
BOUNDED RIEMANNIAN SUBMERSIONS

KRISTOPHER TAPP

Abstract. In this paper, we establish global metric properties of a Riemann-
ian submersion π : Mn+k → Bn for which the fundamental tensors are
bounded in norm: |A| ≤ CA, |T | ≤ CT . For example, if B is compact and
simply connected, then there exists a constant C = C(B,CA, CT , k) such that
for all p ∈ B, dFp ≤ C · dM , where dFp denotes the intrinsic distance func-

tion on the fiber Fp := π−1(p), and dM denotes the distance function of M
restricted to Fp. When applied to the metric projection π : M → Σ from
an open manifold of nonnegative curvature M onto its soul Σ, this property
implies that the ideal boundary of M can be determined from a single fiber of
the projection. As a second application, we show that there are only finitely
many isomorphism types of fiber bundles among the class of Riemannian sub-
mersions whose base space and total space both satisfy fixed geometric bounds
(volume from below, diameter from above, curvature from above and below).

1. Introduction

Let π : Mn+k → Bn denote a Riemannian submersion. Assume that B is
compact. Let A and T denote the fundamental tensors of π. Assume that |A| ≤ CA

and |T | ≤ CT . The main purpose of this paper is to explore consequences of these
bounds.

An interesting example of this situation is the metric projection π : M → Σ
between an open manifold M of nonnegative sectional curvature and its soul Σ;
that is, the map which sends each point x ∈ M to the point π(x) in Σ to which it is
closest. Perelman proved in [6] that π is a well defined Riemannian submersion. The
regularity of π is established in [3] to be at least C2 and a.e. smooth. It is a trivial
consequence of O’Neill’s formula that the norm of the A tensor is bounded in terms
of the maximal sectional curvature of Σ. Perelman established that the T tensor is
bounded in terms only of the injectivity radius of the soul: |T | ≤ CT = CT (inj(Σ));
(see [6, Theorem C]).

More generally, whenever M satisfies a (positive or negative) lower curvature
bound λ, if follows from O’Neill’s formula that |A| ≤ CA = CA(B, λ), and it
follows from Perelman’s argument that |T | ≤ CT = CT (inj(B), λ).

In section 2, we define the holonomy group of π. The assumed bound on the
T tensor allows us to achieve certain metric bounds on the fibers of π whenever we
know that the holonomy group of π is compact.

Next, in section 3, we bound the intrinsic distance function, dFp , on a fiber Fp

in terms of the distance function dM on M . More precisely, dFp ≤ C · dM , where
C depends only on B,CA, CT , and k.
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Next, in section 4, we apply these results to the metric projection π : M → Σ
onto a soul. For example, when the soul is simply connected, we prove that the
ideal boundary of M can be determined by a single fiber of π. Additionally, if
π has compact holonomy, then we achieve the following splitting theorem: if the
vertizonal curvatures of M decay towards zero away from the soul, then M must
split locally isometrically over its soul.

Next, in section 5, we describe a very different application for the formula dFp ≤
C · dM . Namely, this formula together with the work of P. Walczak allows us to
prove that there are only finitely many isomorphism classes fiber bundles in the
set of Riemannian submersions whose base space and total space both satisfy fixed
geometric bounds (volume from below, diameter from above, curvature from above
and below).

Finally, in section 6 we describe a general construction for bounding the “size”
of the holonomy element associated to a loop in terms of the length of the loop.

In the appendix we prove that for any loop on a given compact simply connected
Riemannian manifold, one can find a nulhomotopy of the loop with derivatives
bounded linearly in terms of the length of the loop. This observation is central to
several proofs in this paper.

The author would like to thank Wolfgang Ziller for his help in the preparation
of this paper.

2. The holonomy group of a Riemannian submersion

For any piecewise smooth path α(t) in B, say from p to q, there is a naturally
associated diffeomorphism hα between the fibers Fp := π−1(p) and Fq := π−1(q).
This diffeomorphism maps x ∈ Fp to the terminal point of the lift of α to a hori-
zontal path in M beginning at x. We will call hα the holonomy diffeomorphism
associated to α. If π is at least C2 (as is the case for the metric projection onto a
soul), then each fiber is a C2 Riemannian manifold, and each holonomy diffeomor-
phism hα is a C1 map between the fibers. This regularity will be sufficient for all
constructions in this paper.

Fix p ∈ B and define the holonomy group of π as the group, Φ, of diffeomor-
phisms of the fiber Fp which occur as hα for a piecewise smooth loop α in B at
p. Φ is clearly independent of the choice of p (up to group isomorphism). Φ is not
necessarily a finite dimensional Lie group. We say that π has compact holonomy
if Φ is a compact finite dimensional Lie group.

For example, if M is a Euclidean vector bundle over B with a connection metric,
then Φ is just the holonomy group of the connection, which is a (not necessarily
compact) Lie subgroup of the orthogonal group. For the metric projection onto a
soul, Φ is the holonomy group of the normal bundle of the soul (with it’s natural
connection), so again Φ is a Lie subgroup of the orthogonal group. This is because,
by Perelman’s Theorem, if w is a normal vector to the soul at p = α(0), then the hor-
izontal lift ᾱ(t) of α(t) beginning at ᾱ(0) = exp(w) is simply ᾱ(t) = exp(Pα|[0,t](w)),

where Pα|[0,t](w) denotes the parallel transport of w along the appropriate segment

of α. An example given in [10] demonstrates that Φ need not be a closed subgroup,
and hence need not be compact, even when the soul is simply connected.

We next describe two consequences of compact holonomy. The first is due to
Schroeder and Strake [8, Proposition 1]:
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Lemma 2.1. If Φ has compact holonomy, then there exists a constant b1 =
b1(π) such that Φ = {hα | α is a piecewise smooth loop in B at p of length ≤ b1}.

In other words, the entire holonomy group can be represented by loops in B of
bounded length. Schroeder and Strake stated this only for the case of the holonomy
group of the normal bundle of the soul, but their argument is valid in the above
generality.

The second consequence of compact holonomy relates to the holonomy diffeo-
morphisms. It is straightforward to show that the holonomy diffeomorphism hα

satisfies the Lipschitz constant eCT ·length(α); see [4, Lemma 4.2]. We prove next
that, in the case of compact holonomy, the holonomy diffeomorphisms satisfy a
Lipschitz bound which does not depend on the length of the path. In the case of
non-compact holonomy we at least find a Lipschitz bound which depends linearly,
rather than exponentially, on the length of α:

Proposition 2.2.

(1) If Φ is compact, then there exists a constant L = L(π) such that all
holonomy diffeomorphisms of π satisfy the Lipschitz constant L.

(2) Even if Φ is non-compact, there exists a constant L̃ = L̃(CT ,diam(B))
such that the holonomy diffeomorphism associated with any loop of
length l satisfies the Lipschitz constant 1 + l · L̃.

Proof. For part 1, if c is a loop at p in B of arbitrary length, one can find a different
loop c̃ of length ≤ b1 which generates the same holonomy diffeomorphism: hc = hc̃,
where b1 is the constant from Lemma 2.1. It follows that if α is a path of arbitrary
length in B between points p and q, then hα = hα̃ for a properly chosen path α̃
of length ≤ diam(B) + b1. For example, take α̃ equal to a minimal path β from p
to q followed by a loop at q which generates the same holonomy diffeomorphism as
β−1 ∗α. Therefore L := eCT (diam(B)+b1) is as required for part 1 of the proposition.

For part 2, first notice that for any loop α of length l ≤ D := 2 · diam(B) + 1,
hα satisfies the Lipschitz constant eCT ·l ≤ 1+ l ·P , where P := CT · eCT ·D (that is,
P equals the maximum derivative of the function eCT ·l between l = 0 and l = D).
But for a unit-speed loop α at p in B of arbitrary length l, it is possible to find l̄
loops, α1, ..., αl̄, each of length ≤ D, such that hα = hα1 ◦ · · · ◦hαl̄ , where l̄ denotes
the smallest integer which is ≥ l. To do this, define αi to be the composition of a
minimal path in B from p to α(i− 1), followed by α|[i−1,i], followed by a minimal
path from α(i) to p. Since for each i, hαi satisfies the Lipschitz constant 1+P ·D,
it follows that hα satisfies the following Lipschitz constant:

l̄(1 + P ·D) ≤ (l + 1)(1 + P ·D) = 1 + (1 + PD)l + PD ≤ 1 + 2(1 + PD)l.

The final inequality holds whenever l ≥ 1, but if l < 1 then hα satisfies the Lipschitz
constant 1+(CT · eCT ·1)l (as above). So the choice L̃ := max{2(1+PD), CT · eCT }
is as required for part 2 of the proposition. £

Guijarro and Walschap asked whether, for the metric projection onto a soul, all
holonomy diffeomorphisms must satisfy a global Lipschitz bound [4]. The reason
for their interest in this question will be discussed in section 4. Proposition 2.2
offers only a partial answer to this question. We do not know the full answer for
the metric projection onto the soul, but for general Riemannian submersions we
have the following example:
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Example 2.3. For general Riemannian submersions with bounded tensors, the
holonomy diffeomorphisms need not satisfy a global Lipschitz bound. For example,
consider the projection π : S2 × R2 → S2, where S2 has the round metric, R2 has
the flat metric, and S2 ×R2 has the product metric. Let X denote the vector field
on S2 whose flow is rotation about the axis through the north and south poles N,S.
Let Y be a vector field on S2 which is orthogonal to X and vanishes at N,S. Let
∂
∂θ (v) (v ∈ R2) denote the radial vector field on R2, and let W (v) = µ(|v|) · ∂

∂θ (v),
where µ is a smooth bump function with support [1, 2]. We can consider X,Y to
be horizontal vector fields and W to be a vertical vector field on S2 × R2 in the
obvious way. Define a 2-plane distribution H on S2 × R2 as follows:

H(p, v) = span

{

Y (p),
X(p)

|X(p)|
+ |X(p)| ·W (v)

}

.

This distribution clearly extends continuously to the fibers over N,S. There is
a unique metric on S2 × R2 for which π becomes a Riemannian submersion with
horizontal distributionH such that the fibers are isometric to flat R2. The holonomy
group Φ is isomorphic to R, and its action on the fiber π−1(N) = R2 is simply the
flow along the vector field W . It is easy to see that arbitrarily long loops in S2

are necessary to achieve arbitrarily large time parameters for this flow, and hence
arbitrarily bad Lipschitz bounds for the associated holonomy diffeomorphism. But
since the A and T tensors both vanish outside of a compact set in S2 × R2, they
have bounded norms.

3. The intrinsic metric on the fibers

Denote k := dim(M)− dim(B). For p ∈ B, denote by dFp the intrinsic distance
function of the fiber Fp, and by dM the distance function of M restricted to Fp. In
this section we establish the following global metric property of the fibers of π:

Theorem 3.1. If B is simply connected then:

(1) There exists a constant C1 = C1(B,CA, CT , k) such that for any p ∈ B,
dFp ≤ C1 · dM .

(2) If π has compact holonomy then there exists a constant C2 = C2(π)
such that for any two points x, y ∈ Fp between which there exists a
piecewise smooth horizontal path, dFp(x, y) ≤ C2.

Notice that, although part 2 is only interesting when M is noncompact, part 1
is interesting in either case.

We begin the proof with two lemmas which provide technical bounds on a Rie-
mannian submersion with bounded tensors. Hereafter we denote by Y V and Y H

the vertical and horizontal components of a vector Y ∈ TM .

Lemma 3.2.

(1) Along any horizontal path σ(t) in M one can construct an orthonormal
vertical frame {Ṽ1(t), ..., Ṽk(t)} with |Ṽ ′

i (t)| ≤ 4k · k! · CA · |σ′(t)|.
(2) If Y (t) is any vector field along any horizontal path σ(t) in M , then

d

dt
|Y (t)V | ≤ k|(Y ′(t))V |+ k · 4k · k! · CA · |σ′(t)| · |Y (t)|.

Proof. To establish part 1, let σ(t) be a horizontal path in M . Let {Yi(t)}, i = 0..k,
denote the parallel transport along σ(t) of an orthonormal basis {Yi(0)} of the
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vertical space at σ(0). Denote by Yi(t) = Xi(t) + Vi(t) the decomposition of Yi(t)
into horizontal and vertical components. Notice that

V ′
i (t) = V ′

i (t)
H + V ′

i (t)
V = V ′

i (t)
H −X ′

i(t)
V = A(σ′(t), V (t))−A(σ′(t), X(t)).

Therefore, |V ′
i (t)| ≤ 2CA|σ′(t)|. We next define the frame {Ṽi(t)} as the Gram-

Schmidt orthonormalization of the (ordered) frame {Vi(t)}. For example, Ṽ1(t) =

〈V1(t), V1(t)〉−
1
2V1(t). Differentiating this expression gives: |Ṽ ′

1(0)| ≤ 2|V ′
1(0)| ≤

4CA|σ′(0)|. Continuing the Gram-Schmidt process gives:

Ṽl(t) =

(

Vl(t)−
l−1
∑

i=1

〈Ṽi(t), Vl(t)〉Ṽi(t)

)

normalized

Differentiating this expression gives:

|Ṽ ′
l (0)| ≤ 2

(

|V ′
l (0)|+

l−1
∑

i=1

(|V ′
l (0)|+ 2|Ṽ ′

i (0)|)

)

≤ 2

(

2lCA|σ′(0)|+ 2
l−1
∑

i=1

|Ṽ ′
i (0)|

)

≤ a(l)CA|σ′(0)|,

where a(l) is the solution to the following recurance relation: a(0) = 0 ; a(l) =

4
(

l +
∑l−1

i=1 a(i)
)

. It is easy to see that a(l) ≤ 4l · l!, which proves part 1 of the

lemma.
Part 2 of the lemma follows by writing |Y (t)V |2 =

∑k
i=1〈Y (t), Ṽi(t)〉2 for the

frame {Ṽi(t)} given in part 1, and then differentiating with respect to t. £

We use the previous Lemma to establish the following bound, which will be
central to our proof of Theorem 3.1:

Lemma 3.3. Let αs(t) = α(s, t) (s ∈ [0, ε), t ∈ [0, 1]) denote a family of
piecewise-smooth paths in B with fixed endpoints: αs(0) = p, αs(1) = q. As-
sume |α′

0(t)| ≤ C1. Assume for the variational vector field V (t) := ∂
∂sα(0, t)

along α0 that |V (t)| ≤ C2. Let x ∈ Fp. For each fixed s, let t 7→ ᾱs(t) = ᾱ(s, t)
denote the horizontal lift the path t 7→ αs(t) with ᾱs(0) = x. Then τ(s) := ᾱs(1)
is a path in the fiber Fq, and |τ ′(0)| ≤ ρ(1), where ρ(t) denotes the solution to
the following differential equation:

ρ′(t) = kCAC1C2(1 + 4kk!) + kC1(CT + 4kk!CA)ρ(t) ; ρ(0) = 0.

Proof. Let ∂
∂t ᾱ(s, t) and

∂
∂s ᾱ(s, t) denote the natural coordinate vector fields along

the parameterized surface ᾱ. Notice that ∂
∂t ᾱ is everywhere horizontal. Also,

| ∂∂t ᾱ(0, t)| = | ∂∂tα(0, t)| ≤ C1 and |( ∂
∂s ᾱ(0, t))

H| = | ∂
∂sα(0, t)| ≤ C2.

Applying part 2 of Lemma 3.2 to the vector field ∂
∂s ᾱ(0, t) along the horizontal

curve t 7→ ᾱ(0, t) gives:
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d

dt

∣

∣

∣

( ∂

∂s
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∣
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∣
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(D

dt

∂

∂s
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∣
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∣
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∣
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∂
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∂

∂t
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)
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(

( ∂

∂s
ᾱ(0, t)

)V
,
∂

∂t
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)∣

∣

∣

∣

+ k4kk!CAC1

(

∣

∣

∣

( ∂

∂s
ᾱ(0, t)

)H∣

∣

∣+
∣

∣

∣

( ∂

∂s
ᾱ(0, t)

)V ∣
∣

∣
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≤ kCAC1C2 + kCTC1

∣

∣

∣

( ∂

∂s
ᾱ(0, t)

)V ∣
∣

∣

+ k4kk!CAC1

(

C2 +
∣

∣

∣

( ∂

∂s
ᾱ(0, t)

)V ∣
∣

∣
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.

In other words,

d

dt

∣

∣

∣

( ∂

∂s
ᾱ(0, t)

)V ∣
∣

∣ ≤ kCAC1C2(1 + 4kk!) + kC1(CT + 4kk!CA)
∣

∣

∣

( ∂

∂s
ᾱ(0, t)

)V ∣
∣

∣.

Since τ ′(0) = ∂
∂s ᾱ(0, 1) = ( ∂

∂s ᾱ(0, 1))
V , this proves the lemma. £

proof of Theorem 3.1. Let x, y ∈ Fp and let γ : [0, l] → M be a shortest unit-
speed path in M from x to y. Let l̄ denote the smallest integer which is not less
than l := length(γ). For each integer i between 0 and l̄− 1, choose a point xi of Fp

closest to γ(i), and choose a shortest unit-speed path τi from xi to γ(i). Next, for
each integer i between 1 and l̄, define γi as the concatenation of τi−1 followed by
γ|[i−1,i] followed by τ−1

i . By construction, γi is a path in M between xi−1 and xi,
whose length, li, is not greater than D := 2 ·diam(B)+1. We describe next how to
construct a path βi between xi−1 and xi which remains in the fiber Fp, such that
the length of βi can bounded linearly in terms of li.

Let αi := π ◦ γi, which is a loop at p in B whose length is not greater than li.
Let zi := hαi+1(xi). We first construct a path β1

i in Fp from xi−1 to zi−1, and then
construct a path β2

i in Fp from zi−1 to xi.
To construct the path β1

i , first reparameterize αi proportional to arclength, so
that αi : [0, 1] → B. Find a piecewise smooth nulhomotopy H : [0, 1] × [0, 1] → B
of αi. That is, H(0, t) = p,H(1, t) = αi(t). By Lemma 7.2 from the appendix, H
can be chosen so that | ∂∂tH| ≤ Qli and | ∂

∂sH| ≤ Q, where Q depends only on B.

Lift the homotopy H to M by defining, for each s ∈ [0, 1], the curve t 7→ H̃(s, t)

to be the horizontal lift of the curve t 7→ H(s, t) beginning at H̃(s, 0) = xi−1. Let

β1
i (s) := H̃(s, 1). By Lemma 3.3, |(β1

i )
′(s)| ≤ ρli(1), where ρli(t) is the solution to

the following differential equation:

(ρli)
′(t) = kCAQ

2li(1 + 4kk!) + kQli(CT + 4kk!CA)ρli(t) ; ρli(0) = 0.

In particular, length(β1
i ) ≤ C · li, where C is a bound on the derivative of the

function li 7→ ρli(1) between li = 0 and l = D.
We continue by constructing a path β2

i in Fp between zi−1 and xi, whose length is
also controlled linearly in terms of li. Let β

2
i (s) := hs(γi(s)), where h

s : Fαi(s) → Fp

is the holonomy diffeomorphism associated to the curve αi|[s,li]. It is clear from

construction that β2
i connects zi−1 to xi and that (β2

i )
′(s) = dhs(γ′

i(s)
V). Thus,



BOUNDED RIEMANNIAN SUBMERSIONS 7

length(β2
i ) ≤ L · li, where L is a Lipschitz bound on all holonomy diffeomorphisms

associated to curves in B of length ≤ D.
The concatenation, βi, of β

1
i followed by β2

i satisfies length(βi) ≤ (C + L)li ≤
(C + L)D. The concatenation of the paths βi (i = 1, ..., l̄) is a path from x to y in
Fp. Therefore,

dFp(x, y) ≤ l̄(C + L)D ≤ (l + 1)(C + L)D ≤ 2l(C + L)D.

The final inequality is valid only when l ≥ 1, but when l ≤ 1, dFp(x, y) ≤ (C+L) · l.
So the choice C1 := max{2(C+L)D,C+L} is as required for part 1 of the theorem.

To prove part 2, let x, y ∈ Fp be two points between which there exists horizontal
path ᾱ. Let α := π ◦ ᾱ. Notice that hα(x) = y. One can choose a different loop
σ at p in B such that hσ = hα and length(σ) ≤ b1, where b1 is the constant from
Lemma 2.1. The horizontal lift, σ̄, of σ provides an alternative horizontal path
from x to y. Thus dFp

(x, y) ≤ C1 ·dM (x, y) ≤ C1 · length(σ) ≤ C1 · b1, so the choice
C2 := C1b1 is as required for part 2. £

Example 3.4. The conclusions of parts 1 and 2 theorem 3.1 both fail for π : TS2 →
S2 when TS2 is given the connection metric with flat fibers, which has unbounded
A-tensor. It’s easy to see that two rays from the origin of TpS

2 grow apart linearly
in the fiber TpS

2, while they maintain a distance ≤ length(α) in TS2, where α is a
loop in S2 which parallel translates the initial tangent vector of the first ray to the
initial tangent vector of the second ray.

Example 3.5. The conclusions of parts 1 and 2 of theorem 3.1 both fail for the
following example in which the base space is not simple connected. Let M be the
following flat manifold: M = R2 × [0, 1]/{(r, θ, 0) ∼ (r, θ + λ, 1)}. Here λ is any
non-zero angle. Guijarro and Petersen studied this manifold in [5]. The soul of M
is the circle 0 × [0, 1]/ ∼, and each fiber Fp of the metric projection onto the soul
is isometric to flat R2. Two rays from the same point p of the soul which make an
angle λ will grow apart linearly in the fiber Fp, but will remain at distance ≤ 1 in
M .

Example 3.6. In [10], a metric of nonnegative curvature on S2×R4 is exhibited for
which the holonomy group of the metric projection onto the soul is a noncompact
Lie subgroup of SO(4). It is easy to see that the conclusion of part 2 of Theorem 3.1
is invalid for this manifold.

4. The metric projection onto the soul

Let M be an open manifold of nonnegative sectional curvature with soul Σ ⊂
M . Let π : M → Σ denote the metric projection. In this section we study two
applications of the previously developed theory to this Riemannian submersion.
The first says that the ideal boundary of M is determined by a single fiber of π:

Corollary 4.1. If π1(Σ) = 1, then the topology of the ideal boundary of M can
be determined by the pointed manifold (Fp, p) for any p ∈ Σ.

Proof. Remember that the ideal boundary, M(∞), of M can be defined with refer-
ence to any fixed point p ∈ M by declaringM(∞) to be the set of equivalence classes
of unit-speed rays in M from p, endowed with the following distance function:

d∞([γ1], [γ2]) := lim
t→∞

1

t
dt(γ1(t), γ2(t)),
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where dt denotes the intrinsic distance function on the sphere of radius t about p.
Since it is difficult to work with dt, we define an alternate metric on M(∞) as

follows:

(4.1) d̃∞([γ1], [γ2]) =

{

∞ (if γ1, γ2 lie on different ends of M);

limt→∞
1
t dM (γ1(t), γ2(t)) (otherwise).

By [9, Proposition 2.2], if rays γ1 and γ2 lie on the same end of M , then:

d̃∞([γ1], [γ2]) =
√

2− 2 cos(d∞([γ1], [γ2])).

It follows that d∞ and d̃∞ induce the same topology on M(∞).
The constructions above are invariant under the choice of p ∈ M . For our

purposes it is convenient to choose p ∈ Σ. Any ray in Fp from p is also a ray in
M , so we could equally well have defined M(∞) as the set of rays in Fp from p.
By Theorem 3.1, we get the same topology on M(∞) if we replace dM with dFp in
equation 4.1. The statement of the corollary follows. £

Second, we show an application of Proposition 2.2 to the metric projection onto
a soul. The application is related to a splitting theorem of Guijarro and Petersen
which states that if the curvatures of all 2-planes on M decay towards zero away
from the soul then the soul must be flat [5]. By O’Neill’s formula, one can then
conclude that the A-tensor of π vanishes, and hence that M splits locally isomet-
rically over the soul (see [4]). Guijarro and Walschap have demonstrated that if
M has the property that all holonomy diffeomorphism of π obey a global Lipschitz
bound, then one only needs to know that the curvatures of all vertizontal 2-planes
(that is, 2-planes spanned by a horizontal and a vertical vector) decay towards zero
away from the soul in order to conclude that M splits locally isometrically over its
soul [4, Theorem 4.3.2]. Thus, we have as a corollary to Proposition 2.2:

Corollary 4.2. If Φ is compact and the curvatures of vertizontal 2-planes on
M decay towards zero away from Σ, then M splits locally isometrically over
Σ.

We do not know whether the statement of this corollary is necessarily true when
Φ is noncompact.

5. A finiteness theorem for Riemannian submersions

In this section we prove that there are only finitely many equivalence classes
of Riemannian submersions whose base space and total space both satisfy fixed
geometric bounds. We consider two Riemannian submersions, π1 : M1 → B1 and
π2 : M2 → B2, to be Ck-equivalent if there exists a Ck map f : M1 → M2 which
maps the fibers of π1 to the fibers of π2. Every Riemannian submersion is a fiber
bundle, and this notion of equivalence just means equivalence up to Ck fiber bundle
isomorphism.

Theorem 5.1. Let n, k ∈ Z and V,D, λ ∈ R. Then there are only finitely many
C1 fiber bundle isomorphism classes in the set of Riemannian submersions
π : Mn+k → Bn for which:

(1) B is simply connected.
(2) vol(B) ≥ V, diam(B) ≤ D, |sec(B)| ≤ λ.
(3) vol(M) ≥ V, diam(M) ≤ D, |sec(M)| ≤ λ.
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This theorem is based on the following result of P. Walczak ([11], as corrected
in [12]):

Theorem 5.2 (Walczak). Let n, k ∈ Z and V,D, λ, CA, CT ∈ R. Then there
are only finitely many C1 fiber bundle isomorphism classes in the set of Rie-
mannian submersions π : Mn+k → Bn for which:

(1) |A| ≤ CA and |T | ≤ CT .
(2) vol(B) ≥ V, diam(B) ≤ D, |sec(B)| ≤ λ.
(3) There exists a fiber Fp for which vol(Fp) ≥ V , diam(Fp) ≤ D, |sec(Fp)| ≤

λ.

Proof of Theorem 5.1. Let n, k ∈ Z and let V,D, λ ∈ R. Suppose that π :
Mn+k → Bn is a Riemannian submersion satisfying conditions 1-3 of Theorem 5.1.
As argued in section 1, the A and T tensors of π are bounded in norm by constants
CA and CT depending only on λ and inj(B). By a well known lemma of Cheeger,
inj(B) is in turn bounded below by a constant depending only on n, V,D, and λ
(see [7]).

Let p ∈ B and let Fp := π−1(p). It remains to bound the volume, diameter, and
curvature of Fp in terms of {n, k, V,D, λ, CA, CT }, and then apply Theorem 5.2.
First, by Gauss’ formula, |sec(Fp)| ≤ λ + 2CT . Second, to control vol(Fp), notice
that any two fibers have similar volumes. More precisely, the diffeomorphism hα :
Fp → Fq associated to a minimal path, α, in B between p and q satisfies the

Lipschitz constant eCT ·length(α) ≤ eCT ·D, so vol(Fp) ≤ (ekCT ·D) · vol(Fq). But by
Fubini’s theorem, vol(M) =

∫

p∈B
vol(Fp) dvolB , which implies that for any p ∈ B,

vol(Fp) ≥ vol(M)
vol(B) (e

−kCT ·D). By the Bishop-Gromov inequality, vol(B) is bounded

above by a constant depending only on D,λ, and n. This observation completes
our argument that vol(Fp) is bounded below.

Finally, diam(Fp) ≤ C1 · diam(M) ≤ C1 · D, where C1 is the constant from
Theorem 3.1, which depends on {B,CA, CT , k}. In fact, it is clear from the proof
of theorem 3.1 that C1 really depends only on {diam(B), Q(B), CA, CT , k}, where
Q(B) is the constant in Lemma 7.2. We argue now that Q(B) depend only on
the assumed geometric bounds of B. Let M denote the class of all n dimensional
Riemannian manifolds for which vol ≥ V , diam ≤ D, and |sec| ≤ λ. By assumption,
B ∈ M. M is pre-compact in the Lipschitz topology and contains only finitely many
diffeomorphism types (see [7]). This means that it is possible to choose a finite set,
{B1, ..., Bl} ⊂ M, and a constant L = L(n, V,D, λ) such that for any M ∈ M,
there exists an L-biLipschitz diffeomorphism between M and some Bi. Therefore,
for any M ∈ M, Q(M) ≤ L2 · max{Q(Bi)}. This proves that Q(B) satisfies an
upper bound depending only on {n, V,D, λ}, which completes the proof. £

We do not know whether Theorem 5.1 is true without the hypothesis that the
base space is simply connected. It is also possible that even without the upper
curvature bound on the total space and/or the base space, there are still only finitely
many C0 fiber bundle isomorphism classes in this set of Riemannian submersions.
Some evidence that the upper curvature bound on the total space can be eliminated
in this way is provided by the following theorem of J.Y. Wu [13]:

Theorem 5.3 (J.Y. Wu). Let Bn be a compact Riemannian manifold. Let
k ∈ Z and V,D, λ ∈ R. Assume n ≥ 4. Then there are only finitely many
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C0 fiber bundle isomorphism classes in the set of Riemannian submersions
π : Mn+k → Bn for which:

(1) vol(M) ≥ V , diam(M) ≤ D, sec(M) ≥ λ.
(2) For each p ∈ B, dFp = dM .

The advantage of Wu’s theorem is that the upper curvature bound on the total
space is missing. The disadvantage is that condition 2 is a very strong additional
hypothesis; it is even stronger than assuming that the fibers are all totally geodesic.

6. Measuring size in the holonomy group

In this section we return to arbitrary Riemannian submersions with bounded
tensors. We assume in this section that the holonomy group, Φ, is a finite dimen-
sional Lie group, but we allow the possibility that Φ is noncompact. We develop a
notion of “size” in the holonomy group, and show how to control the size of hα in
terms of length(α). This is analogous to Proposition 7.1 of the appendix.

Let α0 denote a loop in B at p for which hα0 = id. For example, this is the case
when α0 is the trivial loop, but it may also occur for nontrivial loops. Let αs denote
a variation of α0. Then hαs defines a path in Φ beginning at id, and V := (hαs)′(0)
is an element of the Lie algebra, G, of Φ. Every vector of G can be described in this
way; see Schroeder and Strake’s proof of Lemma 2.1. It is natural to consider V
as a vertical vector field on Fp. We write V (x) for the value of this vector field at
x ∈ Fp. It is clear from Lemma 3.3 that this vector field has bounded norm. This
observation is particularly interesting for the metric projection onto a soul. In this
setting, it has been discovered through other routes that such “holonomic” vertical
vector fields are bounded; see for example [10, Proposition 4.1].

We call a left invariant metric, m, on Φ acceptable if the following condition
is satisfied: for all V ∈ G, |V |m ≤ supx∈Fp

|V (x)|. Notice that any left invariant

metric can be made acceptable by rescaling. For g ∈ Φ, we denote by |g| the
supremum over all acceptable metrics on Φ of the distance in Φ between g and id.
This provides a natural notion of the “size” of a holonomy element. Notice that
|g1 · g2| ≤ |g1| + |g2|. Compare the following statement to Proposition 7.1 of the
appendix:

Proposition 6.1. If B is simply connected and Φ is a finite dimensional Lie
group, then there exists C = C(B,CA, CT , k) such that for any loop α in B,
|hα| ≤ C · length(α).

Proof. By an argument used many times in this paper, it will suffice to find a
constant C such that |hα| ≤ C · length(α) for all loops α of length ≤ D = 2 ·
diam(B) + 1. Let α : [0, 1] → B be a constant speed loop at p ∈ B with l :=
length(α) ≤ D. By Lemma 7.2, there exists a piecewise smooth nulhomotopy
H : [0, 1] × [0, 1] → B of α such | ∂∂tH| ≤ Ql and | ∂

∂sH| ≤ Q. Here H0(t) =

H(0, t) = p and H1(t) = H(1, t) = α(t). Let g(s) = hHs , which is a piecewise
smooth path in Φ between the identity and hα. It will suffice to find C such
that for any acceptable metric, m, on Φ, |g′(s)|m ≤ C · l. So choose any fixed
acceptable metric, m. For fixed s ∈ [0, 1], let σr be the following family of loops:
σr = Hs+r ∗ (Hs)

−1. Notice that hσ0 = id, and hHs ◦ hσr = hHs+r . Let V ∈ G be
the element V := (hσr )′(0). Since the metric is left invariant, |g′(s)|m = |V |m. By
Lemma 3.3, for any x ∈ Fp, |V (x)| ≤ ρl(1), where ρl(t) denotes the solution to the
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following differential equation:

ρ′l(t) = 2kCAQ
2l(1 + 4kk!) + 2kQl(CT + 4kk!CA)ρl(t) ; ρl(0) = 0.

In particular, |g′(s)|m ≤ C · l, where C is a bound on the derivative of the function
l 7→ ρl(1) between l = 0 and l = D. This completes the proof. £

We remark that Proposition 6.1 implies a weak version of Proposition 7.1. More
precisely, if the unit sphere bundle of a Riemannian vector bundle with a connection
is endowed with the natural connection metric, then the projection map becomes a
Riemannian submersion. The T tensor of this submersion vanishes, and the A ten-
sor depends on R∇. This argument produces only a week version of Proposition 7.1,
because it does not establish the bound to be linear in CR.

7. Appendix

In this section we show that, in a vector bundle, the “size” of the holonomy
element associated to a loop can be controlled linearly in terms of the length of the
loop. This result provides motivation for Proposition 6.1. Let Rk → E → B be an
Riemannian vector bundle. Assume that B is compact and simply connected. Let
∇ be a connection which is compatible with the inner products on the fibers. Let
R∇ denote the curvature tensor of ∇, and assume that |R∇| ≤ CR. Fix p ∈ B.
Let Φ denote the holonomy group, and G its Lie algebra. Notice that Φ is a Lie
subgroup of the orthogonal group, since it acts naturally by isometries on the unit
sphere E1

p of the fiber Ep at p. For V ∈ G and w ∈ E1
p , denote by V (w) the value

at w of the vector field on E1
p associated to V . We call a left-invariant metric, m,

on Φ acceptable if for all V ∈ G, |V |m ≤ supw∈E1
p
|V (w)|. Notice that any left

invariant metric on Φ can be made acceptable by rescaling. For g ∈ Φ, we define
|g| as the supremum over all acceptable metrics on Φ of the distance between g and
id. This provides a natural notion of “size” in the holonomy group.

Proposition 7.1. There is a constant C = C(B) such that for any piecewise
smooth loop α in B, |Pα| ≤ C · CR · length(α).

The proof of this proposition turns on the following lemma, which is also invoked
in the proof of Theorem 3.1:

Lemma 7.2. Let B be a compact and simply connected Riemannian mani-
fold. There exists a constant Q = Q(B) such that for any piecewise smooth
loop α : [0, 1] → B (parameterized proportional to arclength), there exists a
piecewise smooth nulhomotopy H : [0, 1] × [0, 1] → B of α (that is, H(0, t) =
p = α(0), H(1, t) = α(t)) for which the natural coordinate vector fields along
the image of H are everywhere bounded in norm as follows: | ∂

∂sH| ≤ Q and

| ∂∂tH| ≤ Q · length(α). In particular, this implies that the area, A(H), of the
image of H is ≤ Q2 · length(α).

Proof. Let α : [0, 1] → B be a piecewise smooth loop in B. Assume that α is
parameterized proportional to arclength. Denote p := α(0) = α(1), and l :=
length(α). To start, we will assume that l ≤ 1

2 inj(B), in which case it is easy
to construct a nulhomotopy of α with derivative information controlled linearly
in terms of l. Since l ≤ 1

2 inj(B), α lifts to a loop α̃ = exp−1
p ◦α at 0 in TpB.

The natural nulhomotopy of α̃ is H̃(s, t) := s · α̃(t) (s ∈ [0, 1], t ∈ [0, 1]). Clearly
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| ∂∂tH̃|, | ∂
∂sH̃| ≤ l. Letting H := expp ◦H̃, which is a piecewise smooth nulhomotopy

of α, we see that | ∂∂tH|, | ∂
∂sH| ≤ Q1 · l for a properly chosen Q1 = Q1(B).

Next we assume only that l ≤ D := 2 · diam(B) + 1. More precisely, we seek a
constant Q2 such that for any piecewise smooth loop α in B at p of length ≤ D,
there exists a piecewise smooth nulhomotopy H of α, with | ∂∂tH|, | ∂

∂sH| ≤ Q2.
Suppose no such Q2 exists. Then there must be a sequence αi : [0, 1] → B of

piecewise smooth loops, each with length ≤ D, such that the minimal derivative
bounds of piecewise smooth nulhomotopies of the loops αi go to infinity. By re-
stricting to a subsequence, we can assume that αi converges in the sup norm; in
particular αi is a Cauchy sequence. For i, j large enough that ε := dsup(αi, αj) ≤
1
2 inj(B), the natural piecewise smooth homotopy H : [0, ε] × [0, 1] → B between
H0(t) = H(0, t) = αi(t) and Hε(t) = H(ε, t) = αj(t), which retracts along shortest
geodesics between corresponding points of the two curves, is well defined. More
precisely, define H(s, t) = ct(s), where ct is the minimal path between ct(0) = αi(t)
and ct(ε) = αj(t), parameterized so as to have the constant speed d(αi(t), αj(t))/ε.

Clearly | ∂
∂sH| ≤ 1. Further, | ∂∂tH| ≤ K for an appropriate constant K = K(B).

To see this, notice that for fixed t, the vector field Jt(s) = ∂
∂tH(s, t) along the

geodesic ct(s) is a Jacobi field because it is the variational vector field of the fam-
ily of geodesics which defines the homotopy. Jt(s) is determined by its endpoints
V1 := Jt(0) = α′

i(t) and V2 := Jt(ε) = α′
j(t), each of whose norm is ≤ D. We can

thus take K as the supremum (over all pairs of vectors V1 ∈ Tp1B, V2 ∈ Tp2B with
d(p1, p2) ≤ 1

2 inj(B) and |V1|, |V2| ≤ D) of the maximal norm of the Jacobi field
along the shortest geodesic between p1 and p2 with end values V1 and V2.

It follows that any piecewise smooth nulhomotopy Hi of αi can be extended to
a piecewise smooth nulhomotopy Hj of αj , with similar derivative bounds. More

precisely, if | ∂
∂sHi| ≤ Qs and | ∂∂tHi| ≤ Qt, then | ∂

∂sHj | ≤ Qs + E(ε) and | ∂∂tHj | ≤
max{Qt,K}, where limε→0 E(ε) = 0. This provides a contradiction. Therefore,
such a constant Q2 exists.

Finally, we handle the case where l = length(α) is arbitrary. It is possible to
find l̄ loops, α1, ..., αl̄, each of length ≤ D, such that Pα = Pα1 ◦ · · · ◦ Pαl̄

, where l̄
denotes the smallest integer which is ≥ l. This is done exactly as in the proof of
Lemma 2.2, by defining αi to be the composition of a minimal path in B from p
to α(i − 1), followed by α|[i−1,i], followed by a minimal path from α(i) to p. Let
γ : [0, 1] → B denote the composition of the loops αi, re-parameterized proportional
to arclength. Notice that length(γ) ≤ l̄·D. It is straightforward to define a piecewise
smooth homotopy H : [0, 1

2 ] × [0, 1] → B between H(0, t) = α(t) and H( 12 , t) =

γ(t) with | ∂
∂sH| ≤ 2 · diam(B) and | ∂∂tH| ≤ l̄ · D. Next extend H by defining

H : [ 12 , 1] × [0, 1] → B as the nulhomotopy of γ which simultaneously performs
nulhomotopies of each loop αi. H is clearly a piecewise smooth nulhomotopy of α
for which | ∂

∂sH| ≤ max{2 · diam(B), 2Q2} and | ∂∂tH| ≤ l̄Q2 ≤ (l + 1)Q2 ≤ 2lQ2.
The final inequality above assumes that l ≥ 1, but the case l ≤ 1 can be handled

as follows: If l ≤ 1
2 inj(B) then there exists a homotopy with | ∂

∂sH| ≤ Q1 · l ≤ Q1

and | ∂∂tH| ≤ Q1 · l. On the other hand, if 1
2 inj(B) ≤ l ≤ 1 then there exists a

homotopy with | ∂
∂sH| ≤ Q̃2 and | ∂∂tH| ≤ Q̃2 = Q̃2l

l ≤ 2Q̃2

inj(B) l. Here Q̃2 is derived

similarly to Q2, but for loops of length ≤ 1 rather than loops of length ≤ D. In
all cases, | ∂∂tH| is bounded linearly in terms of l, and | ∂

∂s | is bounded absolutely,
which completes the proof. £
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Next we prove Proposition 7.1

Proof. Let α : [0, 1] → B be a unit-speed piecewise smooth loop in B at p. By
Lemma 7.2, there exists a piecewise smooth nulhomotopy H : [0, 1]× [0, 1] → B of α
such whose area A(H) is bounded linearly in terms of length(α). We now describe
how to control |Pα| linearly in terms of A(H). Let g(s) = P{t→Hs(t)}, which is a

piecewise smooth path in Φ between the identity and Pα. For any vector w in E1
p ,

we define w(s, t) as the parallel transport of w along t 7→ Hs(t). Then,

|Pα| ≤
∫ 1

0
sup{|g′(s)|m : m is acceptable}ds

≤
∫ 1

0
sup
w∈E1

p

∣

∣

∣

∣

D

dS

∣

∣

∣

S=s
g(S)(w)

∣

∣

∣

∣

ds

=

∫ 1

0
sup
w∈E1

p

∣

∣

∣

∣

D

dS

∣

∣

∣

S=s
w(S, l)

∣

∣

∣

∣

ds

≤
∫ 1

0
sup
w∈E1

p

∫ 1

0

∣

∣

∣

∣

D

dt

D

ds
w(s, t)

∣

∣

∣

∣

dt ds

=

∫ 1

0
sup
w∈E1

p

∫ 1

0

∣

∣

∣

∣

R∇
(

∂

∂t
H(s, t),

∂

∂s
H(s, t)

)

w(s, t)

∣

∣

∣

∣

dt ds

≤
∫ 1

0

∫ 1

0
sup
w∈E1

p

∣

∣

∣

∣

R∇
(

∂

∂t
H(s, t),

∂

∂s
H(s, t)

)

w(s, t)

∣

∣

∣

∣

dt ds

≤
∣

∣R∇∣

∣

∫ 1

0

∫ 1

0

∣

∣

∣

∣

∂

∂s
H(s, t) ∧ ∂

∂t
H(s, t)

∣

∣

∣

∣

dt ds

= CRA(H).

This completes the proof. £
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(to appear).
6. G. Perelman, Proof of the soul conjecture of Cheeger and Gromoll, J. Differential Geom.

40(1994), 209-212.
7. S. Peters, Convergence of Riemannian manifolds, Compositio Mathematica. 62(1987)3-16.
8. V. Schroeder and M. Strake, Volume growth of open manifolds with nonnegative curvature,

Ann. Global Anal. Geom., 8, no.2 (1990), 159–165.
9. T. Shioya, Splitting theorem for nonnegatively curved open manifolds with large ideal boundary,

Math. Z. 212(1993), 223-238.
10. K. Tapp, Volume growth and holonomy in nonnegative curvature, Proc. Amer. Math. Soc.

(to appear).
11. P. Walczak, A finiteness theorem for Riemannian submersions, Ann. Polon. Math. 57(1992),

No. 3, 283-290.
12. P. Walczak, Erratum to the paper “A finiteness theorem for Riemannian submersionsÔ, Ann.

Polon. Math. 58(1993), No. 3, 319.



14 KRISTOPHER TAPP

13. J.Y. Wu, A parametrized geometric finiteness theorem, Indiana Univ. Math. J., 45, No. 2
(1996), 511-528.

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-
6395

E-mail address : ktapp@math.upenn.edu


