim
t→0

g′(t) = −I1/(p+2)
0

(
p+ 1
p+ 2

)
θ−1

0 +

(p+ 2)(p+1)/(p+2)

[(
1

p+ 2

)
θ
−(p+1)/(p+2)
0 +

(
p+ 1
p+ 2

)
θ

1/(p+2)
0

]
and deduce that this is greater than 0 if and only if

I0 < (p+ 2)p+1θ0

[(
1

p+ 2

)
+
(
p+ 1
p+ 2

)
θ0

]p+2

.

�

Corollary 5.12. If the θ0-sector with density rp has isoperimetric ratio I0 and

I0 < (p+ 2)p+1θ0

[(
1

p+ 2

)
+
(
p+ 1
p+ 2

)
θ0

]p+2

,

then there exists an ε > 0 such that the isoperimetric ratio is nondecreasing on the
interval [θ0, θ0 + ε).

Proof. The result follows from the continuity of the isoperimetric ratio in θ0 and
Lemma 5.11. �

Proposition 5.13. For �xed p > 0, the isoperimetric ratio of the θ0-sectors with
density rp is a nondecreasing function of θ0 for θ0 > 1.

Proof. When θ0 > 1 we have

(p+ 2)p+1θ0 < (p+ 2)p+1θ0

[(
1

p+ 2

)
+
(
p+ 1
p+ 2

)
θ0

]p+2

.

Since (p + 2)p+1θ0 is the isoperimetric ratio of the circular arc in the θ0-sector
we see that for these θ0 the isoperimetric ratios I0 always satisfy the conditions
of Corollary 5.12. So, for any θ1 > θ0 we can apply Corollary 5.12 to get some
nondecreasing interval starting at θ1 and then extend it on the right to a maximal
nondecreasing interval. Since the isoperimetric ratio is continuous in θ0 we can
take this interval to be closed and then if it is bounded we get a contradiction by
applying Corollary 5.12 to its right endpoint. So, we see that for each θ1 > θ0

the isoperimetric ratio is nondecreasing on [θ1,∞) and thus we deduce that the
isoperimetric ratio is nondecreasing on (θ0,∞). �

Corollary 5.14. In the θ0-sector with density rp, if the semicircle through the
origin is isoperimetric, it uniquely minimizes for all θ > θ0.
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Proof. By Proposition 5.13, the isoperimetric ratio is nondecreasing for θ0 > 1.
However, for curves that don't terminate, Lemma 5.11 and Proposition 5.13 actually
show the isoperimetric ratio is strictly increasing for θ0 > 1. Since the semicircle
through the origin does not exist before π/2 > 1, if it is a minimizer for θ0, it
minimizes uniquely for all angles greater than θ0. �

Corollary 5.15. The semicircle is the unique minimizer in the �half-in�nite park-
ing garage� {(θ, r)|θ ≥ 0, r > 0} with density rp.

Proof. Suppose γ is a minimizer in the half-in�nite parking garage. Then for any
θ0 ≥ π the restriction of γ to the θ0 sector has isoperimetric ratio greater than that
of the semicircle. Since limθ0→∞ P (γ|θ0) = P (γ) and limθ0→∞A(γ|θ0) = A(γ) the
limit of the isoperimetric ratios of γ|θ0 is the isoperimetric ratio of γ and so we
see it is also greater than that of the semicircle. Since the semicircle exists in the
half-in�nite parking garage we are done. �

Remark. Studying the isoperimetric ratio turns out to be an extremely useful tool
in determining the behavior of semicircles for θ0 > π. However, it is not the only
such tool. Here we give an entirely di�erent proof that semicircles minimize for all
nπ-sectors.

Proposition 5.16. In the θ0-sector with density rp, p > 0, even when allowing
multiplicity greater than one, isoperimetric regions will not have multiplicity greater
than one.

Proof. A region R with multiplicity may be decomposed as a sum of nested regions
Rj with perimeter and area [M1, Fig. 10.1.1]:

P (R) =
∑

P (Rj),

A(R) =
∑

A(Rj).

Let R′ be an isoperimetric region of multiplicity one and the same area as R. By

scaling, for each region Pj ≥ cA
(p+1)/(p+2)
j , where c = P p+2

c /Ap+1
R (Prop. 5.7). By

concavity

P (R) =
∑

P (Rj) ≥ c
∑(

A(Rj)
p+1
p+2

)
≥ c

(∑
A(Rj)

) p+1
p+2

= P (R′),

with equality only if R has multiplicity one. Therefore no isoperimetric region can
have multiplicity greater than one. �

Remark. For p < −2 the isoperimetric function I(A) = cA(p+1)/(p+2) is now convex.
Therefore, regions with multiplicity greater than one can do arbitrarily better than
regions with multiplicity one.

Corollary 5.17. In the nπ-sector (n ∈ Z), semicircles through the origin are
uniquely isoperimetric.

Proof. Assume there is an isoperimetric curve r(θ) bounding a region R which is
not the semicircle. Consider R as a region with multiplicity in the half plane by
taking r(θ) → r(θ modπ). Since semicircles are the minimizers in the half plane,
by Proposition 5.16, r cannot be isoperimetric. This implies that r could not have
been isoperimetric in the nπ-sector. �
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Proposition 5.18. In the θ0-sector with density rp, p > −1, circles about the
origin have nonnegative second variation if and only if θ0 ≤ π/

√
p+ 1. When

p ≤ −1, circles about the origin always have nonnegative second variation.

Proof. By Proposition 4.2 we think of the θ0-sector as the cone of angle 2θ0. A
circle of radius r in the θ0-sector corresponds with a circle about the axis with
radius rθ0/π, giving the cone the metric ds2 = dr2 + (rθ0/π)2dθ2. For a smooth
Riemannian disk of revolution with metric ds2 = dr2 + f(r)2dθ2 and density eψ(r),
circles of revolution at distance r have nonnegative second variation if and only if
Q(r) = f ′(r)2 − f(r)f ′′(r)− f(r)2ψ′′(r) ≤ 1 [EMMP, Thm. 6.3]. This corresponds
to (θ0/π)2 + p(θ0/π)2 ≤ 1, which, for p ≤ −1, always holds. When p > −1, the
condition becomes θ0 ≤ π/

√
p+ 1, as desired. �

The following theorem is the main result of this paper.

Theorem 5.19. Given p > 0, there exist 0 < θ1 < θ2 < ∞ such that in the
θ0-sector with density rp, isoperimetric curves are (see Fig. 1.1):

1. for 0 < θ0 < θ1, circular arcs about the origin,
2. for θ1 < θ0 < θ2 , unduloids,
3. for θ2 < θ0 <∞, semicircles through the origin.
Moreover,

π/(p+ 1) < θ1 ≤ π/
√
p+ 1,

π(p+ 2)/(2p+ 2) ≤ θ2 ≤ π.
When p = 1, θ1 ≥ 2 > π/2 ≈ 1.57.

Proof. By Lemma 5.6, minimizers must be circles, unduloids, or semicircles. As θ
increases, if the circle is not minimizing, it remains not minimizing (Prop. 5.2). If
the semicircle is minimizing, it remains uniquely minimizing (Cor. 5.14). There-
fore transitional angles 0 ≤ θ1 ≤ θ2 ≤ ∞ exist. Strict inequalities are trivial
consequences of the following inequalities.

To prove θ1 > π/(p + 1), note that otherwise, because circular arcs are the
unique minimizers for θ0 = π/(p+ 1) (Thm. 5.8), there would have to be a family
of other minimizers (unduloids, because certainly not semicircles) approaching the
circle. This family approaches smoothly because by the theory of di�erential equa-
tions constant generalized curvature curves depend smoothly on their parameters.
This would imply that the circle has nonpositive second variation, contradicting
Proposition 5.18.

To prove θ1 ≤ π/
√
p+ 1, recall that circular arcs do not have nonnegative second

variation for θ0 > π/
√
p+ 1 (Prop. 5.18). To prove θ2 ≥ π(p + 2)/(2p + 2), just

recall that semicircles cannot minimize for θ0 < π(p+ 2)/(2p+ 2) (Prop. 5.10). To
prove θ2 ≤ π, recall that semicircles minimize for θ0 = π (Prop. 5.1). Finally, when
p = 1, circles minimize for θ0 = 2 (Prop. 5.9). �

Remark. For p < −2, circles about the origin minimize for all sectors. The proof
in Euclidean coordinates given by Carroll et al. [CJQW, Prop. 4.3] generalizes
immediately from the plane to the sector. This proof can also be translated into
the original coordinates.

We conjecture that the circle is minimizing as long as it has nonnegative sec-
ond variation, and that the semicircle is minimizing for all angles greater than
π (p+ 2) / (2p+ 2).
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Conjecture 5.20. In Theorem 5.19, the transitional angles θ1, θ2 are given by
θ1 = π/

√
p+ 1 and θ2 = π(p+ 2)/(2p+ 2).

Remark. This conjecture is supported by numeric evidence as in Figure 1.2. Our
Maple program (Sect. 10) predicts the circular arc stops minimizing at exactly
π/
√
p+ 1, and predicts the semicircle begins to minimize very close to π(p+2)/(2p+

2).

Remark. Our minimizing unduloids give explicit examples of the abstract existence
result of Rosales et al. [RCBM, Cor. 3.13] of isoperimetric regions not bounded by
lines or circular arcs.

One potential avenue for proving this conjecture is discussed in 6.14. We also
believe the transition between the circle and the semicircle is parametrized smoothly
by curvature, which is discussed in the remark following Proposition 6.13.

Corollary 5.22 gives an example of the applicability of Theorem 5.19, as sug-
gested to us by Antonio Cañete, extending to certain polygons with density an
isoperimetric theorem for polytopes given by Morgan [M2, Thm. 3.8]. First we
need a small lemma:

Lemma 5.21. Consider a polygon in the Euclidean plane. Then there exists a
c > 0 such that any region in the polygon bounding area A less than half the area
of the polygon with perimeter P satis�es the following inequality:

P 2

A
≥ c.

Proof. This inequality is known for the circle. Mapping the polygon to a circle such
that the factor by which distance is stretched is bounded above and below, we see
it holds in a polygon, although the constant c depends on the polygon. �

Corollary 5.22. Consider a polygon with a vertex of angle θ0 located at the origin
in the plane with density rp, p > 0. For su�ciently small area, the isoperimetric
curve bounding that area will be the same as in the θ0-sector with density rp.

Proof. Let r0 be small enough so that B(0, r0) intersects only one vertex (the origin)
and two edges. Consider areas small enough that any region of that area has less
than half the Euclidean area of the polygon, and so that an isoperimetric region of
that area has perimeter less than (r0/2)p+1, so that any curve from the circle of
radius r0/2 to the circle of radius r0 has more weighted perimeter. An isoperimetric
region inside the circle of radius r0 satis�es

P = cA(p+1)/(p+2)

(Prop. 5.7). We claim that any region outside the circle of radius r0/2 satis�es
P ≥ c′A1/2.

Let R be a (possibly disconnected) isoperimetric region in the polygon with
perimeter P and area A. We note that every component of R is either inside
B(0, r0) or outside B(0, r0/2). Suppose there is a component outside B(0, r0/2)
with area A1 and perimeter P1. By Lemma 5.21 and because r is bounded above
and below this component satis�es the following inequality:

P1 ≥ c′′A1/2
1 .

Since for su�ciently small A1

cA
(p+1)/(p+2)
1 < c′′A

1/2
1 ,
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we see the best curve inside B(0, r) bounding area A1 will have less perimeter than
the best curve outside B(0, r/2) bounding area A1. This implies R could have the
same area with less perimeter as a region with multiplicity in B(0, r). This is the
same as a region with multiplicity in the sector, which by Proposition 5.16 cannot
be isoperimetric. Therefore for su�ciently small area an isoperimetric curve must
lie inside B(0, r), meaning the isoperimetric curve will be the same as that in the
sector. �

Proposition 5.23. For any n ∈ R\{0} the θ0-sector with perimeter density rp and
area density rq is equivalent to the |n|θ0-sector with perimeter density r[(p+1)/n]−1

and area density r[(q+2)/n]−2.

Proof. Make the coordinate change w = zn/n. �

Using Proposition 5.23 and our results in the sector (Thm. 5.19) we obtain the
following proposition:

Proposition 5.24. In the plane with perimeter density rk, k > −1, and area
density rm the following are isoperimetric curves:

(1) for m ∈ (−∞,−2] ∪ (2k,∞) there are none.
(2) for k ∈ (−1, 0) and m ∈ (−2, 2k) the circle about the origin.
(3) for k ∈ [0,∞) and m ∈ (−2, k − 1] the circle about the origin.
(4) for k ∈ [0,∞) and m ∈ [k, 2k] pinched circles through the origin.

We also obtain a conjecture on the undecided area density range between k − 1
and k based on our conjecture on sectors (Conj. 5.20).

Conjecture 5.25. In the plane with perimeter density rk, k > −1, and area density
rm the following are isoperimetric curves:

(1) for k ∈ [0,∞) and m ∈ (k − 1, k − 1 + 1
k+1 ] the circle about the origin.

(2) for k ∈ [0,∞) and m ∈ (k − 1 + 1
k+1 , k − 1 + k+1

2k+1 ) unduloids.

(3) for k ∈ [0,∞) and m ∈ [k− 1 + k+1
2k+1 , k] pinched circles through the origin.

Remark. Along the lines of Conjecture 5.25, the circular arc being the minimizer
up to the π/(p/2 + 1) sector is equivalent to the circle being the minimizer in the
Euclidean plane with any perimeter density rp, p ∈ [0, 1] and area density 1. As
p/2 + 1 is the tangent line to

√
p+ 1 at 0, this is the best possible bound we could

obtain that is linear in the denominator.

We now consider a more analytic formulation of the isoperimetric problem in
the θ0-sector with density rp, and give an integral inequality that is equivalent
to proving the conjectured angle of θ1. The following integral inequality follows
directly from the de�nitions of weighted area and perimeter.

We now consider a more analytic formulation of the isoperimetric problem in
the θ0-sector with density rp, and give an integral inequality that is equivalent to
proving the conjectured angle of θ1.

Proposition 5.26. In the θ0-sector with density rp, circles about the origin are
isoperimetric if and only if the inequality

[(p+ 1)θ0]
1

p+2

[ˆ (p+1)θ0

0

r(θ)
p+2
p+1 dθ

] p+1
p+2

≤
ˆ (p+1)θ0

0

√
r2 + ṙ2dθ
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holds for all C1 functions r(θ).

Proof. Transition to Euclidean coordinates as in Proposition 5.3. For any polar
graph r(θ) enclosed area and perimeter are given by:

Ar = c
p+ 1
p+ 2

ˆ (p+1)θ0

0

r
p+2
p+1 dθ,

Pr =
ˆ (p+1)θ0

0

√
r2 + ṙ2dθ.

Therefore, a circle about the origin of radius b has

Ab = c
(p+ 1)2

p+ 2
θ0b

p+2
p+1 ,

Pb = (p+ 1)θ0b.

Equating the areas yields

b = [(p+ 1)θ0]
−(p+1)

p+2

[ˆ (p+1)θ0

0

r
p+2
p+1 dθ

] p+1
p+2

.

If circles are minimizers, Pr will have perimeter greater than or equal to Pb for
any choice of r. By Proposition 3.11, any potential minimizer is smooth. The
proposition follows. Alternatively, if the inequality holds for all C1 functions, any
function r not equal to the constant function will have perimeter greater than or
equal to Pb, meaning circles about the origin are minimizers. �

Corollary 5.27. In the θ0-sector with density rp, circles about the origin are
isoperimetric if and only if the inequality[ˆ 1

0

r
p+2
p+1 dα

] p+1
p+2

≤
ˆ 1

0

√
r2 +

ṙ2

[(p+ 1)θ0]2
dα

holds for all C1functions r(α).

Proof. In the inequality from Proposition 5.26, substitute α = θ/(p + 1)θ0. The
result follows immediately. �

Remark. This gives a nice analytic proof that circles about the origin minimize for
θ0 = π/(p+ 1); letting θ0 = π/(p+ 1), we have[ˆ 1

0

r
p+2
p+1 dα

] p+1
p+2

≤
ˆ 1

0

√
r2 +

ṙ2

π2
dα.

When p = 0, this corresponds to the isoperimetric inequality in the half-plane with
density 1. As pointed out by Leonard Schulman of CalTech, the left hand side is
nonincreasing as a function of p, meaning the inequality holds for all p > 0.

Corollary 5.28. In the θ0-sector with density rp, circles about the origin are
isoperimetric for θ0 = π/

√
p+ 1 if and only if the inequality[ˆ 1

0

rqdα

]1/q

≤
ˆ 1

0

√
r2 + (q − 1)

ṙ2

π2
dα

holds for all C1 �ctions r(α) for 1 < q ≤ 2.
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κ = −4 to 4 κ = −5 to 0 κ = 0 to 4

κ = 3 to 4 κ = 11 to 16

Figure 6.1. Constant curvature curves in Euclidean coordinates
for p=1

Proof. In the inequality from Corollary 5.27, let q = (p + 2)/(p + 1), and let θ0 =
π/
√
p+ 1. �

Remark. We wonder if an interpolation argument might work here. When q = 1,
the result holds trivially (equality for all functions r), and when q = 2, the inequality
follows from the isoperimetric inequality in the half plane.

6. Constant Generalized Curvature Curves

We look at constant generalized curvature curves in greater depth. Proposi-
tion 6.14 proves that if the half period of constant generalized curvature curves is
bounded above by π(p+ 2)/(2p+ 2) and below by π/

√
p+ 1, then Conjecture 5.20

holds. Our major tools for studying constant generalized curvature curves are the
second order constant generalized curvature equation and its �rst integral.

Lemma 6.1. In the θ0-sector with density rp, an isoperimetric curve which is
neither the circle nor the semicircle is not isoperimetric for any other sector.

Proof. The curve has nonconstant, monotonic radius and attains its �rst critical
point at θ0 (Prop. 4.5 and Cor. 4.6). For any θ1 < θ0 the curve cannot hit
the boundary perpendicularly and therefore cannot be isoperimetric (Prop. 4.4).
Similarly, the curve is symmetric about θ0 (Prop. 4.3), so for any θ1 > θ0 its radius
cannot be monotonic, contradicting Corollary 4.6. �
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Proposition 6.2. In the θ0-sector with density rp, geodesics normal at the point
(1, 0) are given by

r(θ) = (sec((p+ 1)θ))1/(p+1)
.

Proof. In Euclidean coordinates, generalized curvature is Riemannian curvature
divided by the area density. Therefore, geodesics in Euclidean coordinates are
lines, and the geodesic normal at (1/(p + 1), 0) is a vertical line given by r(θ) =
sec(θ)/(p + 1). Transition back to the original coordinates, and the proposition
follows. When p = 1, this is a hyperbola through (1, 0). �

Proposition 6.3. In the θ0-sector with density rp, a nonconstant curve r(θ) per-
pendicular to the point (1, 0) has constant generalized curvature λ if any only if it
satis�es the di�erential equation

ṙ = ±r
√√√√ r2p+2(

λ
p+2 (1− rp+2)− 1

)2 − 1

until its �rst critical point. The positive solution is taken when λ < p + 1, the
negative when λ > p+ 1. Moreover, in Euclidean coordinates, a nonconstant curve
with generalized curvature λ satis�es the di�erential equation

ṙ = ±r
√√√√ r2(

(p+1)1/(p+1)

p+2 λ(1− r(p+2)/(p+1))− 1
)2 − 1.

Proof. Constant generalized curvature curves will be critical for the Lagrange mul-
tiplier functional

P − λA =
ˆ
F =

ˆ (
rp
√
r2 + ṙ2 − λ

p+ 2
rp+2

)
dθ.

We see λ = dP/dA, and thus is the generalized curvature. Since there is no explicit
θ dependence in the integrand, we may use Beltrami's identity which says

ṙ
∂

∂ṙ
F − F = c

where c is a constant of integration. This gives:

ṙ

(
rpṙ√
r2 + ṙ2

)
= c+ rp

√
r2 + ṙ2 − λ

p+ 2
rp+2

−rp+2 =
√
r2 + ṙ2

(
c− λ

p+ 2
rp+2

)
.

This simpli�es to

ṙ = ±r
√√√√ r2p+2(

c− λ
p+2r

p+2
)2 − 1.

Set r(0) = 1 and ṙ(0) = 0, and the formula follows. λ = p + 1 corresponds with
the curvature of a circular arc, thus telling us when to take the positive or negative
solution. The steps follow exactly in the Euclidean coordinates, except we now
have

P − λA =
ˆ √

r2 + ṙ2dθ − λ (p+ 1)1/(p+1)

p+ 2

ˆ
r(p+2)/(p+1)dθ.

�
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Remark. When dealing with this equation, we will slightly abuse notation and write
ṙ = ..., which implies we are working with polar graphs. It turns out that constant
generalized curvature curves outside the geodesic aren't actually polar graphs since
they have tangent radial lines at isolated points. However, these curves still satisfy
the di�erential equations above, with the stipulation that after the point where the
curve fails to be a polar graph, we must replace ṙ = +... with ṙ = −.... This detail
is rather unimportant, though, since most often we are interested in radii where
the value under the radicand is 0, which is independent of the sign out front. This
equation can be used to generate pictures of constant generalized curvature curves,
shown in Euclidean coordinates in Figure 6.1.

Remark. There is a better known second order equation for a curve with constant
generalized curvature λ, given by Corwin et al. [CHHSX, Prop. 3.6]:

r̈ =
(p+ 1)r2 + (p+ 2)ṙ2 − λ(r2 + ṙ2)3/2

r
.

The �rst order equation given above (in the θ0-sector, not Euclidean coordinates),
is actually the �rst integral of this second order equation.

Proposition 6.4. In the θ0-sector with density rp, for each curve γ normal at
(1, 0) with constant generalized curvature λ ∈ R − {0, p + 2} , there is a radius
r1 6= 1 such that r is a critical radius of γ if and only if r ∈ {r1, 1}. If λ < p + 1,
r1 > 1; if λ > p+ 1, r1 < 1.

Proof. By Proposition 6.3, the radius r satis�es:

ṙ = ±r
√√√√ r2p+2(

λ
p+2 (1− rp+2)− 1

)2 − 1.

If ṙ = 0, solving for λ yields

λ = (p+ 2)
1± rp+1

1− rp+2
.

The positive solution gives a bijection from r ∈ [0,∞) to λ ∈ (−∞, 0)∪ (p+ 2,∞),
whereas the negative solution gives a bijection from r ∈ [0,∞) to λ ∈ (0, p + 2).
This means there is an inverse function from λ to r1 in this range. Since constant
generalized curvature curves are symmetric about critical points (Prop. 4.3), 1 and
r1 will be the two alternating values of critical points. Conversely, if r = r1 or
r = 1, we have ṙ = 0. Note that if λ < p+ 1, r1 > 1, and if λ > p+ 1, r1 < 1. �

Lemma 6.5. In (r, θ)-space with density rp, consider periodic, constant generalized
curvature curves γ normal to the radial line θ = 0. Re�ection about the line θ = α/2
where α is angle at which γ attains its �rst critical value of radius followed by scaling
by 1/γ(α) gives a bijective correspondence between constant generalized curvature
curves with curvature 0 < λ < p+ 1 and constant generalized curvature curves with
p+ 1 < λ′ = λγ(α) < p+ 2 and between constant generalized curvature curves with
curvature λ < 0 and λ′ = −λγ(α) > p+ 2.

Proof. Let γ(α) = r1. If r1 > 1, γ corresponds with a constant generalized curvature
curve γs normal at (1, 0) with �nal radius 1/r1 < 1, and vice versa. By scaling,
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λ′ = ±λr1. The positive solution is taken for 0 < λ < p+ 1; the negative for λ < 0.
By Proposition 6.4,

±λr1 = ±(p+ 2)r1
1∓ rp+1

1

1− rp+2
1

.

The positive solution maps bijectively onto (p+ 1, p+ 2) as r1 ranges from 1 to ∞,
meaning curves with 0 < λ < p+ 1 get mapped to curves with p+ 1 < λ′ < p+ 2.
The negative solution maps bijectively onto (p + 2,∞) as r1 ranges from 1 to ∞,
meaning curves with λ < 0 get mapped to curves with λ′ > p+ 2. �

Proposition 6.6. In the θ0-sector with density rp, p > 0, curves normal at (1, 0)
with constant generalized curvature 0 < λ < p + 2 do not cross each other before
the curve with curvature further from the circle attains its maximum.

Proof. By Lemma 6.5, we limit ourselves to 0 < λ < p+ 1, the ranges of curvatures
where the radius is increasing. Assume two constant generalized curvature curves
r1 and r2 with curvatures λ1 > λ2 intersect each other at some angle α. Before
the lower curvature curve attains its maximum, both curves have strictly positive
derivative (Props. 4.5, 6.3), and initially r2 > r1. For them to cross at r1(α) =
r2(α) = rα, we must have ṙ1(α) > ṙ2(α). By Proposition 6.3, that implies

rα

√√√√√ r2p+2
α(

λ1
p+2 (1− rp+2

α )− 1
)2 − 1 > r1

√√√√√ r2p+2
α(

λ2
p+2 (1− rp+2

α )− 1
)2 − 1.

Which implies λ1 < λ2, a contradiction. �

Proposition 6.7. In the θ0-sector with density rp, constant generalized curvature
curves normal at (1, 0) are periodic, except for the geodesic.

Proof. Given the correspondence from Lemma 6.5, we work in the range λ < p+ 1.
Given any curve other than the geodesic normal at (1, 0) with constant generalized
curvature λ, there is a radius r1 > 1 such that if the curve attains that radius,
ṙ = 0 (Prop. 6.4). Since constant generalized curvature curves are symmetric
about critical points (Prop. 4.3), the only way a polar graph could not be periodic
is if it never reached r1. Since ṙ would have to approach zero, the radius would
have to approach r1. We recall that generalized curvature is de�ned as

λ = κ− ∂ψ

∂n
,

where κ is the Riemannian curvature and ψ = p log r. Since ṙ is approaching 0,
∂ψ/∂n must be approaching −p/r1. However, since λ is constant and ∂ψ/∂n is
approaching a constant, κ must approach the curvature of a circle with radius r1.
This implies

λ = ±p+ 1
r1

,

where the ± merely represents the oppositely oriented unit normal for λ < 0. Given
our �nal radius r1, we can �nd λ. From Proposition 6.4,

λ = (p+ 2)
1± rp+1

1

1− rp+2
1

.
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(a) (b) (c)

Figure 6.2. Types of constant generalized curvature curves: a)
for 0 < λ < p + 2 nonconstant periodic polar graphs (unduloids),
b) for λ < 0 or λ > p+2 periodic nodoids, c) for λ = p+2, a circle
through the origin, for λ = p+1 a circle about the origin, for λ = 0
a curve asymptotically approaching the radial lines θ = ±π/(2p+
2).

Equating these two expressions for λ yield

p+ 1 = ∓(p+ 2)r1
1± rp+1

1

1− rp+2
1

.

Taking the positive solution (0 < λ < p + 1), L'Hopital's rule shows that as r1

approaches 1, this equation is satis�ed. However, the function on the right has
derivative strictly greater than zero, so there are no other values of r1 that satisfy
this relationship. The negative solution (λ < 0) is ∞ when r1 = 1 and asymptoti-
cally approaches p+ 2 from above, meaning this relationship can never be satis�ed.
Therefore constant curvature curves normal at (1, 0) must achieve their critical radii
and are therefore periodic. �

Corollary 6.8. For a curve r(θ) normal at the point (1, 0) with constant generalized
curvature 0 ≤ λ ≤ 3 in the θ0-sector with density rp, p = 1, the value of r at its
next critical point is:

3− λ+
√

9− 6λ− 3λ2

2λ
.

Proof. By Proposition 6.4,

λ = 3
(

1− r2

1− r3

)
provided r 6= 0. Expanding we �nd

−λr3 + λ− 3 + 3r2 = 0.

Dividing through by r − 1 and using the quadratic formula, the result follows
immediately. �

The following two propositions classify constant generalized curvature curves in
the plane with density rp, as seen in Figure 6.2.
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Proposition 6.9. In the plane with density rp, constant generalized curvature
curves normal at (1, 0) with generalized curvature 0 < λ < p+ 2 are periodic polar
graphs.

Proof. Given the correspondence from Lemma 6.5, we may assume 0 < λ < p+ 1.
In Euclidean coordinates, constant generalized curvature curves are convex (Prop.
5.3). Since the derivative is nonnegative before its �rst critical point after (1, 0)
(Prop. 4.5) and the curve cannot cross the geodesic 6.6, the curve cannot go radial,
and therefore remains a polar graph until its �rst critical point. By Proposition 6.7,
the curve will attain this critical point, meaning it is a periodic polar graph. �

Proposition 6.10. In the plane with density rp, any curve r normal at (1, 0) with
constant generalized curvature λ < 0 or λ > p+ 2 fail to be polar graphs.

Proof. Given the correspondence from Lemma 6.5, we may assume λ < 0. In
Euclidean coordinates, this curve has a critical point at some radius r1 > 1 (Prop.
6.7). This implies that the curve is hitting some ray from the origin perpendicularly.
However, since the curve is convex and starts outside the geodesic (Prop. 5.3), it
must have crossed that ray once before, implying it is not a polar graph. �

Lemma 6.11. In the θ0-sector with density rp, p > 0, an isoperimetric curve must
have constant generalized curvature 0 < λ < p+ 2.

Proof. By Proposition 5.3, an isoperimetric curve is a polar graph. However, all
curves with constant generalized curvature λ < 0 or λ > p + 2 fail to be polar
graphs (Prop. 6.10). When λ = 0, the curve is a line in Euclidean coordinates,
which cannot meet both boundaries perpendicularly, contradicting regularity (Prop.
4.4). �

Proposition 6.12. In the θ0-sector with density rp, curves normal at (1, 0) with
constant generalized curvature λ ≈ p + 1 have half-period T ≈ π/

√
p+ 1 with

T ≥ π/
√
p+ 1.

Proof. Let r be a curve with constant generalized curvature λ = p + 1 − ε. By
Lemma 6.5 we may assume ε > 0. By Proposition 6.7 we know r is periodic. By
Proposition 6.3, r satis�es the second order equation:

r̈ =
(p+ 1)r2 + (p+ 2)ṙ2 − λ(r2 + ṙ2)3/2

r
.

Let sλ = (r−1)/ε. We note sλ(0) = 0, and ṡλ(0) = 0. We may rewrite the equation
above as:

s̈λ =
1

1 + εsλ

(p+ 1)(1 + εsλ)2 + (p+ 2)ε2ṡ2
λ − λ((1 + εs)2

λ + ε2ṡ2
λ)3/2

ε

We bound sλ. We see εsλ = r − 1 < r1 − 1. From Proposition 6.4, we have

λ = (p+ 2)
1− rp+1

1

1− rp+2
1

,

from which we see
dλ

dr1
|r1=1= −1

2
(p+ 1) < −1

2
,

implying

|dr1

dλ
| < 2,



ISOPERIMETRIC PROBLEMS IN SECTORS WITH DENSITY - REPORT 105 OF 7/27 29

so for small ε, εsλ < r − 1 < r1 − 1 = 2ε+O(ε2).
We now bound ṡλ. By Proposition 6.3, we have

ṙ = r

√√√√ r2p+2(
λ
p+2

(
1− r(p+2)

)
− 1
)2 − 1.

Expanding about r = 1 by Taylor yields

ṙ = (1 + 2(p+ 1)(r − 1))

√
(1 + 2(p+ 1)(r − 1) +O(ε2)

(1 + (p+ 1− ε)(r − 1) +O(ε2))2
− 1

= (1 +O(ε))

√
1 + 2(p+ 1)(r − 1) +O(ε2)

1 + 2(p+ 1− ε)(r − 1) +O(ε2)
− 1 = O(ε).

Thus we may write:

s̈λ =
1

1 + εsλ

(p+ 1)(1 + 2εsλ +O(ε2)) +O(ε2)− λ(1 + 2εsλ +O(ε2))3/2

ε

= (1 +O(ε))
(p+ 1)(1 + 2εsλ) +O(ε2)− λ(1 + 3εsλ +O(ε2))

ε

= (1 +O(ε))
p+ 1 + 2(p+ 1)εsλ +O(ε2)− (p+ 1) + ε− 3(p+ 1− ε)εsλ

ε

= (1 +O(ε)) (1 + 2(p+ 1)sλ − 3(p+ 1− ε)sλ +O(ε))

= 1− (p+ 1)sλ +O(ε).

Note that sp+1 =
(
1− cos

(√
p+ 1 θ

))
/(p+ 1) satis�es the di�erential equation

s̈p+1 = 1− (p+ 1)sp+1 and the initial conditions sp+1(0) = 0 and ṡp+1(0) = 0, and
is therefore the unique solution. sp+1 has half-period π/

√
p+ 1, which implies that

for λ ≈ p + 1, sλ has half-period T ≈ π/
√
p+ 1. Finally, since the circle is stable

for angles less than π/
√
p+ 1 (Prop. 5.18), we see T ≥ π/

√
p+ 1. �

Proposition 6.13. In the plane with density rp, the half period T of an unduloid
normal at (1, 0) with constant generalized curvature 0 < λ < p+ 1 is given by

T =
ˆ r1

1

dr

r
√

r2p+2(
1−r

p+1
1

1−r
p+2
1

(1−rp+2)−1

)2 − 1
,

where r1is the curve's �rst critical radius after r = 1.

Proof. This follows directly from the di�erential equation in Proposition 6.3. �

Remark. Our proof that curves with λ ≈ p + 1 have half periods T ≈ π/
√
p+ 1

(Prop. 6.12) gives us a nice analytic result. That is, we see

lim
r1→1

ˆ r1

1

dr

r
√

r2p+2(
1−r

p+1
1

1−r
p+2
1

(1−rp+2)−1

)2 − 1
=

π√
p+ 1

.
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Figure 6.3. This Mathematica plot of unduloid half-period T as
a function of maximum radius r1 gives strong evidence for our main
Conjecture 5.20 (see Prop. 6.14).

Proposition 6.14. In the plane with density rp, assume the half period of constant
generalized curvature curves normal at (1, 0) with generalized curvature p + 1 <
λ < p+ 2 is bounded below by π/

√
p+ 1 and above by π(p+ 2)/(2p+ 2). Then the

conclusions of Conjecture 5.20 hold.

Proof. By Proposition 5.6, minimizers are either circles about the origin, semicircles
through the origin, or unduloids. By Lemma 6.1, unduloids can only minimize for
one sector angle, namely their half period. Since the semicircle cannot minimize
before π(p + 2)/(2p + 2), and by assumption there are no unduloids with half
period less than π/

√
p+ 1, the circle must be minimizing for all angles less than

that. Similarly, since the circle cannot minimize after π/
√
p+ 1 and by assumption

there are no unduloids with half period greater than π(p+2)/(2p+2), the semicircle
through the origin must be the minimizer for all angles greater than that. �

Remark. We use the equation from Proposition 6.13 to provide evidence for the
bounds in Proposition 6.12. Figure 6.3 shows the Mathematica plot for p = 2,
which is representative of all p. Moreover, the integral appears to be monotonic in
r1 which would imply that every unduloid with 0 < λ < p+2 minimizes for exactly
one θ0-sector. Francisco López has suggested studying the integral above with the
techniques of complex analysis.

7. The Isoperimetric Problem in Sectors with Disk Density

In this section we classify the isoperimetric curves in the θ0-sector with density
1 outside the unit disk D centered at the origin and a > 1 inside D. Proposition
7.2 gives the potential minimizing candidates. Lemmas 7.4, 7.5, and 7.6 compare
these candidates, and Theorems 7.8, 7.9, 7.10 classify the isoperimetric curves for
every area and sector angle.



ISOPERIMETRIC PROBLEMS IN SECTORS WITH DENSITY - REPORT 105 OF 7/27 31

De�nition 7.1. A bite is an arc of ∂D and another internal arc (inside D), the
angle between them equal to arccos(1/a) (see Fig. 7.1(c)).

(a)

(b) (c)

(d) (e)

Figure 7.1. Isoperimetric sets in sectors with disk density: (a)
an arc about the origin inside or outside D; (b) an annulus inside
D; (c) a bite; (d) a semicircle on the edge disjoint from the interior
of D; (e) a semicircle centered on the x-axis enclosing D for θ0 = π.

Proposition 7.2. In the θ0-sector with density a > 1 inside the unit disk D and 1
outside, for area A > 0, an isoperimetric set is one of the following (see Fig. 7.1):

(a) an arc about the origin inside or outside D;
(b) an annulus inside D with ∂D as a boundary;
(c) a bite;
(d) a semicircle on the edge disjoint from the interior of D;
(e) an arc centered on the x-axis enclosing D for θ0 = π.

Proof. Any component of a minimizer has to meet the edge normally by Proposition
4.4, since if not rotation about the origin brings it into contact with the edge or
another component, contradicting regularity (Prop. 3.12). Since each part of the
boundary has to have constant generalized curvature it must be made up of circular
arcs. We can discard the possibility of combinations of circular arcs with the same
density since one circular arc is better than n circular arcs. Therefore, there are
�ve possibles cases:

(1) A circular arc from one boundary edge to itself (including possibly the
origin).
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There are three possibilities according to whether the semicircle has 0, 1, or
2 endpoints inside the interior of D. A semicircle with two endpoints inside
D has an isoperimetric ratio of 2πa. For a semicircle with one endpoint
inside D (Fig. 7.2), by Proposition 3.12 Snell's Law holds. Then the only
possible curve that intersects the boundary normally would also have to
intersect D normally. Its perimeter and area satisfy:

θ0

∂D

β

Figure 7.2. A semicircle meeting ∂D perpendicularly has more
perimeter than a semicircle disjoint from the interior of D (Fig.
7.1d).

P = r(π − β + aβ),

A =
r2

2
(π − β + aβ) ,

P 2

A
= 2 (π + β (a− 1)) .

Therefore a semicircle (d) outside D with isoperimetric ratio 2π, is the only
possibility.

(2) A circular arc from one boundary edge to another.
An arc (a) or annulus (b) about the origin are the only possibilities for any
θ0 < π or A ≤ aθ0/2. At θ0 = π and area A > aθ0/2 a semicircle (e)
centered on the x-axis enclosing D is equivalent to a semicircle centered at
the origin. For θ0 > π and A > aθ0/2, a semicircle tangent to ∂D together
with the rest of ∂D (Fig. 7.3) is in equilibrium, but we will show that it is
not isoperimetric. Its perimeter and area satisfy:

P = πR+ (θ0 − π), A =
π

2
(
R2 − 1

)
+
θ0a

2
.

Comparing it with an arc (a) about the origin we see that it is not isoperi-
metric.
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θ0

Figure 7.3. A semicircle tangent to ∂D together with the rest of
∂D is never isoperimetric.

(3) Two circular arcs (c) meeting along ∂D according to Snell's Law (Prop.
3.12).

(4) Three or more circular arcs meeting along ∂D.
By Cañete et al. [CMV, Prop. 3.19] this is never isoperimetric.

(5) In�nitely many circular arcs meeting along ∂D.
By Cañete et al. [CMV, Prop. 3.19] this is never isoperimetric.

�

Proposition 7.3. For area A ≥ aθ0/2, isoperimetric sets are one of the following
(see Fig. 7.1):

(a) semicircles on the edge disjoint from the interior of D;
(b) an arc about the origin;
(c) an arc centered at the x-axis enclosing D for θ0 = π.

Proof. By Proposition 7.2, isoperimetric sets are either (a), (d) or (e), since (b) and
(c) don't enclose enough area. �

Lemma 7.4. For area A = aθ0/2, the isoperimetric sets are (see Fig. 7.1):
(1) if θ0 < aπ, the boundary of the unit disk D;
(2) if θ0 = aπ, both (1) and (3);
(3) if θ0 > aπ, semicircles on the edge disjoint from the interior of D.

Proof. By Proposition 7.3 the isoperimetric sets for this area are either semicircles
in the edge, ∂D or both. Comparing the isoperimetric ratios,
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(a) for ∂D:
P 2

A
=

2θ0

a
,

(b) for the semicircle on the edge:

P 2

A
= 2π.

The result follows. �

Lemma 7.5. For

θ1 = arccos
1
a
− 1
a

√
1− 1

a2

and area A in�nitesimally less than the area of D, in the θ0-sector, isoperimetric
sets are (see Fig. 7.1):

(1) if θ0 < θ1, an annulus inside D,
(2) if θ0 = θ1, both (1) and (3),
(3) if θ0 > θ1, a bite.

Proof. For area in�nitesimally less than aθ0/2, semicircles (d) and arcs (a) cannot
be isoperimetric since an annulus (b) and a bite (c) are better. Compare the ratio
P 2/A of the region inside the �rst arc of the annulus and the region subtracted by
the bite:

(a) for the region enclosed by the �rst arc of the annulus:

P 2

A
= 2aθ0,

(b) for the region subtracted by the bite:

P 2

A
= 2a

(
arccos

1
a
− 1
a

√
1− 1

a2

)
.

Equating the formulas we �nd that the annulus encloses more area with less perime-
ter if

θ0 < θ1 = arccos
1
a
− 1
a

√
1− 1

a2
,

while if θ0 > θ1 the arc intersecting ∂D does better. Therefore, for areas in�nites-
imally less than that of the unit disk, it is better to subtract a small amount of
area from the disk with an annulus if θ0 < θ1, but it is better to take out a bite if
θ0 > θ1. The two tie when θ0 = θ1. �

Lemma 7.6. In the θ0-sector with density a > 1 inside the unit disk D and 1
outside, for area A > aθ0/2 an isoperimetric curve is:

(1) if aθ0/2 < A < θ2
0(a− 1)/2(θ0 − π), an arc about the origin;

(2) if A = θ2
0(a− 1)/2(θ0 − π), both (1) and (3);

(3) if A > θ2
0(a−1)/2(θ0−π), a semicircle on the edge disjoint from the interior

of D.

Proof. By Proposition 7.3 an isoperimetric curve is one of the following: a semicircle
on the edge disjoint from the interior of D, an arc about the origin, or both.

For a semicircle with radius r:

P 2

A
= 2π.
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For an arc about the origin with radius R:

P 2

A
=

2θ0R
2

a+R2 − 1
.

By equating the ratios we calculate the values of R2, r and area A1 for which both
ratios are equal:

R2 =
π(a− 1)
θ0 − π

,

r = θ0

√
(a− 1)
π(θ0 − π)

,

A1 =
θ2

0(a− 1)
2(θ0 − π)

.

Looking at the ratios, we see that isoperimetric curves are arcs about the origin
for A < A1, semicircles on the edge disjoint from the interior of D for A > A1, and
both for A = A1. Moreover for θ0 < π, arcs about the origin are minimizers for
any A > aθ0/2 and for θ0 > aπ semicircles are the minimizer for any A > aθ0/2
since A1 never occurs in either case. �

Proposition 7.7. In the θ0-sector with density a > 1 inside the unit disk D and 1
outside, for a �xed angle and area A < aθ0/2, once a bite encloses more area with
less perimeter than an annulus inside D, it always does.

Proof. Increasing the di�erence aθ0/2−A, it will be su�cient to prove that a bite
is better than a scaling of a smaller bite because an annulus changes by scaling.
Therefore, there will be at most one transition.

∂D
A3

A2

A1

Figure 7.4. A bite is better than a scaling of a smaller bite, and
hence once better than an annulus, it is always better.

To prove that a bite does better than a scaling of a smaller bite we are going to
show that it has less perimeter and more area. Take a smaller bite and scale it by
1 + ε (see Fig. 7.4) and eliminate the perimeter outside D. Another bite is created
with perimeter Pa and area Aa:

Pa < (1 + ε)P, Aa = (1 + ε)2 (A1 +A2)−A3 > (1 + ε)2A1,
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Thus it is better than scaling a smaller bite. �

Theorem 7.8. For some θ2 < π, in the θ0-sector with density a > 1 inside the
unit disk D and 1 outside, for θ0 ≤ π, there exists 0 < A0 < A1 < aθ0/2, such that
an isoperimetric curve for area A is (see Fig. 7.1):

(1) if 0 < A < A0 , an arc about the origin if θ0 < π/a, semicircles on the edge
disjoint from the interior of D if θ0 > π/a, and both if θ0 = π/a;

(2) if A = A0, both type (1) and (3);
(3) if A0 ≤ A < A1 a bite, if A1 < A < aθ0/2 an annulus inside D, and if

A = A1 both; if θ0 > θ2, A1 = aθ0/2 and the annulus is never isoperimetric;
(4) if A ≥ aθ0/2, an arc about the origin; at θ0 = π any semicircle centered on

the x-axis enclosing D.

Proof. By Proposition 7.2, there are only four sets that can be minimizers for areas
less than aθ0/2. By Cañete et al. [CMV, Thm. 3.20] a bite is never isoperimetric
for small areas since the semicircle is better. We compare the isoperimetric ratio
of a semicircle on the edge disjoint from the interior of D, an arc about the origin
and an annulus inside D:

for a semicircle:

P 2

A
= 2π,

for an arc about the origin:

P 2

A
= 2θ0a,

for an annulus inside D with radius s:

P 2

A
=
(

2θ0

a

)(
(1 + as)2

1− s2

)
.

For small areas, in case (c) , s→ 1 and the isoperimetric ratio increases. Equating
(a) and (b), simple calculations show that minimizers are arcs about the origin for
θ0 < π/a, semicircles for θ0 > π/a, and both for θ0 = π/a.

For area A in�nitesimally less than aθ0/2, Lemma 7.5 shows the minimizers and
the angle 0 < θ2 < π/2 in which the transition occurs. Proposition 7.7 shows
that once a bite encloses more area with less perimeter than an annulus, it always
does. Then when the annulus starts minimizing for area in�nitesimally less than
aθ0/2 there can be at most one transition between it and a bite. Moreover if this
transition occurs, there exists a A0 < A1 < aθ0/2 such that at the transition point
area A = A1 and θ0 < θ2. When a bite starts minimizing for area in�nitesimally
less than aθ0/2 it remains isoperimetric for every A < aθ0/2 until a semicircle in
the edge or an arc about the origin beats it.

We can calculate the exact value of A0 when the transition between an arc
about the origin and an annulus inside D happens. Equating perimeter and area
we conclude:

A0 =
θ0

4

(
a+

√
2− 1

a2

)
.

The same technique can be used to calculate A0 when the transition between a
semicircle in the edge and an annulus inside D happens. Then,
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A0 =
θ0

2
2θ2

0a
2 +

(
θa2 + πa

)
(πa− θ0) + 2θ0a

√
θ2

0a
2 + (θa2 + πa) (πa− θ0)

a (θ0a+ π)2 .

For area A = aθ0/2, by Lemma 7.4, minimizers are arcs about the origin.
For area A > aθ0/2 and θ0 ≤ π, by Lemma 7.6, minimizers are arcs about the

origin. However, for θ0 = π, minimizers can be any arc centered at the x-axis and
enclosing D since they are equivalent to a circular arc about the origin enclosing
the same area.

Figure 7.5 shows transitions angle in function of density between arcs about the
origin-semicircles in the edge and annulus inside D-a bite.

Figure 7.5. For θ0 < f an arc about the origin is isoperimetric,
while for θ0 > f a semicircle in the edge is isoperimetric. For area
in�nitesimally less than aθ0/2, for θ0 < g an annulus inside D is
isoperimetric, while for θ0 > g a bite is isoperimetric.

�

Theorem 7.9. In the θ0-sector with density a > 1 inside the unit disk D and 1
outside, for π < θ0 ≤ aπ, there exists A0, A1, such that an isoperimetric curve for
area A is (see Fig. 7.1):

(1) if 0 < A < A0 , a semicircle on the edge disjoint from the interior of D;
(2) if A = A0, both type (1) and (3);
(3) if A0 < A < aθ0/2, a bite;
(4) if aθ0/2 ≤ A < θ2

0(a− 1)/2(θ0 − π), an arc about the origin;
(5) if A = θ2

0(a− 1)/2(θ0 − π), both type (4) and (6);
(6) if A > θ2

0(a−1)/2(θ0−π), a semicircle on the edge disjoint from the interior
of D.

Proof. For cases (1), (2) and (3) Theorem 7.8 gives the minimizers. For area A =
aθ0/2, Lemma 7.4 gives the minimizer. For cases (4) without the equality, (5) and
(6), Lemma 7.6 gives the minimizers. �
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Theorem 7.10. In the θ0-sector with density a > 1 inside the unit disk D and
1 outside, for θ0 > aπ, the isoperimetric curves for area A are semicircles on the
edge disjoint from the interior of D.

Proof. Theorem 7.8 shows that an isoperimetric curve is a semicircle on the edge
disjoint from the interior of D or a bite. As the area A approaches aθ0/2 from
below, the perimeter P and area A of a bite satisfy:

P → θ0, A→ aθ0/2,
P 2

A
→ 2θ0

a
.

So a semicircle on the edge disjoint from the interior of D, with ratio P 2/A =
2π, is isoperimetric for all θ0 ≥ aπ, and hence similarly for all A ≤ aθ0/2. For
area A > aθ0/2, Proposition 7.3 shows that an isoperimetric curve is one of the
following: a semicircles on the edge disjoint from the interior of D or an arc about
the origin. From Lemma 7.6 it follows that after aπ, an arc about the origin cannot
be isoperimetric. Therefore the minimizer for θ0 > aπ is a semicircles on the edge
disjoint from the interior of D. �

8. Symmetrization

Proposition 8.3 extends a symmetrization theorem of Ros [R1, Sect. 3.2] to
warped products with a product density as asserted by Morgan [M2, Thm. 3.2],
and is general enough to include spherical symmetrization as well as Steiner and
Schwarz symmetrization. Proposition 8.5 analyzes the case of equality in Steiner
symmetrization after Rosales et al. [RCBM, Thm. 5.2]. Proposition 8.6 extends
symmetrization to Riemannian �ber bundles with equidistant Euclidean �bers.
Some simple examples are lens spaces (�bered by circles) as envisioned by Antonio
Ros [R2, R1, Thm. 2.11], similar Hopf circle �brations of S2n+1 over CPn, the Hopf
�bration of S7 by great S3s and of S15 by great S7s. We were not, however, able to
complete the proof by symmetrization envisioned by Vincent Bayle (private com-
munication) of the conjecture that in Rn with a smooth, radial, log-convex density,
balls about the origin are isoperimetric [RCBM, Conj. 3.12]. We thank Bayle and
Ros for helpful conversations. Standard references on symmetrization are provided
by Burago and Zalgaller [BZ, Sect. 9.2] and Chavel [C, Sect. 6]. Gromov [G, Sect.
9.4] provides some sweeping remarks and conditions for symmetrization, including
�ber bundles.

De�nition 8.1. The Minkowski Perimeter of a region R is

lim inf
δr→0

δV

δr

for r enlargements. The limit exists and agrees with the usual de�nition of perimeter
as long as the boundary of R is recti�able and the metric and density are continuous
(see [F, Thm 3.2.39] ).

Lemma 8.2. (Morgan [M4, Lem. 2.4]) Let f , h be real-valued functions on [a, b].
Suppose that f is uppersemicontinuous from the left and that h is C1. Suppose that
for a ≤ r < b the lower right derivative of f satis�es

f ′(r) = lim inf
∆r→0

f(r + ∆r)− f(r)
∆r

≥ h′(r).

Then f(b)− f(a) ≥ h(b)− h(a).
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Proposition 8.3. Symmetrization for warped products. Let B be a Rie-
mannian manifold. Consider a warped product B × Rn with metric ds2 = db2 +
g(b)2dt2, with continuous product density ϕ(b) · ψ(t). Let R be a region of �nite
(weighted) perimeter. Suppose that in each �ber {b}×Rn balls about the origin are
isoperimetric. Then the Schwarz symmetrization sym(R) has the same volume and
no greater perimeter than R.

Remark. In the statement and proof Rn may be replaced by Sn; also balls about
the origin may be replaced by half planes {xn ≤ c} (for Rn−1×R+ as well as Rn)
when these have �nite weighted volume.

Proof. The preservation of volume is just Fubini's theorem.
For small r, denote r-enlargements inB×R by a superscript r and r-enlargements

in �bers by a subscript r. Consider a slice {b0} × C = R(b0) of R and a ball
about the origin {b0} × D in the same �ber of the same weighted volume. For
general b, consider slices ({b0} × C)r(b) of enlargements ({b0} × C)r of {b0} × C
and similarly slices ({b0}×D)r(b) of enlargements ({b0}×D)r of {b0}×D. We see
that ({b0} × C)r(b) = {b} × (Cr′) and ({b0} ×D)r(b) = {b} × (Dr′) for the same
r′ because g is invariant under vertical translation. Because the �ber density ψ(t)
is independent of b, {b} × C and {b} × D have the same weighted volume. Since
every {b} × (Dr′) is isoperimetric, by Lemma 8.2,

| {b} × (Dr′)| ≤ | {b} × (Cr′)|,
and hence

({b0} ×D)r(b) ⊆ sym(({b} × C)r(b)).
Since this holds for all b,

({b0} ×D)r ⊆ sym(({b0} × C)r).
Since this holds for all b0,

(sym(R))r =
⋃
b0∈R

({b0} ×D)r ⊆ sym(({b0} × C)r) ⊆ sym(Rr).

Consequently,

|(sym(R))r| ≤ |Rr|
and sym(R) has no more perimeter than R, as desired. �

Remark. If ψ(t) is a radial function, then Schwarz symmetrization may also be de-
duced from Steiner symmetrization by starting with Hsiang SO(n−1) symmetriza-
tion in Rn and modding out by SO(n− 1) to reduce to Steiner symmetrization.

After Rosales et al. [RCBM, Thm. 5.2] we provide a uniqueness result for the
case where the �bers are copies of R, which is Steiner symmetrization. First we
state a lemma of theirs. For a complete analysis of uniqueness without density or
warping see Chlebík et al.[CCF].

Lemma 8.4. [RCBM, Lem. 5.3] Suppose that we have �nitely many nonnegative
real numbers with

∑
j αjaj ≥ 2αa and

∑
j αj ≥ 2α. Then the following inequality

holds ∑
j

αj

√
1 + a2

j ≥ 2α
√

1 + a2,
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with equality if and only if aj = a for every j and
∑
j αj = 2α.

Proposition 8.5. Uniqueness. Let ψ be a smooth density on R such that centered
intervals are uniquely isoperimetric for every prescribed volume. Let B be a smooth
n-dimensional Riemannian manifold with density ϕ, and consider the warped prod-
uct B×g R with metric ds2 = db2 + g(b)2dt2 and product density ϕ(b) ·ψ(t). Let R
be an measurable set in B×gR such that almost every �ber intersects its topological
boundary ∂R transversely where ∂R is locally an even number (possibly zero) of
smooth graphs over B with nonvertical tangent planes, and let R′ denote its Steiner
symmetrization. Suppose that almost every �ber intersects ∂R′ where it is smooth
with a nonvertical tangent plane or not at all, and that the �bers that don't inter-
sect ∂R′ where it has a nonvertical tangent plane do not contribute anything to the
perimeter. Suppose R and R′ have the same perimeter. Then R = R′ up to a set
of measure zero.

Proof. Let D be the image of projection of R to B. Let A ⊆ D be the set of points
p in D for which ∂R and ∂R′ both have a nonvertical tangent planes above p. By
the de�nition of Steiner symmetrization∑

i odd

ˆ hi+1

hi

g(p)ϕ(p)ψ(x)dx = 2
ˆ h∗

0

g(p)ϕ(p)ψ(x)dx

∑
i odd

ˆ hi+1

hi

ψ(x)dx = 2
ˆ h∗

0

ψ(x)dx

on A where h∗ is height function of ∂R′ with respect to B. Varying p we get that∑
i odd

(ψ(hi+1)∇hi+1 − ψ(hi)∇hi) = 2ψ(h∗)∇h∗.

Hence ∑
j

ψ(hi)|∇hj | ≥ 2ψ(h∗)|∇h∗|,

∑
j

ϕ(p)ψ(hi)g(p)|∇hj | ≥ 2ϕ(p)ψ(h∗)g(p)|∇h∗|

on A. By the assumption that centered intervals are uniquely isoperimetric we have
that ∑

j

ϕ(p)ψ(hj) ≥ 2ϕ(p)ψ(h∗),

with equality if and only if the corresponding slice of R is a centered interval.
By Lemma 8.4 with

αj = ϕ(p)ψ(hj(p)), aj = g(p)|∇hj(p)|, α = ϕ(p)ψ(h∗(p)), a = g(p)|∇h∗(p)|

we get∑
j

ϕ(p)ψ(hj(p))
√

1 + g2(p)|∇hj(p)|2 ≥ 2ϕ(p)ψ(h∗(p))
√

1 + g2(p)|∇h∗(p)|2,

with equality if and only if the number of graphs is two (or trivially 0), g|∇h1(p)| =
g|∇h2(p)| = g|∇h∗(p)| and the slice of R at p is a centered interval.
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The perimeter P (R) satis�es

P (R) ≥
ˆ
A

(
∑
j

ϕ(p)ψ(hj(p))
√

1 + g2(p)|∇hj(p)|2)

≥
ˆ
A

(2ϕ(p)ψ(h∗(p))
√

1 + g2(p)|∇h∗(p)|2)da = P (R′)

because the �bers over D − A contribute nothing to P (R′). If equality holds then
R coincides with R′ in almost every �ber of D, i.e., R = R′ up to a set of measure
0. �

Remark. If for example we assume that ∂R and ∂R′ are smooth, then it follows
that R=R′ .

Now we want to prove a similar symmetrization theorem for �ber bundles that
are �close enough� to warped products. So, consider a Riemannian �ber bundle
M → B with equidistant Euclidean �bersMb = Rn and such that parallel transport
normal to the �bers from Mb1 to Mb2 scales the metric in the �bers by g(b2)/g(b1).
We can perform a symmetrization of a region R in M by taking a ball around the
origin with the same volume as each slice of R in the warped product B×g Rn. It's
easy to see from the equidistance of �bers that this symmetrization will have the
same volume, but it is a little trickier now to show that it has less perimeter. What
we need is a way to compare locally the �ber bundle and the warped product. We
accomplish this using parallel transport normal to the �bers.

We �rst observe that shortest paths in M from a point to a �ber are normal to
the �bers: consider a shortest path from p ∈M to the �ber over b ∈ B. If we take
only a portion of this path it must also be a shortest path from p to the �ber at
its end point since if it were not, by the fact that �bers are equidistant we could
extend a shortest path from p to this �ber to a path from p to the �ber over b
that was shorter than our original path. The fact that �bers are equidistant also
implies that at the end points of the shortest path between p and any �ber the
tangent direction is orthogonal to the �bers. Combining these two facts we see that
these paths of shortest distance between �bers are everywhere perpendicular to the
�bers.

Now, consider b0 ∈ B and r such that the exponential map at b0 is injective up
to radius r. Then consider the open geodesic ball of radius r about the �ber over
b0, M

r
b0
. This is equal to the expansion of Mb0 by parallel transport normal to the

�bers up to the radius r (indeed, if a point is in Mr
b0

then its shortest path to Mb0

has length less than r and we know it is normal to the �bers everywhere).
Parallel transport normal to the �bers from b0 to b scales the metric by g(b)/g(b0)

and thus for each point inMr
b0
there is a unique point inMb0 that maps to it under

a parallel transport normal to the �bers. If we consider a shortest path from a point
in Mb0 to another �ber in Mr

b0
we see that it lies over a unique geodesic in B since

the injectivity radius at b0 is greater than r. So we see that for any b ∈ B(b0, r)
there is a di�eomorphism γb from Mb0 to Mb given by parallel transport normal to
the �bers over a unique geodesic in B that scales the metric by g(b)/g(b0).

If we �x an isometry j between Mb0 and Rn we obtain a di�eomorphism from
B(b0, r)×gRn toMr

b0
by fr(b, y) = γb(j−1(y)). This is the map between the warped

product and the �ber bundle given by normal parallel transport at b0.
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Proposition 8.6. Symmetrization for �ber bundles. Consider a Riemannian
�ber bundle M → B with equidistant Euclidean �bers Mb = Rn and a smooth
positive function g(b) such that parallel transport normal to the �bers from Mb1 to
Mb2 scales the metric on the �bers by g(b2)/g(b1). Suppose that M is compact or
more generally that:

(1) B is compact or more generally has positive injectivity radius and
(2) for some r0 > 0, for r < r0 the r-tube about a �ber Mb under parallel

translation from that �ber has metric 1+o(1) times that of a warped product
B(b, r)×g Rn, uniform in b.

Let R be a region of �nite perimeter. Consider the Schwarz symmetrization sym(R)
in the warped product B ×g Rn, which replaces the slice of R in each �ber with a
ball about the origin of the same volume. Then sym(R) has the same volume and
no greater perimeter than R.

Remark. In the statement and proof the Euclidean �bers may be replaced by the
other constant curvature model spaces: Sn or Hn.

Proof. The preservation of volume follows from the equidistance of the �bers.
As in the proof of Proposition 8.3 denote r-enlargements in M by a superscript

r and r-enlargements in �bers by a subscript r. Let r be a small positive number
less than both r0 and the injectivity radius of B. Consider a slice C = R(b0) of
R and a ball D of the same volume about the origin in the corresponding �ber of
B ×g Rn. For general b, if C ′ denotes the image of C in Mb under normal parallel
transport and D′ denotes the copy of D in {b} ×g Rn, |C ′| = |D′|. As in the proof
of Proposition 8.3, |Dr(b)| = |D′r′ |, but due to the twisting in �ber bundles, it is not
necessarily true that |Cr(b)| = |C ′r′ |. By the uniformity hypothesis (2), the map by
parallel tranport based at Mb0 from B ×g Rn to M distorts the metric by 1 + o(1),
uniform over M . Therefore

C ′r′ ⊆ Cr+o(r)(b).
Now, since each D′r′ is isoperimetric, by Lemma 8.2,

|D′r′ | ≤ |C ′r′ |.
And so we get

Dr(b) ⊆ sym(Cr+o(r)(b)).
Since this holds for all b,

Dr ⊆ sym(Cr+o(r)).
Since this holds for all b0,

(sym(R))r =
⋃
b0∈R

Dr ⊆
⋃
b0∈R

sym(Cr+o(r)) ⊆ sym(Rr+o(r)).

Consequently,

|(sym(R))r| ≤ |Rr+o(r)|,
and sym(R) has no more perimeter than R, as desired. �

In the special case where the metric in the �bers is preserved without rescaling
we obtain a simpler statement and proof.
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Theorem 8.7. Symmetrization for �ber bundles without warping. Con-
sider a Riemannian �ber bundle M → B with equidistant Euclidean �bers Mb =
Rn and such that parallel transport normal to the �bers from Mb1 to Mb2 preserves
the metric on the �bers. Suppose furthermore that the injectivity radius of B is
bounded from below. Let R be a region of �nite perimeter. Consider the Schwarz
symmetrization sym(R) in the product B×Rn, which replaces the slice of R in each
�ber with a ball about the origin of the same volume. Then sym(R) has the same
volume and no greater perimeter than R.

Proof. In this case distances on a point in a �xed �ber to points on a nearby �ber
are no greater in the �ber bundle than in the product corresponding to a parallel
transport from the �xed �ber. Indeed, consider a shortest path from the �xed �ber
to a point on a nearby �ber in the product. Since the metric is the same in all
�bers this path must lie over a geodesic in B. Its image in the �ber bundle consists
of normal parallel transport corresponding to the horizontal motion in the product
motion in the �ber corresponding to the vertical motion in the product. Thus the
orthogonality of the vertical and horizontal motion is maintained. Furthermore
the equidistance of �bers ensures the horizontal distance is maintained and the
preservation of the metric in the �bers under normal parallel transport ensures
that the vertical distance is maintained. So, we get a path of the same length in
the �ber bundle. �

9. Isoperimetric Problems in Rn with Radial Density

In this section we look at the isoperimetric problem in Rn with a radial density.
We use symmetrization (Prop. 8.3) to show that if a minimizer exists, then a
minimizer of revolution exists (Lem. 9.1), thus reducing the problem to a planar
problem (Lem. 9.2). We consider the speci�c case of Rn with density rp and provide
a conjecture (Conj. 9.3) and a nonexistence result (Prop. 9.5).

Lemma 9.1. In Rn with a radial density if there exists an isoperimetric region
then there exists an isoperimetric region of revolution.

Proof. Rn is the same as R+×Sn−1 with warped product metric ds2 = dr2 +r2dΘ2.
By Proposition 8.3 we can replace the intersection of the isoperimetric region with
each spherical shell by a polar cap, preserving area without increasing perimeter.
After performing this operation the region is rotationally symmetric about an axis,
because each spherical cap is. �

Remark. This is just standard spherical symmetrization (see [C, Sect 6.4]).

Lemma 9.2. The isoperimetric problem in Rn with density f(r) is equivalent to
the isoperimetric problem in the half plane y > 0 with density yn−2f(r).

Proof. Up to a constant, this is the quotient space of Rn with density f(r) modulo
rotations about an axis. By Lemma 9.1, there exists a minimizer bounded by
surfaces of revolution, so a symmetric minimizer in Rn corresponds to a minimizer
in the quotient space and vice-versa. �

Isoperimetric curves in the plane with density rp are circles about the origin
when p < −2, do not exist when −2 < p < 0, and are circles through the origin
when p > 0 ([CJQW, Props. 4.2, 4.3], [DDNT, Thm. 3.16]). We now look at the
isoperimetric problem in Rn with density rp.
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Conjecture 9.3. In Rn with density rp isoperimetric regions are spheres about the
origin if p < −n and spheres through the origin if p > 0, and you can bound any
volume with arbitrarily small area whenever −n ≤ p < 0.

Proposition 9.4. In R3 with density rp, −3 < p < −2, isoperimetric regions do
not exist.

Proof. Take a sphere centered at the origin, it has surface area crp+2 and in�nite
volume outside the sphere. Therefore for any ε > 0 we can take two spheres centered
at the origin each with surface area less than ε/2 that enclose any given volume
between them. �

Remark. This argument is taken directly from [CJQW, Prop. 4.2] and holds for
general Rn when −n < p < −n+ 1.

Proposition 9.5. For −n < p < 0 in Rn with density rp, minimizers do not exist:
you can enclose any volume with arbitrarily small perimeter.

Proof. Consider a sphere S of radius R � 0 not containing the origin. Let rmin,
rmax be the minimum and maximum values of r attained on S, note that 0 <
rmin = rmax − 2R. Let V, P be the volume and perimeter respectively of S. We
have that:

V > c0R
n min S(rp) = c0R

nrpmax.

Fixing V we get that rmax > c1R
q where q = −n/p > 1. This gives

rmin > c1R
q − 2R >

c1
2
Rq

for su�ciently large R. Looking at P we have

P < c2R
n−1 max S(rp) = c2R

n−1rpmin < c2R
n−1(

c1
2
Rq)p = c3R

−1,

which can be made as small as we want with large enough R. �

Remark. A proof that applies for −n < p < −n + 1 was given by [CJQW, Prop.
4.2].

10. Computations with Maple

We o�er numerical evidence for our conjectured transition angles (Conj. 5.20).
Using Maple's ODE solver and the second order equation for constant curvature
curves, we devised a program to search for constant generalized curvature curves
with the best isoperimetric ratio P p+2/Ap+1. The source code is available at the
end of the section.

Consider the problem of �nding an isoperimetric curve in a manner amenable to
computer search. We want to restrict ourselves to as speci�c a situation as possible
without losing any generality. Since this problem allows scaling (Prop. 5.7), we
will �x a nonzero point on the angle 0 edge and consider only constant-curvature
curves emanating from that edge perpendicularly at this point. Up to scaling any
isoperimetric curve is equivalent to a curve in this family (Prop. 5.7). So, to �nd
all isoperimetric curves all we need to do is examine all constant-curvature curves
with a perpendicular intersection at this point and �gure out which ones have the
least ratio P p+2/Ap+1. In fact we only have to examine such curves that are polar
graphs (Prop. 5.3). As mentioned in the remark after Proposition 6.3, Corwin et
al. [CHHSX, Prop. 3.6] give us the following formula:
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Figure 10.1. Constant curvature curves for p = 1 intersecting
the radial line at angle 0 perpendicularly at radius 1. Negative
curvatures appear in red, geodesic in black, and positive in blue;
curves displayed for −10 ≤ κ ≤ 20.

Theorem 10.1. In the plane with density rp the following second order di�erential
equation is satis�ed by any polar graph r(θ) with constant generalized curvature λ:

λ =
(p+ 1)r2 + (p+ 2)ṙ2 − rr̈

(r2 + ṙ2)3/2
.

This also applies to constant generalized curvature curves in the θ0-sector since
any constant curvature curve there is a part of a constant generalized curvature
curve in the plane. The restriction of perpendicularity (Prop. 4.4) gives us ṙ(0) = 0
and after �xing r(0) = 1 we have only one degree of freedom left, and so we get a
one-parameter family of solutions given by varying λ. Using Maple's ODE solver
we can get a picture of what these constant curvature curves look like. Figure 10.1
shows a representative set of them for p = 1, and this picture is characteristic of all
p > 0.

What we would like to do is restrict ourselves to a reasonable range of curvatures
to look at. Using the correspondence from Lemma 6.5 and the fact that minimizers
must have 0 < λ < p + 2 (Prop. 6.11), we see that it su�ces to look between the
circular arc and the semicircle, i.e. p+ 1 < λ < p+ 2.

This new reduced version of the problem is a calculation a computer can handle.
Running it for several values of p, a solid pattern emerges. Up until π/

√
p+ 1, it
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Figure 10.2. Constant curvature curves for p = 1 with curvature
between 2.999 and 3.0

predicts the circular arc. Immediately thereafter there is a short transition period,
after which it predicts the semicircle. This can be seen for p = 1 in Figure 1.2.

It has already been established that the circular arc has nonnegative second
variation until exactly π/

√
p+ 1, which agrees with the program's prediction, and

as we see no reason for the program to be producing unreliable data in this range
we are reasonably con�dent that the circle minimizes up until this point. The
program also accurately predicts that there will be a transition period between the
circular arc and the semicircle, and in fact its prediction for the transition point
between the unduloid and the semicircle �ts in well with the conjectured angle of
π(p+ 2)/(2p+ 2). However, the length of this transition predicted by the program
may be unreliable. To demonstrate why, we will �rst have to describe how the
program functions.

First, it subdivides the curvature range into 100 parts. Then, for each of these
curvatures it uses the Maple ODE solver to �nd a curve with this curvature meeting
the other initial conditions r(0) = 1 and ṙ(0) = 0. Then, for each of these curves it
uses numerical integration with about 400 sample points to calculate its weighted
perimeter and area, and �nally, tells us which one has the best ratio. We can make
the number of divisions of either the curvature or the sampling points larger, but
improvement in detail sees rapidly diminishing returns alongside rapidly increasing
calculation time as demonstrated in Figure 10.2.

In Figure 10.2 there is only a .001 range of curvatures yet around the origin
radii di�er by about .05; that's 50 times as much. However, the program only uses
increments of .01 curvature, approximately 500 times greater than the increments
seen in Figure 10.2. Worse, in this picture as we approach the origin the spacing
gets worse, so that even at this level of detail we still see a loss of discernment. In
fact, there is no reason to look any closer, as at this level of detail the numeric error
from the ODE solver is clearly visible − the curve that comes closest to the origin
is actually the solver's version of the semicircle, which should be intersecting at the
origin.
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So, although the program provides very strong evidence that the circular arc
minimizes up until the conjectured π/

√
p+ 1, it only suggests that the semicircle

begins minimizing at the conjectured π(p + 2)/(2p + 2). The source code is given
below.
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