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ABSTRACT
THE GEOMETRY OF OPEN MANIFOLDS OF NONNEGATIVE CURVATURE

Kristopher R. Tapp

In this paper we study the global geometric properties of an open manifold with nonnegative sec-
tional curvature. Cheeger and Gromoll’s well-known Soul Theorem states that any such manifold,
M, contains a compact totally geodesic submanifold, 3> C M, called the “soul of M”, whose normal
bundle is diffeomorphic to M. In 1994, Perelman proved that the metric projection 7 : M — ¥ is a
well defined Riemannian submersion. Perelman’s breakthrough greatly simplifies the study of this
class of manifolds. The main purpose of this paper is to explore consequences of Perelman’s result.
Along the way we develop some general theory for Riemannian submersions which is of interest
independent of its application to nonnegative curvature.

For example, we derive basic properties of Riemannian submersions with compact holonomy. For
the metric projection onto a soul, we show by example that the holonomy is not necessarily compact,
even when the soul is simply connected, and we establish certain rigidity when the holonomy is
compact.

Additionally, we develop some general theory for “bounded Riemannian submersion” (submer-
sions whose A and T tensors are both bounded in norm). When applied to the metric projection
onto a soul, 7 : M — X, this theory implies that M is quasi-isometric to any single fiber of .
Perelman’s theorem also enables us to bound the volume growth of M from above and below.

Finally, we study the converse of the Soul Theorem; that is, the question of which vector
bundles over spheres (or more general souls) admit metrics of nonnegative curvature. For example,
we prove that only finitely many vector bundles over a given soul admit a nonnegatively curved
metric satisfying a fixed upper bound for the vertical curvatures at the soul. Also, we translate the
question of whether a bundle admits nonnegative curvature into the question of whether it admits
a connection and a tensor which together satisfy a certain differential equation.
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Chapter 1

Introduction

In this paper we study the global geometric properties of an open manifold with nonnegative sec-
tional curvature. Cheeger and Gromoll’s well-known Soul Theorem states that any such manifold,
M, contains a compact totally geodesic submanifold, ¥ C M, called the “soul of M”, whose nor-
mal bundle, v(X), is diffeomorphic to M. In 1994, Perelman proved that the metric projection
m: M — ¥ is a well defined Riemannian submersion. Perelman’s breakthrough greatly simplifies
the study of this class of manifolds. The main purpose of this paper is to explore consequences
of Perelman’s result. Along the way we develop some general theory for Riemannian submersions
which is of interest independent of its application to nonnegative curvature.

Chapter 2: Background. In this chapter, we review the Soul Theorem, Perelman’s Theorem,
and the definition and basic properties of Riemannian submersions. Additionally, we review the
definition and basic properties of two important geometric objects which, together with the soul,
helps one study M; namely, the ideal boundary, M (c0), of M, and the holonomy group, ®, of the
normal bundle, v(X¥), of X.

Chapter 3: Conditions for nonnegative curvature on vector bundles. In the first
section of this chapter, we derive a formula for the curvature of an arbitrary 2-plane at the soul. In
the second section, we study the curvature of an arbitrary 2-plane “near” the soul. More precisely,
imagine a family o(t) of 2-planes on M beginning with a mixed 2-plane ¢(0) at a point of ¥ (by
a mixed 2-plane, we mean a plane spanned by a tangent vector and a normal vector to ¥; such a
2-plane necessarily has zero curvature) and then varying in such a way that the base point moves
away from Y while simultaneously the plane twists away from its initial “mixed” configuration. We
study the derivatives of the curvature function t — K (o (t)).

In the remaining sections of this chapter, we use these curvature formulas to study conditions
under which a vector bundle admits a metric of nonnegative curvature. More precisely, we translate
the question of whether a vector bundle admits a metric of nonnegative curvature into the question
of whether it admits a connection and a tensor which together satisfy a certain differential equation.
This generalizes the work of Walschap and Strake on the question of which vector bundles admit
connection metrics of nonnegative curvature.

Chapter 4: Riemannian submersions with compact holonomy. We say that a Rie-
mannian submersion 7 : M — B has compact holonomy if its holonomy group is a compact finite
dimensional Lie group. For the metric projection onto a soul, 7 : M™% — £7 the holonomy group
of 7 is just the holonomy group of the normal bundle of ¥, and is therefore a Lie subgroup of the
orthogonal group O(k). We show by example that it need not be a compact Lie subgroup of O(k),
even when the soul is simply connected. When the metric projection onto a soul does happen to
have compact holonomy, we achieve the following splitting theorem: if the vertizontal curvatures
of M decay towards zero away from 3, then M splits locally isometrically over ¥. This theorem is
based on the work of Guijarro and Walschap, and generalizes a result of Guijarro and Petersen.



Chapter 5: Volume growth bounds. In this chapter we use Perelman’s Theorem to study
the volume growth, VG(M), of M. In particular, VG(M) is proven to be bounded above by the
difference between the codimension of the soul and the maximal dimension of an orbit of the action
of the holonomy group ® on a fiber v,(X). Additionally, if M satisfies an upper curvature bound,
then we prove that VG(M) is bounded below by one plus the dimension of the ideal boundary,
M (o), of M.

Chapter 6: Bounded Riemannian submersions. In this chapter we generalize away from
nonnegative curvature in order to study Riemannian submersions whose A and T tensors are both
bounded in norm. Suppose that 7 : M"+* — B" is a Riemannian submersion, B is compact and
simply connected, |A4| < C4, and |T'| < Cr. Our main theorem provides a bound on the “folding of
the fibers” of m. Specifically, if dr, denotes the intrinsic distance function on a fiber F), = 7 1(p),
and djs denotes the distance function of M restricted to Fy,, then dp, < C - dpr, where C' depends
on B7 C’A, CT, and k.

Since, by Perelman’s Theorem, the metric projection onto a soul is a bounded Riemannian
submersion, we have the following application to nonnegative curvature: when the soul is simply
connected, the ideal boundary of M can be determined completely from a single fiber of .

We also explore consequences or our “folding of the fibers” bound outside of the field of non-
negative curvature; in particular, we prove that there are only finitely many isomorphism types
among the class of Riemannian submersions whose base space and total spaces both satisfy fixed
geometric bounds. In particular, we generalize a finiteness theorem of J.Y. Wu.

Chapter 7: Finiteness theorems for fiber bundles. In this chapter we prove finiteness
theorems for vector bundles and principal bundles. For example, there are only finitely many
vector bundles of a fixed rank over a fixed compact Riemannian manifold capable of admitting a
connection whose curvature tensor satisfies a fixed bound in norm. An analogous statement holds
for principal bundles, and the proof of this analog is based on the “folding of the fibers” bound in
Chapter 6.

We provide two applications of these finiteness theorems to nonnegative curvature. First, there
are only finitely many vector bundles of a fixed rank over a fixed soul (that is, a fixed compact Rie-
mannian manifold of nonnegative curvature) which are capable of admitting nonnegatively curved
metrics for which the vertical curvatures at the soul satisfy a fixed upper bound. Second, we bound
the number of rank k£ vector bundles over a fixed Bieberbach manifold B which can admit a metric
of nonnegative curvature (the bound is in terms of k and the topology of B).



Chapter 2

Background

In this chapter, we review the Soul Theorem, Perelman’s Theorem, and the definition and basic
properties of Riemannian submersions. Additionally, we review the definition and basic properties
of two important geometric objects which, together with the soul, helps one study M; namely, the
ideal boundary, M (c0), of M, and the holonomy group, ®, of the normal bundle, v(X), of X.

2.1 The metric projection onto a soul

Our primary object of study in this paper is an open Riemannian manifold, M, with nonnegative
sectional curvature. The term “open” means complete and noncompact. One might be lead to
suspect rigidity among this class of manifolds by considering the following two facts:

e Any open Riemannian manifold must contain at least one ray.

e A Riemannian manifold with sectional curvature bounded below by § > 0 is necessarily
compact, and hence cannot contain any rays. Analogously, a Riemannian manifold with
nonnegative sectional curvature might be thought of as “wanting to close up”, or “barely able
to contain a ray”.

In 1972, Cheeger and Gromoll proved their celebrated “Soul Theorem”. By harnessing this tension
between the necessity that such manifolds contain rays and their tendency to close up, Cheeger
and Gromoll proved the following remarkable structure theorem [6]:

Theorem 2.1.1 (Cheeger and Gromoll’s Soul Theorem). Any open manifold, M, with
nonnegative sectional curvature contains a compact and totally conver submanifold, ¥ C M
(called the “soul of M”), whose normal bundle is diffeomorphic to M.

Cheeger and Gromoll conjectured that there should exist a Riemannian submersion from M onto
its soul (the reader unfamiliar with Riemannian submersions should jump ahead to Section 2.4).
The resolution of this conjecture by Perelman in 1994 was a crucial breakthrough in the study of
nonnegatively curved open manifolds. It provides a powerful description of the ways in which the
geometries of the manifold and its soul interrelate. We believe that Perelman’s result opens the field
to a renewed investigation. The main purpose of our paper is to explore consequences of Perelman’s
Theorem. Perelman’s Theorem is based on the following result due to Sharafutdinov [28] (a nice
alternative proof due to Croke, Schroeder and Yim is found in [44]):

Theorem 2.1.2 (Sharafutdinov). There exists a distance non-increasing map w: M — X.

Since Riemannian submersions are distance non-increasing, m was a good candidate for the
conjectured Riemannian submersion. However, Sharafutdinov constructed 7 as a limit of an infinite



sequence of rather complicated maps, which made it very difficult to study. Perelman overcame
this difficulty by providing a very simple description of 7, while simultaneously proving that = is
in fact a Riemannian submersion.

In order to state Perelman’s Theorem, we establish the following notation. Let IT : v(¥) — X
denote the normal bundle of 3 in M. Let exp’ : ¥(3¥) — M denote the normal exponential map.
For p € 3, let 1,(X) := II7!(p). If v is a path in ¥ with v(0) = p and V € v,(X), let P, (V) denote
the parallel transport of V' along «y. Perelman’s Theorem states [24]:

Theorem 2.1.3 (Perelman).

1. For anyp€ X, X € T,X, and V € v,(X), the surface (s,t) — expt(s-V(t)) (s,t € R,s >
0), where V(t) denotes the parallel transport of V along the geodesic with initial tangent
vector X, is a flat and totally geodesic half plane (we will refer to these surfaces as
“Perelman flats”).

2. moexpt =1L

3. mis a C' Riemannian submersion. The horizontal distribution of 7 is the image under
dexp® of the distribution in v,(X) which is associated to the natural connection. Said
differently, if v(t) is a path in X, p=~(0), V € 1,(2), and V() : then the path

t — expt(V(t)) is horizontal with respect to T.

= ’Y|[0,t]’

4. The second fundamental forms of the fibers of w are globally bounded in norm.
Some comments about Perelman’s Theorem are in order:

e Perelman’s proof makes no mention of Sharafutdinov’s intricate construction of m; it uses only
the property that 7 is distance non-increasing. Thus, 7 is the unique distance non-increasing
map from M onto X.

e Part 2 of Perelman’s Theorem says that 7 is simply the inverse of the normal exponential
map of the soul. Said differently, 7 is the “metric projection”; that is, the map which sends
a point x € M to the point 7w(x) € ¥ to which it is closest. Accordingly, we will refer to 7
either as the “Sharafutdinov map” or as the “metric projection onto the soul”.

e Perelman’s Theorem does NOT imply that expt : v(¥) — M is injective; however, if two
different vectors of v(X) have the same image under exp™, then the two vectors must have
the same base point p € 3.

e Luis Guijarro has recently proven that 7 is at least C? and a.e. smooth [13].

Part 4 of Perelman’s result is of crucial importance for our paper, and we wish to elaborate
on it here. Perelman’s precise claim was that the eigenvalues of the second fundamental forms of
the fibers of m are bounded above, in barrier sense, by the reciprocal of the injectivity radius of
¥.. Since Guijarro has established that 7 is C2, the second fundamental form of the fibers is well
defined by the usual equation and is continuous, which frees us to ignore the phrase “in barrier
sense”. Perelman’s proof of this bound actually proves the following more general fact:

Proposition 2.1.4 (Generalization of Perelman’s Bound). Suppose that f : M — B is
any C? Riemannian submersion between Riemannian manifolds. If the curvature of M is
bounded below by k and the injectivity radius of B is bounded below by i > 0, then the second
fundamental forms of the fibers of f are bounded in norm by a constant which depends only
on A and i.

Since Perelman’s proof of this bound is very abbreviated (it is a single sentence), we choose to
include an elaboration of his proof here.



Proof of Proposition 2.1.4. Let p € B and let p € F, := 7w !(p). Let X be any unit-length
vector which is normal to F), at p. Let V be any unit-length tangent vector to F, at p which is
an eigenvector of the shape operator Sx of Fj, in the direction X; that is SxV = AV. We wish to
bound .

Take any real number r < i. Let @ : [0,7] — M denote the horizontal geodesic with &'(0) = X.
Let ¢ := a(r). a is distance-minimizing, and in fact it continues to minimize for a short time
beyond p simply because the same is true of its projection o := woa. Therefore the distance sphere
S about g of radius r is smooth at p. Also, S intersects F), only at p; for, if there were another point
x of intersection, then the projection via 7 of a minimal path from ¢ to z would provide a minimal
path from ¢ := 7(g) to p which is different than «, contradicting the injectivity radius bound.

The idea is to compare the second fundamental form of F, at p to the second fundamental
form of S at p. To assist us in doing so, we reduce to a 2-dimensional picture. Let W denote the
exponential image of a small ball in the 2-plane at p spanned by X and V. W clearly meets both
S and F), transversally. Let v : (—¢,e) — W denote the unit-speed parameterization of the curve
of intersection of F}, and W, with v(0) = p. Notice that

A= (SxV,V) = (3(0), X),

which is just the curvature at p of ~.

Similarly, if S denotes the shape operator of S, then SxV = (3(0), X), where 3 is the curve
along which W meets S. By standard comparison theory, S has norm bounded in terms of r and
k. Finally, it is straightforward to show that (5(0), X) < (ﬁ(O),X ) simply because v and @ meet

only at p, and 3 is the “inner” of the two curves with respect to the orientation of W given by the
vector X. ]

We end this section by mentioning an important consequence of Perelman’s Theorem which was
observed by Guijarro and Walschap in [17, Proposition 2.4] (the result is also mentioned in [12,
Lemma 2.2]):

Proposition 2.1.5 (Guijarro-Walschap). For sufficiently smallr > 0, the closed ball Bx(r) =
{pe M |dp,X) <r} is convex.

Since we will later need to generalize this result, we include Guijarro and Walschap’s proof of
this proposition.

Proof. Tt will suffice to prove that the second fundamental form IT of the boundary Sx(r) of Bs(r)
associated to the inward-pointing unit normal vector field N is positive semidefinite. Let p € Sx(r),
let p := 7w(p) € 3, and let v : [0,7] — M be a minimal geodesic from v(0) = p to y(r) = p. Clearly
N(p) = —+/(r). Let Sy denote the shape operator of Sx(r) associated to N.

By Perelman’s Theorem, NN is parallel along any horizontal geodesic. Hence for any X € Hp,
II(X,*) = (Sy(X),*) =0.

On the other hand, the set v,(Z,r) :={W € v,(2) | |W| = r} satisfies:

epr‘(Z/p(E7 r)) = Sx(r) N OBy(r).

This set is smooth for small » > 0, and it’s tangent space at p is Vz% ={V €V5|V L Np}. Since
balls of small radius are strictly convex, IT(V, V) > 0 for any nonzero V € VﬁL. Hence, the second
fundamental form of Sx(r) is positive semidefinite for sufficiently small r. O

2.2 The normal holonomy group of a soul

The holonomy group, ®, of v(X) plays an important role in the study of M. We remind the reader
that @ is defined with respect to a fixed p € ¥ as the group of all orthogonal endomorphisms of



vp(X) which occur as P, for some piecewise smooth loop a in ¥ at p. @ is a Lie subgroup of the
orthogonal group O(v,(X)). The identity component, ®°, of ® can be shown to be the subgroup
of all endomorphism which occur as P, for some nulhomotopic loop a in ¥ at p. ®° is often called
the “reduced holonomy group”.

Part 3 of Perelman’s Theorem says that the connection in v(X) controls the horizontal distribu-
tion of . Therefore, Perelman’s Theorem implies that, in certain ways, the natural action of ® on
vp(X) controls the geometry of M. This will be an important theme of our paper. A well known
result in this vein is the following splitting theorem:

Theorem 2.2.1 (The Splitting Theorem).
1. If ®° = id, then M splits locally isometrically over X.
2. If ® =1id, then M splits globally isometrically over X.

“M splits locally isometrically over 3”, means that for any contractible neighborhood U in X,
7~ 1(U) is isometric to the Riemannian product U x (R¥, g), where g is some metric of nonnegative
curvature on R¥. “M splits globally isometrically over X7, means that M is isometric to ¥ x (R¥, g).

Part 2 of this theorem was proven independently by Strake [33], Yim [45] and Marenich [20].
Part 1 does not seem to be explicitly stated in the literature, but it is well-known. We will mention
in Remark 3.1.2 an elementary proof of part 1 which is made possible by Perelman’s Theorem
together with a result of Walschap.

2.3 The ideal boundary

Together with the soul, ¥, and the holonomy group, @, a third important space needed to study M
is the “ideal boundary of M”, denoted M (c0). M (c0) is a compact space which encodes information
about the geometry of M “at infinity”, or infinitely far away from a fixed soul. In this section we
will review the definition of M (oc0).

M (o) can be defined by choosing any fixed point p € M and declaring M (co) to be the set of
equivalence classes of unit-speed rays in M from p, endowed with the following distance function:

doe (], ) 1= Jim (0 (0), 92(0))

where d' denotes the intrinsic distance function on the sphere of radius ¢ about p. Two rays are
considered equivalent if they have distance zero.
Since it is difficult to work with d, we define an alternate metric on M (o0) as follows:

~ {oo (if v1,y2 lie on different ends of M); (23.1)

doo([11], [12]) = limy oo $dar(71(t),72(2)) (otherwise).

Here dj; denotes the distance function on M. The relationship between these two distance functions
is derived in [31, Proposition 2.2]. Namely, if rays v; and 7 lie on the same end of M, then:

doo([m]; 2]) = V2 = 2cos(doo (], [2]))-

In particular, do, and ds induce the same topology on M (c0).
(M(0),d) is an Alexandrov space with curvature bounded below by 1. The proof of this can
be found in [15], and the definition and basic properties of Alexandrov spaces can be found in [4].



2.4 Basic properties of Riemannian submersions

In this section we review the definition and basic properties of Riemannian submersions, whose
relevance to the study of nonnegative curvature is obvious from Perelman’s Theorem. A good
reference for this material is Chapter 9 of [2].

We begin with the definition. Suppose that M, B are Riemannian manifolds, and that f :
M — B is a C* submersion in the sense of differentiable topology; that is, f is onto and df, :
ToM — Ty B is a surjective linear map for every # € M. This implies that for any p € B,
the fiber F,, := f~!(p) is a C* submanifold of M. Define the vertical distribution, V, of f to
be the collection of tangent spaces of the fibers. That is, V, := T, (Fy(,)). Define the horizontal
distribution H as the distribution orthogonal to V. If for every x € M, df,|x, : Hy — Ty B is a
linear isometry, then f is called a Riemannian submersion.

If a(t) is a path in B, say from p = «(0) to ¢ = a(1), and = € F),, then there exists a unique
horizontal lift, &, (t) of a with &,(0) = z. We define h* : Fj, — F, as the diffeomorphism between
the fibers which sends each z € F, to a,(1) € F,. h® is a C*~! diffeomorphism, and we will
sometimes refer to it as the “holonomy diffeomorphism” associated to a.

It is natural to define the “holonomy group”, ®, of f by fixing a point p € B and defining ® as
the group of all diffeomorphisms of the fiber £, which occur as h* for some piecewise smooth loop
a in B at p. It is easy to see that ® is a group and that, up to group isomorphism, & does not
depend on the choice of p € B, at least when B is connected.

For the metric projection onto a soul, 7 : M — X, the holonomy group of 7 is the same as the
holonomy group of the normal bundle of the soul, and is therefore a subgroup of the orthogonal
group O(vp(X)). This is immediate from Perelman’s Theorem. For general Riemannian submer-
sions, however, the holonomy group need not be a finite dimensional Lie Group. In Chapter 4,
we will study Riemannian submersions whose holonomy groups are compact finite dimensional Lie
Groups. We will show by example that the holonomy group of the metric projection onto a soul
need not be compact, and we will derive rigidity consequences when it is compact.

Associated to any Riemannian submersion are two fundamental tensors, called the A and T
tensors. If F; and E5 are vector fields on M, then we define:

T, By :=HVyp, VEs +VVyp HEs.

AEIEQ = HVHEIVEQ + VvHElHEQ.

It is easy to show that A and T are tensors. The T-tensor is best thought of as the second
fundamental form of the fibers packaged together with its adjoint (the shape operator of the fibers).
The best way to think of the A-tensor is provided by the following fact: if X and Y are horizontal
vector fields on M then AxY = 1V[X,Y]. Thus, the A-tensor measures the failure of the horizontal
distribution to be integrable.

Curvature information on M is related to curvature information on B by a collection of formulas
known as O’Neill’s formulas [2, Theorem 9.28]. The best known formula from this collection states
that for x € M, if X,Y € H, are orthonormal, then

K(X,Y) = K(df,(X),df.(Y)) — 3|AxY . (2.4.1)

Equation 2.4.2.1 is often referred to simply as “O’Neill’s formula”. It implies the important fact
that Riemannian submersions are curvature non-decreasing. It also implies that if M satisfies a
lower curvature bound A, and B satisfies an upper curvature bound g, then the A-tensor of f is
bounded in norm by \/%(u — A). For the metric projection onto a soul, 7 : M — X, M satisfies the
lower curvature bound A = 0, and X satisfies some upper curvature bound p simply because Souls
are compact. Therefore, the A-tensor of 7 is bounded in norm. Part 4 of Perelman’s Theorem
says that the T-tensor of 7 is also bounded in norm. For this reason, a large portion of our paper
is devoted to the study of “bounded Riemannian submersions”; that is, Riemannian submersions
both of whose fundamental tensors are bounded in norm.



Chapter 3

Conditions for nonnegative
curvature on vector bundles

In the first two sections of this chapter, we use Perelman’s Theorem to derive simple formulas which
shed light on how the curvature tensor of M behaves at and near the soul of M. In the remaining
sections, we use these formulas to translate the question of whether a vector bundle admits a metric
of nonnegative curvature into the question of whether it admits a connection and a tensor which
together satisfy a certain differential equation. This generalizes the work of Walschap and Strake
on conditions for a vector bundle to admit a connection metric of nonnegative curvature [35].

3.1 Curvature at the soul

In this section, M will denote an open manifold of nonnegative curvature, and 7 : M — ¥ will
denote the metric projection onto its soul. It is obvious that 7 is smooth in a neighborhood
of ¥. We use the curvature sign convention of [2]. For vector fields E; on M, we denote by
(E1,Es, E3,Ey) := (R(E1, E3)E3, Ey), where R is the curvature tensor of M. We denote by
K(E1, Ey) := (E1, B2, Eq, E3). Notice that if Ey and Es are orthonormal, then K(Eq, E5) is the
sectional curvature of the 2-plane which they span.

Forp € ¥, X,Y € T,%, and U,V € v,(X), we denote by RV (X,Y)V the curvature tensor of
v(2). We can enlarge the domain of the tensor RV somewhat by defining RV (U, V)X to be the
vector in T,% for which (RV(U,V)X,Y) = (RV(X,Y)U,V) for any Y € T,%. Since X is totally
geodesic, the tensor RV is simply the restriction of R to a smaller domain; even so, we will often
use RY in order to point out that a formula depends only on the connection on v(X).

When X is a vector field on 3, we will use X to denote its basic lift to M.

We begin by reviewing a simple description of the A tensor of w. This description is due to
Guijarro [14, Proposition 14], although the main idea first appeared in a paper by Strake and
Walschap [34, Proposision 1.7]:

Lemma 3.1.1 (Guijarro). Let p€ X, X,Y € T))2, and W € vp(%). Let p:= expt(W). Then
AxpY (p) = J(t), where J(t) is the Jacobi field along (t) := exp® (tW) with J(0) = 0 and
J'(0) = IRY(X,Y)W.

Proof. Write T(v(X)) = H @ V for the splitting of the tangent bundle of v(X) into horizontal
and vertical sub-bundles induced by the natural connection on v(¥). Remember that Perelman’s
Theorem implies that (expt). : H®V — H @V preserves the splitting. Extend X,Y to vector

fields on ¥ in a neighborhood of p. Let X,Y denote their basic lifts to T'(v(X)). Notice that



1 ~

X710 = (o). (5171007 ) = (00). (g oy T O9),

where A denotes the A-tensor associated with the splitting H @ V of T(v(X)).
The rightmost term of the above equation can be simplified with the help of a description in [26,
pages 67-70] of the A-tensor of a vector bundle with a connection. Namely:

7 ~ 1
Az )Y (W) = SRY (X, Y)W, (3.1.1)
In summary:
= 1
Axp)Y (p) = 5 (expi) (RY (X, Y)W),

so the proposition follows from the usual description of the derivative of the exponential map using
Jacobi fields. O

Remark 3.1.2. It is obvious from Lemma 3.1.1 that A = 0 iff RY = 0. But Walschap proved
in [41, Theorem 1.3] that, for any Riemannian submersion the total space of which has nonnegative
curvature, if A = 0 then the submersion splits locally isometrically. This proves the local statement
of Theorem 2.2.1 (The Splitting Theorem).

Cheeger and Gromoll proved in their original Soul Theorem paper that the curvatures of “mixed”
2-planes at the soul vanish [6, Theorem 3.1]. That is:

Lemma 3.1.3 (Cheeger-Gromoll). Let p € ¥, X € T,X and V € v,(¥). Then R(X,V)V =
R(V, X)X =0. In particular K(X,V) =0.

Although today it is obvious from Perelman’s Theorem that K(X,V) = 0, Cheeger and Gro-
moll’s original argument was very difficult. The implication “K(X,V) = 0 = R(X,V)V =
R(V,X)X =07 is a consequence of the following well-known lemma:

Lemma 3.1.4. Let M be a manifold of nonnegative curvature, p € M and X,V € T,M two
vectors such that K(X,V)=0. Then R(X,V)V =R(V,X)X =0.

Proof. Consider the map F' : T,M — T, M defined as F(Y) := —R(Y,V)V. This map is symmetric,
which means that (F(Y), Z) = (F(Z),Y), and nonnegative, which means that (F(Y),Y) > 0. From
these two properties one can show that (F(Y),Y) =0 < F(Y) = 0. It follows that R(X,V)V = 0.
Swapping X and V in the above argument proves that R(V, X)X = 0 as well. O

Next we collect some facts about the A and T tensors and their derivatives at the soul. The
following lemma says that A and T both vanish at points of X, as does the first derivative, DT, of
T.

Lemma 3.1.5. Letpe ¥, X, Y € T2, and U, V,WW € v,(¥).
1. AxY =AxU =0.
2. TyX =TyV =0.
3. (DvA)xY = iRV(X,Y)V and (DyA)xU = —1RV(V,U)X.
4. (DwT)yV =(DwT)uX =0



Proof. For part 1, AxY = 0 because the soul is totally geodesic. Since (AxU,Y) = —(AxY,U) =
0, it follows that AxU = 0 as well.

For part 2, Ty X = 0 because the “Perelman flat” through X and U is totally geodesic. Since
(TyV, X) = —(Ty X, V) =0, it follows that TyV = 0 as well.

The first statement of part 3 is an immediate consequence of Lemma 3.1.1. The second statement
follows from the first as follows:

(Dy A)xU,Y) = ~((Dy A)xY,U) = ~(5RY (X, Y)V,U) = {~  BY (V, U)X, V),

For part 4, first notice that (DwT)w X = 0 because the Perelman flat through X and W is
totally geodesic. Next, since

0=((DwT)wX,U) = —((DwT)wU,X) = —((DwT)uW, X),

it follows that (DwT)yW = 0 as well. This is a special case of part 4. To get the general case
from this special case, we apply O’Neill’s formula and Lemma 3.1.3 as follows:

0= (X, W, W,U) = (U, W, W, X) = (DwT)u W, X) — (D T)w W, X) = —{(DuT)w W, X).

It follows from this that (DyT)wW = 0. Since (DyT')w, Wa is symmetric in Wy and Wa, it follows
that DyT = 0. O

Corollary 3.1.6. Let pe X, X, Y € T,X and U € v,(X). Then R(X,Y)U =2R(X,U)Y.

Proof of Corollary 3.1.6. Since the soul is totally geodesic, both R(X,Y)U and R(X,U)Y are
elements of v,(X). According to one of O’Neill’s formulas ([2, Theorem 9.28)]), for any V € v,(%),

(X, 0,7, V) = (DxT)uV,Y) - (Tu X, TvY) + (DuvA)xY,V) + (AxU, AyV)
= 0+0+ %(RV(X,Y)U, V)+0= %(X7Y, U,v).

O

We wish to mention an alternative proof of this Corollary which was described to us by Peter
Petersen. Unlike the proof above, it does not rely on Perelman’s Theorem.

Alternative proof of Corollary 3.1.6. From the vanishing of the mixed curvatures and the fact
that the soul is totally geodesic, we see that:

0=R(X+Y, U)X +Y)=R(X,U)Y +R(Y,U)X +0+0.

By the Bianchi identity:
R(X,Y)U = R(X,U)Y — R(Y,U)X.
From these two observations it follows that R(X,Y)U = 2R(X,U)Y. O

We are now ready to study the sectional curvature of an arbitrary 2-plane at the soul. The
following formula appears in [40, page 615]:

Proposition 3.1.7 (Walschap). Let pe X, X,Y € T,3, and U,V € v,(X). Then:

(K(X+UY +V)=K(X,Y)+ K(U,V)+3(X,Y,U,V)|
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Proof. Expanding the left hand side linearly gives:

KX+UY+V) = (X,V,X,Y)+(X,V,X,V)+ (U,Y.U,Y) + (U V,U, V) +
2{(X,Y, X,V) + (X,Y,U,Y) + (X,Y,U,V) +
(X, V,U,Y)+ (X, V.U, V) + (U,Y,U,V)}

Most of the 10 terms in this expression can be simplified. Specifically:

o (X,V,X,V)=(UY,UY)=(X,V,U, V)= (U,Y,U,V) = 0 by Lemma 3.1.3

P

o (X,V,X,V)=(X,Y,U,Y) =0 because the soul is totally geodesic.

o (X,VUY)= %(X, Y,U,V) by Corollary 3.1.6

The following corollary also appears in [40, page 615]:
Corollary 3.1.8 (Walschap). Let pe X, X,Y € T,2 and U,V € v,(X). Then:

1. 3(X,Y,U,V) < K(X,Y)+ K(U,V).
Equivalently,

2. 9(X,Y,U, V)2 <AK(X,Y) K(U,V).

Proof. Equation 1 just comes from Proposition 3.1.7, plus the fact that M has nonnegative cur-
vature. Equation 2 follows from equation 1 as follows. Choose arbitrary vectors X,Y € T,% and
U,V € v,(X). It is easy to see that if K(X,Y) =0 then (X,Y,U, V) = 0; otherwise rescaling V by
a suitably small constant would contradict equation 1, since (X,Y,U, V) depends linearly on |V|,
while K(U,V) depends quadratically on |V|. Similarly if K(U,V) = 0 then (X,Y,U,V) =0. It
remains to verify equation 2 when neither K(X,Y) nor K(U,V) is zero.

Choose A1, A2 so that K(X,\Y) = K(U,A\2V). Then 3(X,\Y,U, V) < K(X,\Y) +
KU, V) = 2K(X,\Y), so 9(X,\Y,U,\aV)? < 4K(X,\1Y)? = 4K (X, \1Y)K(U,\2V). In
other words, equation 2 is true for the vectors X, \1Y,U, A2V. But since equation 2 is scale-
invariant, it must also be true of the vectors X,Y,U, V.

In fact equations 1 and 2 are equivalent. To see that equation 2 implies equation 1, just notice
that for any real numbers A, B,C, if A, B > 0 and C? < 4AB then C < A+ B. To see this, set
A= A/B. Since C? < 4AB = 4)\B?,

C<2VAB<(1+\)B=A+B.
O

The following splitting theorem was observed independently by Marenich [20, Theorem 2] and
Walschap [40, Proposition 2.6]:

Corollary 3.1.9. If for every p € ¥ and for every U,V € v,(X), K(U,V) =0, then M splits
locally isometrically over it’s soul.

Proof. If the vertical curvatures vanish, then the previous corollary implies that the curvature
tensor RY vanishes, and the splitting now follows from Theorem 2.2.1. O

11



3.2 Curvature near the soul

In the preceding section we derived a formula for the curvature of an arbitrary 2-plane at a point
p € ¥. In this section we study the derivatives of the function which records the curvatures of a
family of 2-planes initially based at the soul but then drifting away from the soul. The family will
begin with a mixed 2-plane at the soul (which has zero curvature by Lemma 3.1.3), and will then
drift so that the base point moves away from the soul while simultaneously the 2-plane twists away
from being a mixed 2-plane.

More precisely, the set up for this section is as follows. Let p € ¥. Let X,Y € T, and let
W,V,U € v,(%). Let v(t) := exp(tW), and let X,,Y;,Us,V; denote the parallel transports of
X,Y,U and V along v(t). By Perelman’s Theorem, X; and Y; are horizontal for all ¢ € [0, 0).
In other words, parallel translation along the radial geodesic v preserves the horizontal space. It
therefore must also preserve the vertical space, and hence U; and V; are vertical for all ¢ € [0, c0).
Define:

K(t) == Kwx,vyu(t) = K(X; + tUp, tY; + V3),

which is the unnormalized sectional curvature of the 2-plane based at v(t) spanned by X; +tU; and
tY; + Vi. The special case of this construction when U =Y = 0 was studied by Marenich in [20].
Notice that K(0) = K(X,V) = 0 by Lemma 3.1.3. The goal of this section is to derive formulas
for K’(0) and K" (0). Towards this end, we write:

K(t) = (Xt7‘/;7Xt7%)+t'{2(Xt7}/tht7‘/t)+2(Xt7‘/t7Ut7‘/;)} (321)
+t2 : {(Xtay;ﬁaXta Y;f) + (Ut; ‘/;ﬁa Ut7 ‘/t) + Q(Xta 1/;5) Ut7 Vvt) + Q(Xtv ‘/h Ut,Y;g)}
+0 - {2(Ur, Yy, U, Vi) + 2(Xe, Y2, Up, Vo) ) + 81 (U, Y2, Uy, V)
Our calculations will require the following Lemma:
Lemma 3.2.1. Let M be a Riemannian manifold and let A denote a tensor of order k on

M (that is, for each p € M, Ay : (I,M)* - R). For pe M and X,Y € T,M, if A, =0 then
(DxDyA), = (DyDxA),.

Proof. The proof is straightforward and is left to the reader O
Proposition 3.2.2. K'(0) =0

Proof. Since M has nonnegative curvature, K’(0) > 0. But if it were the case that K'(0) > 0,
then replacing W with —W would yield K’(0) < 0. Hence K'(0) = 0.

This provides an a priori reason to expect that K’(0) = 0. In order that our proof generalizes
properly in the next section, we also compute K’(0) directly. From Equation 3.2.3.1, we see that

K'(0) = 2X.Y. X, V) 4+ 2X, V.U V) + 2| (X0, Vi Xo, Vi),
t=0

But (X,Y,X,V) = 0 because the soul is totally geodesic, and (X,V,U,V) = 0 by Lemma 3.1.3.
We use one of O’Neill’s formulas to study the third term:

d d
T (X, Vi, Xi, Vi) = —|  {{(Dx,T)v,Vi, Xi) — (Tv, Xo, Tv, Xo) + (Ax, Vi, Ax, Vi) }
tli=o dtf,_g
d
= % (Dx,T)v, Vi, X¢) =0+0
t t=0
D
= (5((DXtT)Vf,Vt)7X> = ((DwDxT)vV,X) = (DxDwT)vV,X) = 0.

In the second equality above, the second and third terms vanish because, by Leibnitz’ rule, the
derivative at time t=0 of the inner product of two vector fields both of which vanish at t=0 must
be zero. O

12



Proposition 3.2.3.

1
K"(0) = 2K(X+U,Y +V)+2((DxRY)(X, Y)W, V) + S| RY (W, V) X|?
+<4(DWpUT)VV — 4(DvaT)UV + (DxD‘Q;VT)VV, X>
Proof. From Equation 3.2.3.1, we see that:

K"0) = (XY, X,)Y)+ (U, V,U,V)+2(X,Y,U,V)+2(X,V,U,Y)}

d
+2a {Q(Xtai/hXt?W)+2<Xt7W7Ut7‘/t)}
t=0

d2
ditz (Xt7‘/tht7‘/t)~
t=0

+

e The top line of this expression is familiar from the proof of Proposition 3.2.2:

(XY, X, Y)+ U V,UV)+2X,Y,U,V)+2(X,V,UY)
= K(X,Y)+K(UYV)+3(X,Y,U,V)
= K(X+UY+V)

e Next, from one of O’Neill’s formulas:

d d
a (Xta}/taXtv‘/t) = a {<(DX1A)Xt)/t7‘/t>+2<AXt)/t7TVtXt>}
t=0 t=0
d D
= S xR = (D (D, A ). T)
t=0

= (DwDxA)xY,V)={((DxDwA)xY,V)
= S(DXE)(X, Y)WV

e We apply another of O’Neill’s formulas to simplify the next term:

d d
a tzo(Xh‘/tvUt;‘/;.) = _a tZO(Uta‘/;H‘/;ﬁvXt)
d
= —5| U@wDuVe Xe) = ((Du.T)v, Vi, Xe) }
t=0

= —((DwDyT)yV,X)+ ((DwDyT)vV,X)

e Finally,
12
) (Xtv‘/taXh‘/t)
dt? |,
d2
= UDx, T Vi, Xi) — (Tv, X, Tv, Xi) + (Ax, Vi, Ax, Vi) }
t=0

(D DxT)vV,X) = 2{(DwT)v X, (DwT)vX) + 2((DwA) xV, (Dw A)x V)

1
= ((DxD}T)vV, X) —0+ S|V (W, V)X P,
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Corollary 3.2.4. If © has totally geodesic fibers (or more generally if the T-tensor of ©
vanishes to second order at ¥), then for oll X,Y € T,X and all VW € vp(X):

1. 2((DxRY)(X, Y)W, V) < %|RV(I/V, V)X 4+ 2K(X,Y).
Equivalently,

2. ((DxRY)(X, Y)W, V)2 < [RY(W,V)X|?- K(X,Y).

Proof. For equation 1, set U = 0 in Proposition 3.2.3, and observe that K" (0) > 0 simply because
M has nonnegative curvature. Equations 1 and 2 are equivalent by the argument of Corollary 3.1.8.
O

Corollary 3.2.4 should be compared to [35, Corollary 3.2].

3.3 Connection metrics on vector bundles

By a connection metric on a vector bundle R¥ — E 5 ¥, we mean a metric which arises by
choosing the following data:

1. A metric g5 on X.

2. A Euclidean structure on the bundle (which means a smoothly varying inner product on the
fibers).

3. A connection V on the bundle which is compatible with the Euclidean structure.
4. A rotationally symmetric metric gy on R¥.

Then there is a unique metric gg on E (called a connection metric) for which 7 : (E, gg) — (%, g5)
is a Riemannian submersion whose horizontal distribution is determined by V and such that each
fiber is totally geodesic and isometric to (R¥, go).

An arbitrary rotationally symmetric metric go on R¥ can be expressed in polar coordinates as
ds® = dr® 4+ G?(r)d©?, where G(r) is a function for which G(0) = 0, G’(0) = 1, and all even
derivatives of G vanish at 0. The curvature of any 2-plane at the origin of (R¥, gg) equals —G"’(0).

Given such a connection metric, we will denote by RV the curvature tensor associated to the
connection V, and by R the curvature tensor of (F, gg). By definition, the T-tensor of 7 : (E, gg) —
(X, gs) vanishes. The A-tensor of this Riemannian submersion can be described as follows. For all
peEY, XY €T,%, and W € E, = n1(p), if X and Y denote the horizontal lifts of X and Y to
Tw E, then, as mentioned in Equation 3.1.3.1:

AX,Y) = %RV(X, Y)W. (3.3.1)

Also as before, for X,Y € T, and U,V,W € E, := 7~ (p), denote K(t) = Kw,x,v,yu(t) =
K(X;+tUy, tYi+ Vi), where X4, Y, Uy, Vi are the parallel translation of X, Y, U, V along the geodesic
in the direction of W.

Tt is still unknown which vector bundles over spheres (or more general souls) admit connection
metrics of nonnegative curvature. In [35], Strake and Walschap studied this question. They derived
conditions on {gg,V,go} under which such a connection metric will have nonnegative curvature.
Their main result is as follows:

Theorem 3.3.1 (Strake-Walschap). Suppose (¥,gx) is a compact Riemannian manifold
with strictly positive sectional curvature. Suppose that RF — E 5 % is a vector bundle over

> with a Fuclidean structure and connection V. If there exists € > 0 such that for each
peX, X,Y €T,% and V,W € E, :=n~(p), the following conditions hold:

14



L A((DxRY)(X, Y)W, V)? < (3 — ) - [RY (W, V) X2 - K(X,Y).
2. If RV(W,V)X =0 then X =0 or W is parallel to V.

then a rotationally symmetric metric go on R* can be chosen such that the corresponding
connection metric gg on E has nonnegative sectional curvature.

In this section we will use the formulas and observations of the preceding two sections to obtain
results similar to Strake and Walschap’s above theorem.

Perelman’s Theorem demonstrates that an arbitrary open manifold of nonnegative curvature is
much more similar than previously expected to the total space of a vector bundle with a connection
metric. For example, the first statement of Perelman’s Theorem (the existence of Perelman flats)
is true for any connection metric on any vector bundle:

Lemma 3.3.2. Let m: E — ¥ denote a vector bundle over ¥ with a connection metric.
1. The zero-section, ¥ C E, is totally geodesic.

2. Letpe X, X €eT,X, and V € E,. Then the surface (s,t) — exp(s-V(t)) (s,t € R,s>0),
where V() denotes the parallel transport of V' along the geodesic with initial tangent
vector X, is a flat and totally geodesic half-plane.

3. For sufficiently small r, the closed ball Bs(r) is convez.

Proof. The first two claims are elementary. The third follows from the second via the argument in
the proof of Proposition 2.1.5. O

It should be unsurprising that most of the formulas from the previous two sections are also true
of vector bundles with connection metrics. Specifically:

Proposition 3.3.3. Let R* — E 5 % denote a vector bundle with a connection metric. Let
peX, X,Y €T,X, and U, V,W € E, := 7 (p). Then:

1. AxY = AxU =0.

(DyA)xY = LRY(X,Y)V and (DyA)xU = —3RY(V,U)X.
R(X,V)V = R(V,X)X =0 and R(X,Y)U = 2R(X,U)Y.
K(X+UY+V)=K(X,Y)+K(U,V)+3(X,Y,U,V).

K x vyu(0) =0.

6. Kiyxvyy0) =2K(X+UY +V)+ 2((DxRY)(X,Y)W,V) + LRV (W, V)X .

AT NI

Proof. Ttem 1 is obvious. Item 2 is clear from Equation 3.3.3.1. For the first part of item 3, use
O’Neill’s formulas plus the vanishing of the T-tensor to show that (X,V,V)Y) = (X,V,V,U) =
(V,X, X, Y) = (V,X,X,U) = 0. Then the second part of item 3 follows from the first by the
argument of Corollary 3.1.6. Items 4,5, and 6 are proven exactly like their analogs in the previous
two sections. O

We will ask a slightly easier question than did Strake and Walschap. Instead of seeking a
connection metric on a bundle which has nonnegative curvature, we will only seek a connection
metric which, up to second order calculations at the soul, looks like it has nonnegative curvature.
This notion is captured by the following definition:

Definition 3.3.4. A metric gz on the total space E of a vector bundle R¥ — E — ¥ is said to be
“nonnegatively curved to second order” if:
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1. The zero section ¥ C E is totally geodesic.

2. Foreverype X, X,)Y € T,X and U,V € E,, K(X+U,Y +V) >0 and = 0 iff X is parallel
to Y and U is parallel to V.

3. Ifpe X X,V € T,X and U, V,W € Ep, then Ky vy y(t) = 0 and K{,’KX,V’Y’U(O) > 0.
Further, when W, X,V #£ 0, K{&X’V’Y’U(O) =0 iff V and U are both parallel to W, and Y is
parallel to X, in which case K, x,v,y,u(t) = 0 for all ¢.

Item 2 of this definition says that all 2-planes at ¥ have nonnegative sectional curvature, and
only the mixed 2-planes are flat. Therefore, if our goal is to insure that a neighborhood of ¥ in
E is nonnegatively curved, then the only trouble spot is a neighborhood (in the Grassmannian of
2-planes on M, which we denote by G) of the set, Z, of mixed 2-planes at X. Item 3 says that
along any “straight line” I(¢) in G beginning in Z, the curvature function K (t) = K(I(t)) satisfies
K'(0) = 0and K" (0) > 0 and = 0 iff all of [(¢) lies on a single “Perelman flat”. Thus, a metric which
is nonnegatively curved to second order is a very good candidate for having nonnegative curvature
in a neighborhood of its zero-section. We do not know whether a connection metric which is
nonnegatively curved to second order is necessarily nonnegatively curved in a neighborhood of its
zero-section. This issue is of interest because of the following proposition:

Proposition 3.3.5. Suppose that E = % is a vector bundle with a connection metric g on
E which is nonnegatively curved in a neighborhood of the zero-section ¥ C E. Then there
exists a complete metric g on E which is everywhere nonnegatively curved.

Proof. According to part 3 of Lemma 3.3.2, Bx(r) is convex for sufficiently small » > 0. The
statement then follows from [12, Theorem A] (or from [22, Theorem 1.2], on which the previous
reference is based). In fact, it is easy to see from Guijarro’s construction that the new metric g%
will also be a connection metric. O

Thus, a connection metric which is nonnegatively curved to second order can very likely be
deformed to a connection metric of nonnegative curvature. This motivates our interest in Defini-
tion 3.3.4. We prove the following:

Theorem 3.3.6. Suppose (X,gs) is a compact Riemannian manifold with strictly positive
curvature, and R¥ — E 5 X is a vector bundle over . Then there exists a connection
metric gg on E with soul (X, gx) which has nonnegative curvature to second order iff the
bundle admits a Euclidean structure and a connection V such that the following condition

holds for each p € ¥, X, Y € T,3 and V,W € Ey:

(*) (DxRY)(X, Y)W, V)2 < |RV(W,V)X|?- K(X,Y) with equality iff Y is parallel to X or
W is parallel to V.

Lemma 3.3.7. Condition (*) of Theorem 8.3.6 is equivalent to:

(**) 2(DxRY(X,Y)W,V) < 2|RV(W,V)X|> + 2K(X,Y). Further, when X, W,V # 0, there
is equality iff Y is parallel to X and W is parallel to V.

Proof. The inequalities in conditions (*) and (**) are equivalent by Corollary 3.2.4, so it remains
only to discuss the equality cases. First we prove that (**) implies (*). Setting ¥ = 0 in (**)
implies the following:

If RY(W,V)X =0 then X =0 or W is parallel to V. (3.3.2)

Suppose that ((DxRY)(X,Y)W, V)2 = |[RV(W,V)X|? - K(X,Y). Suppose also that Y is not
parallel to X, and W is not parallel to V. Since ¥ has strictly positive curvature, K(X,Y") # 0.
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By 3.3.3.2, |[RY (W, V)X|? # 0. Choose A1, A2 such that |[RY(W,\V)X|? = 4- K(X,\Y). Since
condition (*) is invariant under rescalling of the vectors,

(DxRY)(X, M Y)W, \V)2 = |RY (W, V) X|? - K(X,\Y) = 4K (X, \Y)2,

and hense,
1
(DxRY (X, M Y)W, \V) = 2K (X, \\Y) = Z|RV(W, MV)XP2+ K(X,\Y),

which contradicts (**).

Next we prove that (*) implies (**). First notice that (*) implies 3.3.3.2. Assume that
2((DxRY (X, Y)W, V) = 3|RV(W,V)X|? + 2K (X,Y), and that X, V,W # 0. Since ¥ has strictly
positive curvature, if W is parallel to V' then X must be parallel to Y. By 3.3.3.2, if X is parallel to
Y, then W must be parallel to V. So it remains to contradict the hypothesis that X is not parallel
to Y AND W is not parallel to V. Assume that this is the case. Define:

f(t):= =2((DxRY (X, tY)W, V) + %lRV(W, V)X > 4+ 2K(X,tY).

f(t) is a nonnegative valued quadradic function with f(1) = 0, and hense its discriminant equals
0. This means that (DxRY)(X,Y)W, V)2 = |RV(W,V)X|?- K(X,Y), which contradicts (*). O

Lemma 3.3.8. Conditions (*) and (**) are also equivalent to the following equivalent con-
ditions:

(*e) For some € >0, (DxRY)(X,Y)W,V)2 < (1—¢)|RV(W,V)X|?-K(X,Y) with equality iff
Y is parallel to X or W is parallel to V.

(**¢) For some e > 0, 2{((DxRY(X,Y)W,V) < 1|RV(W,V)X|> + 2(1 — €)K(X,Y). Further,
when X, W,V # 0, there is equality iff Y is parallel to X and W is parallel to V.

Proof. Clearly (*e)=(*) and (**¢)=(**). Also, (*¢)<(**¢) by the argument of the previous lemma.
So it remains to prove that (*)=(*¢). Assuming (*), a compactness argument provides an € > 0
for which

(DxRY)(X, Y)W, V)? < (1 - ¢)|RY (W, V)X|*- K(X,Y)

whenever | X| = Y| =|W|=|V| =1, X LY and W L V. But this equation is not sensitive
rescallings of the vectors, nor is it sensitive to replacing Y (respectively V') with its component
orthogonal to X (respectively W). Hense, this equation holds for all X, Y, W,V with no restrictions.

O

Proof of Theorem 3.3.6. If the bundle admits a connection metric which is nonnegatively curved
to second order, then condition (**) is satisfied by part 6 of Proposition 3.3.3. Conversely, suppose
that condition (**¢) is satisfied. We can choose a radially symmetric metric go on R* such that the
curvature of every 2-plane at the origin of (R¥, gg) is arbitrarily large; in particular, we can make
these curvatures larger than:

o { XY UV
T4k (x,Y)

X, YeTl,Xand UV € E, orthonormal}

Then 9(X,Y,U,V)? < 4eK(X,Y) - K(U,V) for all orthonormal vectors X,Y,U,V, and hence
for all (not necessarily orthonormal) vectors as well. This is equivalent to the following inequality:

3(X,Y,U,V) < eK(X,Y) + K(U,V) (3.3.3)
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(see the discussion of equivalence in Corollary 3.1.8). So by part 4 of Proposition 3.3.3, all 2-planes
at ¥ are nonnegatively curved, and it is easy to see that only the mixed 2-planes are flat.
Next, combining (**¢) with Equation 3.3.3.3 gives:

1
2((DxRY)(X, Y)W, V) < 5|RV(W, VX2 +2K(X,Y) — 2¢K(X,Y)
1
< SIRVWV)XP+2K(XY) - 2{(3(X,Y,U,V) - K(U,V)}
1
= 5|RV(W, VX2 +2K(X —U,Y +V).

It follows from part 6 of Proposition 3.3.3 that K{%/,X,V,Y,U(O) > 0. Assuming that W, X,V # 0,
the second inequality above becomes an equality iff Y is parallel to X and U is parallel to V. In
this case, the first inequality above becomes an equality iff V' and W are parallel. O

3.4 The warping tensor

As before, let M be an open manifold of nonnegative curvature and let 7 : M — ¥ denote the
metric projection onto its soul. We define the “warping function” and the “warping tensor” of M,
both of which reflect how the metric on M near ¥ differs from the connection metric with flat fibers
on v(X). The second derivatives of the T-tensor of 7 (which appear in Proposition 3.2.3) can be
expressed nicely in terms of the warping tensor.

For p € ¥ and W, U,V € v,(3), define:

F(VV, U, V) = <(deXpJ—)WU7 (deXpJ_)WV>'

We will call F' the warping function of M. Since the metric on M is smooth, F' is smooth in the
domain where |W| < the cut-distance of ¥. The following properties of F' are obvious from the
definition:

Lemma 3.4.1. For any W,U,V € v,(%),
1. F(0,U,V)=(U,V)
2. If |W| <the cut-distance of ¥, then F(W,-,-) is a symmetric positive-definite bilinear
form.
3. FWW,U) = W,U).
4o Gli=oFW,U,V) =0

5. | o (AW + sWa, U, V) = | (F(tU + sV, Wy, Wy).

The last two properties follow from the smoothness of the metric (or equivalently from the
smoothness of F).
Next, for every quadruple (W1, Wa, U, V') of vectors in v,(X), define:

2
T(Wl,WQ,U,V) = di F(th"’SWQ,U,V).
dsdt |,_,_,
We will call T the warping tensor of M. It records second derivative information about how the
metric on M differs near the soul from the connection metric with flat fibers on v(X). For fixed U,V
think of T as the second derivative of the function from v,(X) to R which sends W — F(W,U, V).
The following properties of T are clear from definition:
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Lemma 3.4.2.
1. Y is multi-linear, symmetric in (Wy, Ws), and symmetric in (U,V).
2. Y(W,W,W,U) =0.
3. Y(Wh,Wa,Up,Us) = Y (Uy, Uz, Wy, Wa)

Our next goal is to express the second derivatives of the T-tensor (which appear in Proposi-
tion 3.2.3) in terms of Y. In order to state the result, we need to establish some notation. We
describe a method for extending a vector U € v,(X) to a vertical vector field U on a neighborhood
of pin M. Fist, for ¢ € ¥ near p, define ﬁq as the parallel transport of U to ¢ along the minimal
geodesic from p to ¢ in X. This defines an extension Uof U toa neighborhood of p in ¥. Then
for each ¢ € ¥ near p, extend the vector Uq to a vertical vector field U on the fiber F, by defining
Uexp (w) i= (dexp)wU, for all vectors W € vy(%) with small norm.

Additionally, when X € T,,%, we will denote by X an extension of X to a basic vector field on
M in a neighborhood of p.

For fixed vectors W,U,V € v,(X), we can think of F(W,U,V) as a real-valued function on
a neighborhood of p in X, by parallel transporting W, U,V along radial geodesics from p. In
other words, the function is ¢ +— F(Wq,l}q,f/q). With this interpretation, it makes sense to
write gradF'(W,U,V) € T,X for the gradient of this function and XF(W,U,V) for the deriva-
tive of this function in the direction X € T,X. Similarly, Y (Wi, Ws,U, V) can be thought of as
a real-valued function on a neighborhood of p in 3, and we can write gradY (W, Wy, U, V) or
XY (Wi, W, U, V) = DxT(Wy,Ws,U, V). By hessymw, w,,v,v)(X) we mean the hessian of this
function in the direction X € T, 3.

Lemma 3.4.3. Let W, W1, W5, U,V € v,(X). Assume |W| < the cut-distance of ¥. Let
P = exp~(W).

1. (TyX,U); = AXF(W,U,V) for any X € T,%.
2. (TyU)p = —3gradF(W,U, V).
3. (Dw, Dw,T)uV = —1gradY (W, W2, U, V).

Proof. First notice that X and U commute simply because their preimages under d exp® in T'(v(X))
commute. So, using the standard coordinate-free expression for the connection,

ATy X, U)y = 2(VyX,0)p
= X(V,U),+V(U,X), - UX,V),
—<[X,U],V>ﬁ_<[U7V]7X>ﬁ_<[X’V]7U>;5
— X(V,U), = XF(W,U,V)

1 1
= (—igradF(W U, V), X)= (—igradF(W, U V), X)s.

For part 3, it will suffice to prove that (D3, T)yV = f%gradT(VV, W, U, V), which is done as follows.
Let v(¢) = expt (tW). Then:
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D
dt

(DywTgV)ywy —0-0
t=0

Dw (DwTyV) =

D D ) i )
T (dr abv%@ﬁﬁ_(ﬂvwﬁﬂqu—(ﬂﬂvaﬂww>
t=0 r=0
D? _
= 3.2 (TgV)y@e) —0-0
dt2 =0 ~( )
]. :[:)2 - 1 D2
= T 92 radF'(tW, U, V =—=— radF'(tW, U,V
2 dt” t=0(g ( Do 2 dt? t:Og ( )

1 d? 1
= _igrad <dtz F(tVVv U7 V)> = _igra‘d’r(vvv Wa Ua V)

To justify the third equality above, notice that:

t=0

D ~ ~
T t_O(T(VWU)V)'y(t) = DOwD)wyin)V+Tvwveo)V + Livwo)(VwV)
= 0404+0=0
O

Next, we describe how to calculate the curvature of a 2-plane at the soul in terms of the warping
tensor.

Lemma 3.4.4. Let W,V € v,(X). Then K(W,V) = =3T(W,W,V,V).

Proof. It will suffice to prove this when W,V are orthonormal. Let S denote the surface in M
obtained as the exponential image of the plane spanned by W and V. K(W,V) is the Gauss
curvature of S at p. Write the metric on S in polar coordinates:

ds? = dr® + f%(r,0)d6?,

where # = 0 corresponds to the direction of W. Let v(r) = exp™(rW) (in polar coordinates,
~(r) = (r,0)). Along v, f can be expressed as:

f(r,0) =r/F(W,UU).

The Gauss curvature of S at (r,0) equals _ff(’;(gio) , where f,.,. denotes the second partial with respect

to r. The result now follows by performing the differentiation and taking the limit as » — 0. O

It is now possible to express K ﬁ, XMY’U(O) in terms only of the connection, the warping tensor,
and the metric of the soul:

Proposition 3.4.5.
Ky xvyu(0) = 2K(X,Y)+6(RY(X,Y)U,V)-3Y(U,UV,V)
F2A(DXRY)(X, Y)W, V) 4 L[RY (W, V)X P
—ZDXTUMUJZV)+2DXTUMVHLV)—%hwﬁﬁmevﬂX)

Proof. The formula is obtained from the formula of Proposition 3.2.3 by using Lemma 3.4.4 to
re-writing the term K (U, V') and using Lemma 3.4.3 to re-write the three T-tensor terms. O
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Corollary 3.4.6. For all XY € T,M and all V,W € vp(X):

1. 2{(Dx RY)(X, Y)W, V) < 3[RV (W, V) X|* + 2K(X,Y) — hessyw,wvv)(X).
FEquivalently,

2. ((DxRV)(X, Y)W, V)2 < (|[RV(W, V)X |* = hessyaw.w,v,v) (X)) - K(X,Y).

Proof. Part 1 is obtained by setting U = 0 in Proposition 3.4.5, and noting that K" (0) > 0. The
equivalence of part 1 and part 2 is proven as in Corollary 3.2.4. O

3.5 Warped connection metrics on vector bundles

In Section 3.3, we studied conditions for the existence of a connection metric of nonnegative cur-
vature on a vector bundle. But connection metrics are a very special class of metrics. It might
be possible for a bundle to admit a metric of nonnegative curvature, but fail to admit a connec-
tion metric of nonnegative curvature (deciding whether this phenomenon occurs remains an open
problem).

In Section 3.4, we began to generalize away from connection metrics; specifically, Corollary 3.4.6
provides a necessary condition for the existence of an arbitrary metric of nonnegative curvature on
a bundle (namely, the bundle must admit a connection V and a tensor Y which together satisfy
the differential equation of the corollary). The goal of this section is to prove that this condition
is almost sufficient, at least for the existence of a metric which is nonnegatively curved to second
order. We begin by constructing warped connection metrics on vector bundles.

By a “warped connection metric” on a vector bundle R — F 5 ¥, we mean a metric which
arises by choosing the following data:

1. A metric g5, on X.
2. A Euclidean structure on the bundle.
3. A connection V on the bundle which is compatible with the Euclidean structure.
4. A smooth “warping function” F' (for each p € 3, F,, : E, x E, x E, — R) which satisfies:
(a) F(O,U, V)= (U,V).
(b) For fixed W, F(W,-,-) is a symmetric positive-definite bilinear form.
(¢) F(W,W,U) = (W,U),
Then there is a unique metric gg on E (called a warped connection metric) for which 7 : (E, gg) —
(3, gx) is a Riemannian submersion whose horizontal distribution is determined by V and such that
(dexpt)wU, (dexpt)w V) = F(W,U,V) for every W,U,V € E,. To construct gg explicitly, one
can be begin with the connection metric with flat fibers on the bundle, and then alter the metric
on the vertical space according to the warping function F'.
In other words, a warped connection metric is an arbitrary metric for which the bundle projection
is a Riemannian submersion and exp' : v(X) — E is a diffeomorphism.

The following properties of F' are consequences of the definition of a warping function (partic-
ularly of the smoothness of F):

¢ %|t:OF(tVVa UVv)=0

* %;'8:t:0F(tW1 + SW27U7 V) = %Z,Js:t:OF(tU + S‘/7 Wl, WQ)
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The warping tensor T corresponding to F' is then defined as in the previous section, and has the
properties of Lemma 3.4.2.

Warped connection metrics are much more general than connection metrics. In fact, it is clear
from Section 3.4 that any metric of nonnegative curvature on a vector bundle agrees inside of the
cut-locus of ¥ with a warped connection metric:

Proposition 3.5.1. Let M be an open manifold of nonnegative curvature with soul . Then
M agrees in a neighborhood ¥ with a warped connection metric on its normal bundle.

The following examples exhibit three simple classes of warped connection metrics.

Example 3.5.2 (Connection metrics). Let G : R — R be a function for which G(0) = 0,
G’(0) =1, and all even derivatives of G vanish at 0. Consider the following warping function:

rov,ov) = S vy foran o L w

(because of properties (b) and (c) in our definition of a warping function, F'is completely determined
by the values F(W,U,V) when U,V L W). The corresponding warped connection metric on the
bundle is just the connection metric whose radially-symmetric fiber metric is ds? = dr? +G? (r)de?.
The corresponding warping tensor is completely determined by the following case:

2
Y(W,W,U,U) = §G”’(o) AW |U)? forall W L U.

Example 3.5.3 (Simply-warped connection metrics). Let G, (p € ) be a smoothly varying
family of functions such that for all p € X, G,(0) = 0, G},(0) = 1 and all even derivatives of G,
vanish at 0. For example, we could take:
20,2
20y ._ € (p)r
G(r) ==

g (3.5.1)

where € : ¥ — R is a smooth positively-valued function. Consider the following warping function:

Ry = 00

W(U, V) forall U,V 1L W.

We call the corresponding metric a “simply-warped connection metric”. The fiber over p € ¥ will
have the radially symmetric metric ds? = dr? + Gf,(?")d@Q. The curvature of any vertical 2-plane
at pis —G;,” (0). The corresponding warping tensor is determined by the following case:

2
T,(W,W,U,U) = gG;”(O) AW U forall W L U.

For example, equation 3.5.3.1 gives:

Y, (W,W,U,U) = — AW U foral W L U. (3.5.2)

2
€(p)

Example 3.5.4 (Quadratically-warped connection metrics). Let T be a warping tensor, by
which we mean a tensor of order 4 on the vector bundle which satisfies the following conditions:

1. Y(Wq, Ws, U, V) is symmetric in (W7, W3), and symmetric in (U, V).
2. Y(W, W, W,U) = 0.
3. T(Wla W2> U17 UQ) = T(Ula U27 W17 WQ)
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Consider the warping function:
1
FW,U,V):=(UV)+ ET(VV, W, U, V).

The corresponding metric will be called a “quadratically-warped connection metric”. The corre-
sponding warping tensor is T. Notice that the metric in this example might not be positive-definite
everywhere, but it is at least positive-definite in a neighborhood of the zero-section. For exam-
ple, in the quadratically warped connection metric associated to the warping tensor defined by
equation 3.5.3.2, the fiber E, has the radially-symmetric metric ds® = dr? + G’%(r)d@Q where
Ga(r) = r? — 621@7"4, which is a well-defined metric for r < €(p). Notice that GZ(r) is just the

fourth degree Taylor polynomial of the function G2(r) defined by equation 3.5.3.1.

We list below some rigidity properties which warped connection metrics have in common with
nonnegatively curved metrics on vector bundles:

Lemma 3.5.5. Let m : E — X denote a vector bundle over ¥ with a warped connection
metric. Let F' denote the warping function and let T denote the warping tensor. Let A,T
denote the fundamental tensors of m. Let p € ¥, X, Y € 1,3 and let U,V,W, W1, Wy € E,.
Then:

1. The zero-section, ¥ C E, is totally geodesic.

2. The surface (s,t) — exp(s-V(t)) (s,t € R,s > 0), where V(t) denotes the parallel
transport of V along the geodesic with initial tangent vector X, is a flat and totally
geodesic half-plane.

For sufficiently small v, the closed ball Bx(r) is conver.
A,=0and T, = 0.

(DvA)xY = iRV(X,Y)V and (DyA)xU = 1RV (V,U)X.
DwT =0 and (Dw,Dw,T)uV = —%gradX(Wy, W, U, V).
R(X, V)V =R(V,X)X =0 and R(X,Y)U =2R(X,U)Y.
KX+UY+V)=KX,)Y)+K(UV)+3(X,Y,UV).

Ky x,v,y,u(0) =0.

KII/{/,X,V,Y,U(O) is given by the equation of Proposition 3.4.5.

S X xS &

~

Proof. The only claim which is not immediate from previous arguments is that Dy T = 0, which
is justified as follows. Let (t) = expt(¢tW). Then:

D - 1D -
DwlvV = - (TgV ) = “od (grad F(tW, U, V)~ )
t=0 t=0
1D 1 d
= ——— dF(tW,U,V) = ——grad | — FEW,U,V) | =0
2dt t:Ogra ( o ) 2gra (dt t=0 ( o >>

O

As a consequence of part 3 of Lemma 3.5.5, we get the following generalization of Proposi-
tion 3.3.5:
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Proposition 3.5.6. Suppose that E = ¥ is a vector bundle with a warped connection metric
g on E which is nonnegatively curved in a neighborhood of the zero-section ¥ C E. Then
there exists a complete metric g% on E which is everywhere nonnegatively curved.

Theorem 3.5.7. Suppose (X,gx) is a compact Riemannian manifold with strictly positive
sectional curvature. Suppose that R¥ — E 5 % is a vector bundle over X. Then there exists
a warped connection metric gg on E with soul (X,gs) which has nonnegative curvature to
second order iff the bundle admits a Euclidean structure, a connection V, and a warping
tensor T such that the following condition holds for allp e ¥, X,Y € T,X and V,W € E,,:

(%) (DX BV )(X, Y)W, V)2 < ([RY(W,V)X[2 — hessearw (X)) - K(X,Y) with equality iff
Y is parallel to X or W is parallel to V.

Lemma 3.5.8. Condition (*) of Theorem 3.5.7 is equivalent to any one of the following:

(*e) (DxRY)(X, Y)W, V)? < (1 =€) (IRV(W.V)X|* = hessyqww,v,v) (X)) - K(X,Y) for some
€ > 0, with equality iff Y is parallel to X or W is parallel to V.

(**) 2(DxRY (X, Y)W, V) < L(|RV (W, V)X |*—hessyw,w,v,v)(X))+2K(X,Y). Further, when
X, W,V £0, there is equality iff Y is parallel to X and W is parallel to V.

(*%¢) 2(Dx RY (X, Y)W, V) < L(RY(W, V)X >~ hessr v (X)) +2(1 - K(X,Y) for some
€ > 0. Further, when X, W,V £ 0, there is equality iff Y is parallel to X and W is
parallel to V.

Proof. This is proven exactly like Lemmas 3.3.7 and 3.3.8. O

Lemma 3.5.9. A warped connection metric gg on the total space E of a vector bundle
R* — E 5 % is nonnegatively curved to second order iff:

1. For everype ¥, XY e T,Y and U,V € E,, K(X+UY +V) >0 and =0 iff X is
parallel to' Y and U is parallel to V.

2. Ifpe X, XY € T,%, and U,V,W € E, satisfy | X|=|V|=|W|=1, WLV, X 1Y,
and U L'V, then Ky .y (0) > 0.

Proof. If gg is nonnegatively curved to second order, then it satisfies hypothesis 1 and 2 of the
lemma by definition. Conversely, assume that gg satisfies hypotheses 1 and 2 of the lemma. Let
p € X, Y €T,Y and U, V,W € E, be arbitrary vectors with W,V, X # 0. If V is a multiple
of W, then by Proposition 3.4.5, Ky, v vy 7(0) = 2K(X 4+ U, Y + V), which by property 1 of the
lemma is > 0, and equals zero only when Y is parallel to X and U is parallel to V. So to prove
that gg has nonnegative curvature to second order, it remains to prove that if V' is not a multiple
of W, then Ki; v .y ;(0) > 0.
So assume that V is not a multiple of W. First, by Proposition 3.4.5, it is easy to see that

K{/,V,X,V,Y,U(O) = {/Q/L,X,v,yi,Ui (0)7

where W+ denotes the component of W which is orthogonal to V, Y+ denotes the component of
Y which is orthogonal to X, and U+ denotes the component of U which is orthogonal to V.

Finally, we use the following identities, each of which can be easily checked either from the
definition of Ky x v/y.17(0) or from it’s formula in Proposition 3.4.5:

i K(;/W,X,V,aY,aU(O) =a?- KI%/,X,V,Y,U(O)-
d K%,ax,v,y,aU(O) =a*- K%/,X,V,Y,U(O)'

i Kﬁ/,x,av,ay,U(O) =a*- Kﬁ/,X,V,Y,U(O)

24



Using these properties, it is easy to choose A1, Ay such that:

Kw.xvyu(0) = Ko x vy v (0) :K/‘/WL X A YL UL (0).
w ’ ’ ’ ’

The last term of this equation is > 0 by hypothesis 2 of the lemma. O

proof of Theorem 3.5.7. If the bundle admits a warped connection metric which is nonnegatively
curved to second order, then condition (**) is clearly satisfied. Conversely, suppose that condition
(**e) is satisfied. For fixed C, let T denote the warping tensor on the vector bundle which is
determined by the following equation:

2
Yo (W, W,U,U) = -3 C-|W|?-|U]? foral W L U.

In other words, T ¢ is the warping tensor associated to the connection metric for which the curvature
of any vertical 2-plane at the zero-section is C' (see Example 3.5.2). We will prove that for sufficiently
large C, the quadradically-warped connection metric associated to the warping tensor ¥ = Y+ Yo
(see Example 3.5.4) is nonnegatively curved to second order.

By choosing C large, one can make the sectional curvature of all vertical 2-planes at ¥ arbitrarily
large. It is therefore easy to choose C sufficiently large that condition 1 of Lemma 3.5.9 is satisfied,
exactly as done in the proof of Theorem 3.3.6. It remains to satisfy condition 2 of Lemma 3.5.9.

Let p € ¥, X,Y € T,X and W,U,V € E,. Assume that W L V, X L Y, U LV, and
[W| = [X| = [V|] = 1. We must show that for sufficiently large C, Ky, x .y (0) > 0. Since
Y is parallel, DxYT = Dx Y and hessy = hessy. Hence, Proposition 3.4.5 applied to the metric
associated to Y, gives the following formula:

Ky xvyr(0) = 2eK(X,Y)+6(RY(X,Y)U,V) - 3Y(U,U,V,V) (3.5.3)
—2DxY(W,U,V,V) + 2Dx Y (W, V,U, V)

1
+2(1 - 9K (X,Y) — Shessywwvv) (X)

1
+2((Dx RY)(X, Y)W, V) + o |RY (W, V) X[

Condition (**e€) says that the sum of the terms on the last two lines of equation 3.5.3.3 is > 0.
Further, setting Y = 0 in (**) and then using a compactness argument gives,

1 1
§|RV(W7 V)X|? - iheSST(W,W,vy)(X) >4 >0,

where § depends on V, T, and the metric g5, on 3. It follows that there exist constants d1,d2 > 0
(depending on V, T, g5, and the Euclidean structure on the bundle) such that if |[Y| < §; then the
sum of the terms on the last two lines of equation 3.5.3.3 is > Js.

Next let H denote the sum of the terms on the first two lines of equation 3.5.3.3. Since
—3Y(U,U,V,V) = -3Y(U,U,V,V) +2C - |U|?, we have:

H = 2K(X,Y)+6(RY(X,Y)U,V)—-3Y(U,UV,V)+2C-|U?
—2Dx Y (W,U,V,V) 4+ 2Dx Y (W,V,U, V).

To complete the proof, it will suffice show that for sufficiently large C":
1. if |Y| < §y then H + 05 > 0, and
2. if |Y] > 6y then H > 0.

It is straightforward to choose C' (depending on 41, d2, the minimal sectional curvature of 3, and
the norms of the tensors RV, T, and DxY) such that these two conditions are met. O
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Example 3.5.10. If the warping tensor T in Theorem 3.5.7 can be taken to be taken to be of the
simple form:
Y(W,W,U,U) = ~C-|W|*-|U? forall W LU,

then the resulting metric will be a connection metric (see Example 3.5.2). In this case, Theo-
rem 3.5.7 reduces to Theorem 3.3.6.

Corollary 3.5.11. Suppose (X, gs) is a compact Riemannian manifold with strictly positive
sectional curvature. Suppose that RF — E 5 % is a vector bundle over ¥. Then there exists
a warped connection metric gg on E with soul (X,gx) which has nonnegative curvature to
second order and radially-symmetric fibers iff the bundle admits a Euclidean structure, a
connection V, and positive real valued function f:3 — R such that the following condition
holds for allpe ¥, X, Y € T,)X and V,W € E,:

(*) (DxRY)(X, Y)W, V)2 < (|JRV(W,V)X|> +|W AV|? - hessy(X)) - K(X,Y) with equality
iff Y is parallel to X or W is parallel to V.

Proof. If a warped connection metric has radially symmetric fibers, then the warping tensor has
the form:
Y(W,W,U,U) = —f(p)- [W|*-|U* forall W LU,

where f is a positive real-valued function on ¥. Conversely, the quadradically-warped connection
metric associated to a warping tensor of this form has radially-symmetric fibers. O

3.6 Summary of conditions for nonnegative curvature

The following is a review of Theorem 3.3.6, Theorem 3.5.7 and Corollary 3.5.11:

Theorem 3.6.1 (Review of Results in this Chapter). Suppose (X,gs) is a compact Rie-
mannian manifold with strictly positive sectional curvature. Suppose that RF — E 5 % is a
vector bundle over X.

1. There exists a connection metric gg on E with soul (3,gx) which has nonnegative
curvature to second order iff the bundle admits a Euclidean structure and a connection
V such that the following condition holds for each pe ¥, X, Y € T,)X and V,W € E,:

(DxRV)(X, Y)W, V)2 < |[RV(W,V)X|? - K(X,Y) with equality iff Y is parallel to
X or W is parallel to V.

2. There exists a warped connection metric gy on E with soul (3, gs) which has nonneg-
ative curvature to second order and radially-symmetric fibers iff the bundle admits a
Euclidean structure, a connection V, and positive real valued function f:¥ — R such
that the following condition holds for allp € ¥, X|Y € T,X and V,W € Ey:

(DxRY)(X, Y)W, V)2 < (|IRV(W,V)X[>+ [W AV|? - hessp(X))-K(X,Y) with equal-
ity iff Y is parallel to X or W is parallel to V.

3. There exists a warped connection metric gg on E with soul (X, gs) which has nonneg-
ative curvature to second order iff the bundle admits a Euclidean structure, a connec-
tion V, and a warping tensor Y such that the following condition holds for all p € 3,
X, Y elL,X and V,IW € Ey:

(DxRY)(X, Y)W, V)2 < (|RY (W, V)X | = hessrvw,vv) (X)) - K(X,Y) with equal-
ity iff Y is parallel to X or W is parallel to V.
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In order to translate the above theorem into a necessary and sufficient condition for a bundle
to admit a metric of nonnegative curvature (instead of a metric which is nonnegatively curved to
second order), one must answer the following question:

Question 3.6.2. Is it true that a vector bundle admits a metric of nonnegative curvature iff it
admits a metric which is nonnegatively curved to second order?

Neither direction is obvious. If a vector bundle admits a metric of nonnegative curvature, it
is not obvious that it admits one for which K7y v 1.y 17(0) = 0 only when X is parallel to Y and
both U and V are parallel to W. The requirement that V is parallel to W seems especially strong;
perhaps this hypothesis must be removed from the definition of “nonnegatively curved to second
order” in order that Question 3.6.2 is true.

On the other hand, if a vector bundle admits a metric which is nonnegatively curved to second
order, it seems computationally possible to check whether the quadradically-warped connection
metric on the bundle associated to its warping tensor has nonnegative curvature in a neighborhood
of the zero-section. The author is currently working on this question.

We end with an example, due to Walschap, which helps justify the need for our generalization
from connection metrics to warped connection metrics.

Example 3.6.3. Consider the manifold M = (S? x R?) xg R, where R acts on S? by rotation
about the north and south poles, on R? by rotation, and on R by translations. M is diffeomorphic
to 52 x R?, but the induced submersion metric on M is a metric of nonnegative curvature which is
different from the product metric. In particular, the fibers of the Sharafutdinov map are not totally
geodesic, and the connection on the normal bundle of the soul is not a flat connection (see[39, page
529]). This connection is not capable of inducing a connection metric of nonnegative curvature on
the bundle; this follows from [39, Theorem 1.5]. Thus, when a connection on a bundle is fixed,
it is possible that this connection is capable if inducing a warped connection metric, but not a
connection metric on the bundle.
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Chapter 4

Riemannian submersions with
compact holonomy

We say that a Riemannian submersion 7 : M — B has compact holonomy if its holonomy group,
®, is a compact finite dimensional Lie group. We show by example that the metric projection onto
a soul does not necessarily have compact holonomy. When the metric projection onto a soul does
happen to have compact holonomy, we achieve the following splitting theorem: if the vertizontal
curvatures of M decay to zero away from the soul, the M splits locally isometrically over its soul.

4.1 Consequences of compact holonomy

Our first consequence of compact holonomy is essentially due to Schroeder and Strake [27, Propo-
sition 1]:

Lemma 4.1.1. Let w: M — B be a Riemannian submersion. If m has compact holonomy,
then there exists a constant by = by(w) such that the holonomy group is:

O = {h" | a is a piecewise smooth loop in B at p of length < b}

In other words, the entire holonomy group can be represented by loops in B of bounded length.
Since Schroeder and Strake stated this only for the case of the holonomy group of the normal bundle
of the soul, we include here a translation of their proof into the above generality. As Schroeder and
Strake point out, the proof is essentially a modification of [21, Appendix 4].

Proof. Fix p € B. Consider a loop «g at p in B for which h*° = id € ®. For example, this occurs
when g is the trivial loop, but may occur for nontrivial loops as well. If ay, t € (—¢,€), is a
variation of ag, then V := %h:oho‘t € G, where G denotes the Lie algebra of ®.

Our first goal is to prove that every vector of G occurs in this way. To establish this, let
h C G denote the set of all vectors in G which do occur in this way. We first argue that § is a Lie
sub-algebra of G. Let a! (i = 1,2) denote two families of loops of the type described above. Let
Vi= %h:ohuz be the corresponding elements of h. By re-parameterizing a; one can demonstrate
that A\V! € p for any X € R. By considering the concatenation aj o a?, one can demonstrate that
V1+V?2 € p. Finally, if we let 3; denote that path for which 3;(s?) = (af oa?o(af) Lo (a?)71)(s),
then 2 |,—oh® = [V1,V?] € p.

Since b is a Lie sub-algebra of G, the distribution g — (L)« () is involutive, where L, denotes
left translation by g € ®. The maximal integral manifold through id € ®, denoted H, is the Lie
subgroup of ® corresponding to b.
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We wish to prove that H = ®°. Take any g € ®°. Let a denote a loop in B at p for which
h® =g, and let oy (t € [0,1]) denote a nulhomotopy of oy = . Let 7(¢) := h**~*, which is a path
in G from id to g. We show that for each to € [0,1], 7/(to) € (Ly(z))«(h), and hence that g € H.
Consider the following family of loops:

Br = (agy) ™" 0 gy g

Since b’ =id, V := %hzohﬁf € b. Further, (Ly(:y))«(V) = 7'(to) by construction. This completes
our proof that H = &9,
Thus, we can choose a finite collection, o}, ..., &}, of families of closed loops of the type described

above, such that the corresponding vectors, V!, ...,V form a basis of G.
Consider the map f : (—e¢, €)Y — G defined by:

1 N
f(tl, 7tN) = hat’lo"'oatN )

By construction f is nonsingular at (0,...,0), and therefore f([—5%,5]") contains a closed neigh-
borhood U of the identity element of ®. By compactness, the lengths of the loops atll 0-+-0 oz?}fv
are bounded when [t;| < §. Finally, since ® is compact, it can be covered by finitely many left-
translates of U. In other words, there is a finite collection of loops (1, ..., 8; at p in B such that any

element g € ® can be written as:

1 N ol oo N
g= hﬁL . haHomoatN _ hﬁloatlo ooy

for some i = 1,..,1 and for some t; € [~§, 5]. The statement of the proposition follows. O

Our second consequence of compact holonomy is a global Lipschitz bound on all holonomy
diffeomorphisms, at least when 7 has a bounded T-tensor. It is known that the holonomy diffeo-
morphism h® satisfies a Lipschitz bound depending on the length of a. More precisely, Guijarro
and Walschap proved the following in [17, Lemma 4.2]:

Lemma 4.1.2 (Guijarro-Walschap). Let 7 : M — B denote a Riemannian submersion
with bounded T-tensor (|T| < Cr). Let « be a path in B from p to q. Then the holonomy
diffeomorphism h® : I, — I, satisfies the Lipschitz constant eCr length(a)

Proof. Assume that « is parameterized proportional to arclength such that «(0) = p and «(1) = q.
Let x € F, and let V' € V, (=the tangent space to the fiber at ) be a unit-length vector. Let b(s)
(s € (—¢,¢€)) denote a path in F}, with &’(0) = V. For each s let ¢ — @;(t) denote the horizontal lift
of a with a;(0) = b(s). Let V() denote the vector field along &g corresponding to this variation.
V(¢) is an everywhere vertical vector field with V(0) =V and V(1) = (h%).(V). But it’s easy to
compute that V'(t) = Agy )V (t) + Ty ) (t), so that if we let f(t) = [V (t)[?, then

f1(t) < 2(V(t), Ty yap(t)) <2 Cp -length(a) - f(t).
Thus |V (1)]? = f(1) < 2Crlength(®)  Taking the square root of both sides completes the proof. [J

We prove that in the case of compact holonomy, the holonomy diffeomorphisms satisfy a Lips-
chitz bound which does not depend on the length of the path. In the case of non-compact holonomy
we at least find a Lipschitz bound which depends linearly, rather than exponentially, on the length
of a:

Proposition 4.1.3.

1. Let m: M — B be a Riemannian submersion with a bounded T-tensor (|T| < Cr). If w
has compact holonomy, then there exists a constant L = L(w) such that all holonomy
diffeomorphisms of © satisfy the Lipschitz constant L.
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2. Even if ® is non-compact, there exists a constant L = L(Crp, diam(B)) such that the
holonomy diffeomorphism associated with any loop of length | satisfies the Lipschitz
constant 1 +1- L.

Proof. For part 1, if ¢ is a loop at p in B of arbitrary length, one can find a different loop ¢
of length < b; which generates the same holonomy diffeomorphism: h¢ = h¢ where b; is the
constant from Lemma 4.1.1. It follows that if o is a path of arbitrary length in B between points
p and ¢, then h® = h® for a properly chosen path & of length < diam(B) + b;. For example,
take & equal to a minimal path g from p to ¢ followed by a loop at ¢ which generates the same
holonomy diffeomorphism as ~! % a. Therefore L := €7 (diam(B)+b1) js a5 required for part 1 of
the proposition.

For part 2, first notice that for any loop « of length [ < D := 2 - diam(B) + 1, h® satisfies the
Lipschitz constant e“7! < 1+1-P, where P := Cp-e7'P (that is, P equals the maximum derivative
of the function e“7"! between I = 0 and [ = D). But for a unit-speed loop a at p in B of arbitrary
length [, it is possible to find [ loops, a1, ..., oy, each of length < D, such that h* = h®t o --- 0 h1,
where [ denotes the smallest integer which is > 1. To do this, define a; to be the composition of a
minimal path in B from p to a(i — 1), followed by alj;_; ;, followed by a minimal path from «(i)
to p. Since for each ¢, h®* satisfies the Lipschitz constant 1 + P - D, it follows that h® satisfies the
following Lipschitz constant:

(1+P-D)<(+1)(1+P-D)=1+(1+PD)l+PD <1+2(1+ PD)I.
The final inequality holds whenever [ > 1, but if [ < 1 then h® satisfies the Lipschitz constant
14 (Cp - e 1)1 (as above). So the choice L := max{2(1 + PD),Cr - €T} is as required for part 2
of the proposition. O

We do not know whether the holonomy diffeomorphisms of the metric projection onto a soul
always obey a global Lipschitz bound (this question was first asked by Guijarro and Walschap).
However, for general Riemannian submersions, we have the following;:

Example 4.1.4. For a general Riemannian submersion with bounded T-tensor, the holonomy
diffeomorphisms need not satisfy a global Lipschitz bound. For example, consider the projection
m: 8% x R?2 — 8§82, where 52 has the round metric, R? has the flat metric, and S? x R? has the
product metric. Let X denote the vector field on S? whose flow is rotation about the axis through
the north and south poles N, S. Let Y be a vector field on S? which is orthogonal to X and vanishes
at N,S. Let Z(v) (v € R?) denote the radial vector field on R?, and let W(v) = p(|v]) - Z(v),
where p is a smooth bump function with support [1,2]. We can consider X,Y to be horizontal
vector fields and W to be a vertical vector field on S? x R? in the obvious way. Define a 2-plane
distribution H on S? x R? as follows:

H(p,v) = span {Y(p) X(p)

e KWW

This distribution clearly extends continuously to the fibers over N, S. There is a unique metric
on S? x R? for which 7 becomes a Riemannian submersion with horizontal distribution 7 such
that the fibers are isometric to flat R?. The holonomy group @ is isomorphic to R, and its action
on the fiber 77 1(N) = R? is simply the flow along the vector field W. It is easy to see that
arbitrarily long loops in S? are necessary to achieve arbitrarily large time parameters for this flow,
and hence arbitrarily bad Lipschitz bounds for the associated holonomy diffeomorphism. But since
the T-tensors vanishes outside of a compact set in S? x R2, it clearly has bounded norm.

4.2 Vertizontal curvature decay

In this section, we explore a consequence of compact holonomy for the metric projection onto a
soul. The application is related to a splitting theorem of Guijarro and Petersen which states that
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if the curvatures of all 2-planes on M decay towards zero away from the soul then the soul must be
flat [16]. By O’Neill’s formula, one can then conclude that the A-tensor of 7 vanishes, and hence
that M splits locally isometrically over the soul (see Remark 3.1.2). Guijarro and Walschap have
demonstrated that if M has the property that all holonomy diffeomorphism of 7 obey a global
Lipschitz bound, then one only needs to know that the curvatures of all vertizontal 2-planes (that
is, 2-planes spanned by a horizontal and a vertical vector) decay towards zero away from the soul
in order to conclude that M splits locally isometrically over its soul [17, Theorem 4.3.2]. Thus, we
have as a corollary to Proposition 4.1.3:

Corollary 4.2.1. If ® is compact and the curvatures of vertizontal 2-planes on M decay
towards zero away from X, then M splits locally isometrically over X.

We do not know whether this corollary is true even when & is noncompact. A more difficult
question is whether the holonomy diffeomorphism of the metric projection onto a soul must satisfy
a global Lipschitz bound, even when the holonomy group is non-compact.

4.3 A soul with noncompact normal holonomy

In this section we provide an example of a simply connected open manifold, M, of nonnegative
curvature for which the metric projection onto the soul has noncompact holonomy. Consider the
following action of the Lie group R on §% x C2 x R:

((@)9)72"1’22)750) ’i) ((@76 + t)aeﬂitzlae/\thQ;tO - t)~

Here (p,6) denotes spherical coordinates on S2, and A denotes an irrational real number. The
quotient, (5% x C?) xg R = (82 x C% x R)/R, is diffeomorphic to S? x C%, and this identification
provides a new nonnegatively curved metric § on S? x C? under which the quotient map S? x C? x
R — (S? x C?) xg R =~ S? x C? becomes a Riemannian submersion.

Let g denote the product metric on S? x C?, and let V' denote the Killing vector field associated
to the R action on S? x C?; namely, V((,0), 21, 22) = (9,2’21, Xiz2). According to [5, Example 2],
the new metric § on S? x C? is obtained from ¢ simply by, at each point, rescaling the norms of
vectors parallel to V by a factor of 1/(1 + |V]?)'/2.

It is easy to see that the soul of M := (52 x C2, ) will still be the zero section, ¥ = S% x (0,0),
and that the metric projection m : M — X will still be the projection (g, z1,22) — ¢. It is
straightforward to show that the horizontal distribution H of 7 can be described as follows:

H = span< (,0,0), [ 6 o1 iz o1 Niz
((,0),21,22) p ¥, Y, V), 71+ |0A|2 15 1+ ‘é‘Q 2

The two vectors in this expression correspond to the horizontal lifts of the spherical coordinate
vectors ¢ and 6 in T(,0)5?.

If o(t) = (o(t),0(t)), t € [0,1], is a loop in S? based at q := (p(0),6(0)), it follows that the
horizontal lift & of o to the point (g, 21, 2z2) in M will end at the point a(1) = (g, e™0 2y, e 0 2,)

where to = fol l_lfl‘;lze'(t)dt.

In particular, the set of points in 771(¢) which can be achieved as endpoints of horizontal lifts
to (q, 21, 22) of loops in S? at ¢ is exactly {(q, ™0z, e ™0 2y) | to € R}. Tt follows from this that
the holonomy group ® of the normal bundle of ¥ is exactly:

e‘n’ito 0
b = {( 0 ekﬂito) toGR},

which is isomorphic to R.
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We next wish to compute the ideal boundary M (oo) of M = (S? x C2,§). Let p € ¥ be either
the north or south pole; that is, one of the two zeros of the vector field V. The fiber 7=1(p) is
totally geodesic because it is a connected component of the fixed point set of the following isometry
of M:

((9070)7 21, 22) = ((‘p?e + 7T/2)’ 21, Z2)~

Let S, denote the sphere of unit-vectors normal to the soul at p. Think of S, = {(21,22) € C? |
|21|> + |22|?> = 1}. For any angle a € [0,7/2], let Ty, := {(21,22) € Sp | |21] = cos(a)}. This is
the standard decomposition of the 3-sphere into a family of tori. Notice that each torus Ty, is the
closure of an orbit of the action of ® on S,. For any two rays 7, 72 from p in M with initial
tangent vectors Vi € Ty, and Vo € T,,, the distance in M (co) between the rays is easily seen to
be doo([71]; [12]) = |1 — 2] In other words, the tori into which S, decomposes collapse to single
points in the ideal boundary. We conclude that M (co) = [0, 7/2].

4.4 Measuring size in the holonomy of a vector bundle

In this section we wish to show that, in a vector bundle with a connection, the “size” of the holonomy
element associated to a loop can be controlled linearly in terms of the length of the loop. Later, in
section 6.2, we will generalize this result to the holonomy group of a Riemannian submersion with
bounded tensors. The main lemma of this section, which says that a nulhomotopy of a loop can
always be found with derivatives controlled in terms of the length of the loop, is central not only
to our vector bundle result, but also to all of the main results of Chapter 6.

Let R¥* — E — B be an Riemannian vector bundle. Assume that B is compact and simply
connected. Let V be a connection which is compatible with the inner products on the fibers. Let
RY denote the curvature tensor of V. Fix p € B. Let ® denote the holonomy group, and G its
Lie algebra. Notice that ® is a Lie subgroup of the orthogonal group, since it acts naturally by
isometries on the unit sphere E; of the fiber F, at p. For V € G and w € Ezl,, denote by V(w)
the value at w of the vector field on Ezl, associated to V. We call a left-invariant metric, m, on ®
acceptable if for all V € G, |V, < SUDyc 1 |V (w)|. Notice that any left invariant metric on ®
can be made acceptable by rescaling. For g € ®, we define |g| as the supremum over all acceptable
metrics on @ of the distance between g and id. This provides a natural notion of “size” in the
holonomy group.

Proposition 4.4.1. There is a constant C = C(B) such that for any piecewise smooth loop
a in B, |P,| < C-Cg - length(a), where Cr denotes a bound on |RY].

This proposition is particularly interesting when the holonomy group of the vector bundle is
noncompact, in which case (as in the example of Section 4.3), arbitrarily long loops in the base
space may be needed to represent the whole holonomy group.

The proof of this proposition turns on the following lemma, which will be of central importance
to later results as well:

Lemma 4.4.2. Let B be a compact and simply connected Riemannian manifold. There exists
a constant Q = Q(B) such that for any piecewise smooth loop « :[0,1] — B (parameterized
proportional to arclength), there exists a piecewise smooth nulhomotopy H :[0,1]x[0,1] — B
of a (that is, H(0,t) = p = «(0),H(1,t) = «(t)) for which the natural coordinate vector
fields along the image of H are everywhere bounded in norm as follows: |%H| < @ and
|%H| < Q- length(a). In particular, this implies that the area, A(H), of the image of H is
< @Q? - length(a).

Proof. Let o : [0,1] — B be a piecewise smooth loop in B. Assume that « is parameterized
proportional to arclength. Denote p := «(0) = «(l), and | := length(a). To start, we will
assume that | < %inj (B), in which case it is easy to construct a nulhomotopy of « with derivative
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information controlled linearly in terms of [. Since [ < %inj(B), a lifts to a loop & = exp,, Loa
at 0 in T, B. The natural nulhomotopy of & is H(s,t) :== s-a(t) (s € [0,1],t € [0,1]). Clearly
|8tH| |a H| < I. Letting H := exp, oH, which is a piecewise smooth nulhomotopy of «, we see
that |8tH|’ |dsH| < @1 - for a properly chosen Q1 = Q1(B).

Next we assume only that [ < D := 2. diam(B) + 1. More precisely, we seek a constant Qo
such that for any piecewise smooth loop « in B at p of length < D, there exists a piecewise smooth
nulhomotopy H of «, with |%H|7 |%H\ < Q.

Suppose no such Q2 exists. Then there must be a sequence «; : [0,1] — B of piecewise
smooth loops, each with length < D, such that the minimal derivative bounds of piecewise smooth
nulhomotopies of the loops a; go to infinity. By restricting to a subsequence, we can assume
that «; converges in the sup norm; in particular «; is a Cauchy sequence. For i,j large enough
that € := dgup(v, ;) < 3inj(B), the natural piecewise smooth homotopy H : [0,€] x [0,1] — B
between Ho(t) = H(0,t) = o;(t) and He(t) = H(e,t) = «;(t), which retracts along shortest
geodesics between corresponding points of the two curves, is well defined. More precisely, define
H(s,t) = ci(s), where ¢, is the minimal path between ¢;(0) = «;(t) and ¢;(€) = a;(t), parameterized
so as to have the constant speed d(c;(t),;(t))/e. Clearly |%H\ < 1. Further, |%H\ < K
for an appropriate constant K = K(B). To see this, notice that for fixed ¢, the vector field
Ji(s) = 2 H(s,t) along the geodesic c;(s) is a Jacobi field because it is the variational vector
field of the family of geodesics which defines the homotopy. Ji(s) is determined by its endpoints
Vi = Ji(0) = «j(t) and Vz := Ji(€) = o(t), each of whose norm is < D. We can thus take K
as the supremum (over all pairs of vectors V; € T,, B, Vs € T,,B with d(pi,p2) < 3inj(B) and
[Vil, |[V2] < D) of the maximal norm of the Jacobi field along the shortest geodesic between p; and
po with end values Vi and V5.

It follows that any piecewise smooth nulhomotopy H; of «; can be extended to a piecewise
smooth nulhomotopy H; of a;, with similar derivative bounds. More precisely, if |%Hi| < Qs and
|2 H;| < Qq, then | £ H;| < Qs + E(e) and |2 H;| < max{Q;, K}, where lim._o E(e) = 0. This
provides a contradiction. Therefore, such a constant Qo exists.

Finally, we handle the case where [ = length(c) is arbitrary. It is possible to find I loops,
ay, ..., ap, each of length < D, such that P, = P,, o--- 0 FP,,, where [ denotes the smallest integer
which is > [. This is done exactly as in the proof of Lemma 4.1.3, by defining «; to be the
composition of a minimal path in B from p to a(i — 1), followed by «f;_; ;, followed by a minimal
path from «(7) to p. Let v : [0,1] — B denote the composition of the loops «;, re-parameterized
proportional to arclength. Notice that length(y) <1- D. It is straightforward to define a piecewise
smooth homotopy H : [0, 3] x [0,1] — B between H(0,t) = a(t) and H(%,t) = ~y(t) with |2 H| <
2-diam(B) and | & H| < I-D. Next extend H by defining H : [3,1] x [0,1] — B as the nulhomotopy
of v which simultaneously performs nulhomotopies of each loop «;. H is clearly a piecewise smooth
nulhomotopy of « for which |%H\ < max{2-diam(B),2Q2} and |8t | <1Qy < (I1+1)Q2 < 20Q5.

The final inequality above assumes that { > 1, but the case [ < 1 can be handled as follows:
If | < 1inj(B) then there exists a homotopy with \%H| < Q-1 <@ and |%H| < Q-1
On the other hand, if %inj(B) < I < 1 then there exists a homotopy with |%H| < @, and

H| < Qs = QQl < 292 | Here Q- is derived similarly to Qs, but for loops of length < 1 rather

k7

— inj(B)
than loops of length < D. In all cases, |BtH| is bounded linearly in terms of [, and |8 | is bounded
absolutely, which completes the proof. O

Next we prove Proposition 4.4.1

Proof. Let a : [0,1] — B be a unit-speed piecewise smooth loop in B at p. By Lemma 4.4.2,
there exists a piecewise smooth nulhomotopy H : [0,1] x [0,1] — B of a such whose area A(H) is
bounded linearly in terms of length(a)). We now describe how to control |P,| linearly in terms of
A(H). Let g(s) = Pyy—p, (1)}, which is a piecewise smooth path in ® between the identity and P,.
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For any vector w in Ezl,7 we define w(s, t) as the parallel transport of w along t — H(t). Then,

| P |

IN

IN

IN

IA

IN

This completes the proof.
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Chapter 5

Volume growth bounds

The purpose of this chapter is to use Perelman’s Theorem to study the volume growth, VG(M), of
M. In particular, VG(M) is proven to be bounded above by the difference between the codimension
of the soul and the maximal dimension, m, of an orbit of the action of ® on v,(X). Additionally,
if M satisfies an upper curvature bound, then we prove that VG(M) is bounded below by one plus
the dimension of M (c0). These two inequalities placed together read:

dim(M(00)) +1 < VG(M) < codim(X) — m. (5.0.1)

It was first observed by Shioya in [30] that the first term of Equation 5.0.5.1 is < the last term
(Shioya mistakenly defined m to be the dimension of ® rather than the maximal dimension of an
orbit of the action of ®). Our result is therefore that VG(M) is sandwiched between these two
terms, at least when M satisfies an upper curvature bound.

5.1 Previous results

For a Riemannian manifold M™ with nonnegative sectional curvature, the volume of a ball Bx(r)
of radius 7 about a compact totally geodesic submanifold "% can be estimated by a generalized
Bishop-Gromov type inequality which states that

RG]

is a monotonically non-increasing function of r [9]. If M is open, this implies that the volume
growth of M is not greater than the codimension k of ¥, where the volume growth, VG(M), of M

is defined as follows: (B
iy BT )

r—00 r

VG(M) = inf{x €eR

Note that this definition is independent of the choice of p € M.

The case where ¥ is a soul of M and the volume growth of M is maximal in the sense that
VG(M) = k was studied by Schroeder and Strake in [27]. Their main result states that in this case
the reduced holonomy group ®° of the normal bundle v(X) of ¥ in M is trivial. Hence, in this case
Theorem 2.2.1 implies that M splits locally isometrically over X, and the splitting is global if B is
simply connected.

Our main theorem is the following generalization of Schroeder and Strake’s result: VG(M) <
k — m, where m denotes the maximal dimension of an orbit of the action of ®° on 1,(X). The
possibility that ®° might be a non-closed subgroup of SO(k) introduces certain technical difficulties
in our proofs. The previously constructed example in Section 4.3 justifies these worries.
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It is worth mentioning that Perelman’s theorem provides an elementary proof of the previously
mentioned fact that VG(M) < k. For, if v(X) is endowed with the connection metric with flat
fibers, then exp! becomes a distance non-increasing map. To see this, take any v € v(X) and let
2 :=expt(v) € M. Let H, and V, denote the horizontal and vertical spaces of v(X) at v determined
by the natural connection. Perelman’s Theorem implies that d(exp'), maps 7'71, isometrically onto

H,. Also, Rauch’s theorem implies that d(exp), maps V, in a distance non-increasing way into
V. Since VG(v(X)) = k, it follows that VG(M) < k.

5.2 An upper bound on volume growth

In this section, we prove that VG(M) < k—m. Since ®° might be non-compact, most of the theory
of transformation groups does not apply to the action of ®° on a fiber 1,(X). We therefore require
the following two lemmas about Lie subgroups of SO(k).

Lemma 5.2.1. Let G be a (possibly non-compact) connected Lie subgroup of SO(k). The
union, Q, of all orbits of the action of G on S*~1(1) which have mazimal dimension is open
and dense.

Proof. Q is trivially open. To establish that € is dense, decompose the Lie algebra G of G as
G = Z& A, where Z is the center of G, and A is semi-simple. Let Z and A denote the Lie
subgroups of G associated with Z and A respectively. Z is Abelian and A is compact. Z is
a subgroup of a maximal torus of SO(k), and with respect to a properly chosen basis of R*, Z
embeds in SO(k) as follows:

esl('u)i

esm(v)i

I

Here, each s; is an linear function from Z to R. Write R¥ = Vi @---@V,, ®W for the corresponding
orthogonal decomposition of R¥; dim(V;) = 2 and dim(W) = k — 2m.

For any v € S*~1(1), dim(G(v)) < dim(Z(v)) + dim(A(v)), and we claim that equality holds
on an open dense subset E of S*71(1). To construct E, consider a basis {Xi, ..., X,} of Z and
{Y1,...,Y3} of A, and regard the elements X; and Y; as Killing vector fields on R*. For each
i=1,..,b, the set K; := {w € W | Y;(w) = 0} is a linear subspace of W, which is not necessarily
proper. Define:

E:={vi+ - +vm+we S 1) |each v; # 0 and if w € K; then K; = W}.

E is clearly open and dense. For every v € FE and any i = 1,...,b, Y;(v) ¢ span{X;(v), ..., X, (v)}.
If ¢ is such that K; # W, this is clear from construction; otherwise, Y;(v) € span{Xi (v), ..., Xo(v)}
implies Y; € Z, which is impossible. Therefore, dim(G(v)) = dim(Z(v)) + dim(A(v)) for every
veE.

From the previous description of Z, one can easily see that the union, Qz, of all orbits of the
action of Z on S*71(1) which have maximal dimension is open and dense in S¥~!(1). Further,
Q4 (defined analogously) is open and dense by the theory of compact group actions. Therefore,
Q7N Q4N E is an open dense subset of S¥~1(1) which is contained in Q. It follows that  is
dense. O

Lemma 5.2.2. Let G be a (possibly non-compact) Lie subgroup of SO(k), and C be a closed
neighborhood of the identity in G. Let m denote the maximal dimension of an orbit of the
action of G on R¥. Then there ewists a finite union, W = JW;, of (k — m)-dimensional
subspaces W; of R¥ such that for any u € R¥, there exists some g € C with g(u) € W.
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Proof. The proof is by induction on k. The statement is trivial in dimensions & = 1 or 2. Assume
that the lemma is true in dimensions less than k. Let C C G C SO(k), as in the statement of the
lemma. For every v € S¥~1(1) C R*, we will construct an open neighborhood U of v in S*¥~1(1)
and a finite union, W = |JW;, of (k — m)-dimensional subspaces W; of R¥ which contain v, such
that for every u € U, there exists some g € C with g(u) € W. Since S*~1(1) is compact, this will
complete the proof.

Fix v € S*~1(1). Let m, denote the dimension of the orbit G(v). Decompose the Lie algebra
G of G as G = G, ®span{ Xy, ..., X;n, }, where G, denotes the Lie algebra of the stabilizer G,,, and
the elements X;, when considered as Killing vector fields on S*~1(1), form a basis of T,G(v) at v.
Define Y to be the orthogonal compliment of T;,G(v) in T,R¥ ~ R*. Y is a (k — m,)-dimensional
subspace of R containing v, and we claim that the set {g(u) | g € C,u € S¥~1(1) N Y} contains
an open neighborhood U of v in S¥~1(1). This follows from the fact that the derivative at (id,v)
of the map ¥ : G x (Y NS*~1(1)) — S*~1(1) defined as ¥(g, u) := g(u) is surjective.

If the orbit G(v) has maximal dimension, that is if m, = m, then the single subspace W :=Y
and the open set U will be as required for the construction. Otherwise, the dimension of Y
(= k —m,) is too large, so Y cannot serve as the required subspace. In this case, we will choose
W to be a union of smaller subspaces of Y, as follows.

The stabilizer G, acts by isometries on the subspace Y’ consisting of those vectors in Y which
are orthogonal to v; we claim that the maximal dimension of an orbit of this action is m —m,,. To
see this, choose a neighborhood E of v in Y N S¥~1(1) small enough so that {X;(w)} is linearly
independent and transverse to Y for all w € E. Then, for any w € E, G,(w) C Y N SF1(1),
and T,,G(w) = T,Gy(w) & span{X;(w)}. Therefore, dim(G(w)) = dim(G,(w)) + m,. From
lemma 5.2.1 and the fact that G(E) contains an open neighborhood of v in S¥~1(1), it follows
that E must contain a vector w for which dim(G(w)) = m. For this w, dim(G,(w)) = m —m, =
max{dim(G,(w")) | w' € Y'}.

By the inductive hypothesis, there exists a finite union, V := |V}, of (k — m — 1)-dimensional
subspaces V; of Y’ such that for any u € Y’ there exist an element g € G, N C such that g(u) € V.
Define W; := span{v,V;}, and W := |JW,. Each subspace W; has dimension k — m, and by
construction, {g(u) | ¢ € G, N C,u € W} =Y. Tt follows that the set {g(u) | g € C,u €
Sk=1(1) N W} will contain the open neighborhood U of v defined above. This completes the
proof. O

Theorem 5.2.3. VG(M) <k —m

Proof. Fix p € ¥. Lemma 4.1.1 states that if ®° is compact, then all of ®° can be represented using
loops at p in X of bounded length. Even when the compactness assumption is dropped, the proof
still establishes the following: there exist a constant b; and a closed neighborhood C' of the identity
in ®° such that any g € C' can be represented as parallel translation along a loop at p in ¥ with
length < b;. By lemma 5.2.2, we can then find a finite union, W := |J W, of (k — m)-dimensional
subspaces W; of v,(X) which meets every orbit of C' in the sense of the lemma.

Next we argue that all of M is contained in a ball of radius by := by +diam(X) about expt(W).
To see this, take any point & € M, and write 2 = exp™(v) for some v € v(X). There exists a path
a in ¥ of length less than by such that P,(v) € W (namely, take any minimal path from ¢ := 7 (v)
to p, followed by a loop at p which represents the proper holonomy element). The horizontal lift &
of  to x is then a path in M of the same length connecting = to y := exp® (P, (v)) € expt(W).
Therefore Beyyo (wy(b2) = M. Additionally, observe that if v was chosen so that the radial geodesic
t + exp’(tv) provides a minimal connection from ¢ to x, it follows that the radial geodesic ¢
exp® (tP,(v)) will provide a minimal connection from p to y.

We conclude with an argument similar to the proof of [27, Thm. 2], by showing that there is a
constant K such that for large real numbers r > 0,

VOI(BZ (7‘) — BZ(?‘ _ 1)) < KTk_m_l

37



This clearly implies the statement of the theorem.

Let W' be the set of unit-length vectors in W. Let r be a positive real number. Take a net
of points {v;} in W1 such that every vector in W' makes an angle of less than 1/r with some v;.
Since W1 is a finite union of round spheres of dimension k& —m — 1, we need no more than bgrk—"-1
points v;, where b3 is a constant which does not depend on 7.

Now we claim that

B (r) = Bs(r —1) € | Bexp (ron) (b2 + 2).
K3

To see this, take any point x € M with r — 1 < dist(z,X) < r. As described above, x has distance
< by from some point y = exp®(v), where v € W, and 7(t) := exp(tv) provides a minimal
connection between p and y. Let v; be a point of the net which makes angle less than 1/r with
v. Since v is minimizing, we can apply Toponogov to conclude that d(y,exp*(rv;)) < 2. Thus
dist(z, exp® (rv;)) < by + 2.

Finally, since the Bishop-Gromov inequality implies that the volume of each ball Beyp1 (4,) (b2 +
2) is not greater than the volume by of a ball of the same radius in the Euclidean space of the same
dimension, we have

Vol(Bs(r) — Bs(r — 1)) < bgbgr=m1,

So choosing K := bybs is as required to conclude the proof. O

5.3 Bounded vertical Jacobi fields

In this section we prove the existence of many bounded vertical Jacobi fields along radial geodesics
(that is, geodesics which intersect the soul orthogonally). Since the existence of bounded vertical
Jacobi fields restricts volume growth, this has the same flavor as Theorem 5.2.3.

Suppose that p € &, V € v,(X), and y(t) := exp’(tV). Choose vectors X,Y € T,%, and let
J(t) be the Jacobi field along v with J(0) = 0 and J’(0) = RV (X,Y)V. Lemma 3.1.1 implies that
J(t) is an everywhere vertical Jacobi field which is bounded in norm because the A-tensor of 7 is
bounded in norm. In other words, along v we can find a number of linearly independent bounded
vertical Jacobi fields equal to the dimension of the subspace {RY(X,Y)V | X,Y € T,,X}. In fact,
we can do slightly better:

Proposition 5.3.1. Along almost every radial geodesic in M, there exist at least m linearly
independent bounded vertical Jacobi fields, where m denotes the maximal dimension of an
orbit of the action of ® on vp(X).

Proof. Begin by choosing a collection {71,...,7,} of paths in ¥ beginning at p, and collections

{X1,...,X,}, and {1, ..., Y,} of vectors in T, such that the set {V; := P! o R(P,,(X;), P, (Y;)) o

P,,} is a basis of the Lie algebra of ®°. This is possible by a theorem of Ambrose and Singer;
1

see for example [21, Thm. 8.1]. Consider each V; to be a vector field on the unit sphere v, (%) of

vp(2). Let Q be the union of all orbits of the action of ®° on v, (X) which have maximal dimension.
By Lemma 5.2.1, © has full measure. Fix w € Q. {V;(w)} spans an m-dimensional subspace
of Tyy(v)(£)). To simplify notation, re-index so that {Vi(w),...,Vin(w)} is linearly independent.
For each i between 1 and m, consider the Jacobi field J;(t) along 7(t) := exp®(tw) with initial
conditions J;(0) = 0 and J/(0) = V;(w). We claim that each J; is a bounded vertical Jacobi field.
To see this, let J;(t) be the Jacobi field along #;(t) := exp™(tPy, (w)) with initial conditions
Ji(0) = 0 and J!(0) = P,,(Vi(w)). Lemma 3.1.1 implies that .J; is a bounded vertical Jacobi field.
Next observe that .J; = (h™),.J;, where h™ : 771 (p) — 7~ 1(7;(1)) is the diffeomorphism between
the fibers naturally associated to the path 7;. This observation is a re-wording of [17, Prop. 1.1.1].
Also, each h™ is a biLipschitz map according to Lemma 4.1.2. It follows that J; is also a bounded
vertical Jacobi field. O
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It would be interesting to find an alternative proof of Theorem 5.2.3 which is based on Propo-
sition 5.3.1.

5.4 A lower bound on volume growth

The only known lower bound for the volume growth of an open manifold M of nonnegative curvature
is due to Calabi, who proved that VG(M) > 1. Calabi’s result appeared before Cheeger and
Gromoll’s Soul Theorem. Today the technology is in place to say much more. In this section we
prove the following result:

Theorem 5.4.1. If M satisfies an upper curvature bound, then the VG(M) > 1+dim(M (o0)).

We believe that this theorem is true even without the assumption that M satisfies an upper
curvature bound. See [8] for an example of an open manifold of nonnegative curvature which does
not satisfy an upper curvature bound.

We begin by stating a useful version of Toponogov’s theorem, which can be found in [32, Lemma
19]:

Lemma 5.4.2 (Toponogov). Let M be a Riemannian manifold of nonnegative curvature.
Let o; : [0,1;] = M (i =1,2) be two distance minimizing geodesics starting at the same point.
Let 0(t1,t2) denote the “comparison angle”; that is, the angle opposite the third side of the
triangle in flat R? with side lengths ty,to, dpr(aq(t1), az(te)). Then 0 is monotonic in t; and
ta. That is 0(t1,t2) < 0(s1,82) whenever s1 <t; <lj and sg <tg <ls.

Corollary 5.4.3. Suppose that a; (i = 1,2) are two unit speed rays from the same point and

that a,b are positive real numbers. Define g(t) := M' Then g(t) is monotonically
decreasing in t, and

tlﬂf& g(t) = /a2 + b2 — 2abcos min{du ([o], [a2]), 7} (5.4.1)

Proof. The proof of Equation 5.4.5.1 is found in [31, Proposition 2.2]. The monotonicity claim
follows immediately from Lemma 5.4.2 simply because g(t) can be re-described as

g(t) = /a2 + b2 — 2abcos O(at, bt),
where 6 is as in the lemma. O

The metric cone, C(X), over a metric space X is defined as the quotient space C(X) :=
X % [0,00)/ ~, where (x,0) ~ (y,0) for any z,y € X. The metric of C(X) is defined by the law of
cosines formula:

d((z,t), (y, 5)) := \/s2 + t2 — 2st cosmin{d(z, y), 7}.

Since M(oo) is an Alexandrov space with curvature bounded below by 1, it follows that
C(M(c0)) is an Alexandrov space with curvature bounded below by zero; see [4, Proposition
4.2.3]. The dimension of C(M (o)) is clearly one greater than the dimension of M (c0). A rephras-
ing of Theorem 5.4.1 is thus that the volume growth of M is bounded below by the dimension of
C(M(00)); this is probably the best way to think about the claim. The following well known result,
which provides motivation for Theorem 5.4.1, is due to Shiohama [29]:

Proposition 5.4.4 (Shiohama). Let M be an open manifold of nonnegative curvature. Fiz
p € M. Denote by AM the result of rescaling the metric on M by a factor of A\. Denote by o
the vertex (cone point) of C(M(c0)). Then the Gromov-Hausdorff limit (as X goes to zero)
of the pointed spaces (AM,p) is equal to (C(M(00)),0)
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Idea of the proof of Proposition 5.4.4. We sketch the proof found in [15, Lemma 3.4]. Let B
denote the ball about o of radius 1. Fix p € M. For any R, we wish to define amap fr : B — By(R).
An arbitrary point g of C'(M(o0)) can be denoted as ¢ = ([7],¢), where v is a unit-speed ray in M
from p and t € [0,00). The map fg is then defined as follows:

fr((],4) ==~ (tR).

This definition uses implicitly the axiom of choice; for every point ¢ = ([7],t) we are asked to
randomly choose a ray ~ from p representing the equivalence class [y]. The map is thus non-
canonical. Also it is not clear whether the choices can always be made so as to make fr continuous.
In any case, we can consider fr as a map from B into the ball of radius 1 about p in %M . As
R — oo, it follows essentially from Equation 5.4.5.1 that fr becomes a better and better Hausdorff
approximation (notice that the right hand side of Equation 5.4.5.1 can be interpreted as the distance
in C(M(00)) between ([a1],a) and ([ae],b)). The analogous construction holds when B is defined
to be a ball of arbitrary radius in C'(M(c0)), and the proposition follows. O

Although we did not need this observation in the previous proof, we mention now that fgr
(interpreted as a map from B to the ball of radius 1 about p in %M ) is distance non-decreasing.
This follows from the monotonicity claim of Corollary 5.4.3. This observation is central to the

following proof.

Proof of Theorem 5.4.1. Fix p € M. Let B denote the ball of radius 1 about the vertex o €
C(M(o0)) and let fr : B — Bp(R) be defined as in the proof of Proposition 5.4.4. Let a denote any
positive real number smaller than the dimension of C(M(00)). By the definition of the dimension
of an Alexandrov space ([4, Section 6]),

liil(l) €* - cap.(B) = o0,
where cap,(B) denotes the maximal number of disjoint e-balls which can be packed into B.

As mentioned previously, fr : B — %BP(R) is distance non-decreasing. This means that
dr(fr(q1), fr(q1)) = R - d(q1,q2). Therefore, any disjoint packing of f-balls into B induces a
disjoint packing of the same number of 1-balls into B, (R) via the map fr.

Since M satisfies an upper curvature bound, it is shown in [44] that inj(M) > C > 0 for some C
depending on the upper curvature bound and on the injectivity radius of the soul of M. Therefore
it follows from a well known result of Croke that the volume of any ball of radius 1 on M is bounded
below by a constant, C, depending on C' and on the dimension of M [7].

Putting together the above observations,

C- cap%(B)

vol(Bp(R)) R—oo
>
R* = R o
which proves that VG(M) > a. This completes the proof. O
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Chapter 6

Bounded Riemannian submersions

In this chapter we generalize away from nonnegative curvature in order to study Riemannian
submersion whose A and T tensors are both bounded. Since the metric projection onto a soul,
m: M — X, is an example of such a Riemannian submersion, the relevance of this study to
nonnegative curvature is obvious. One consequence of the study will be that when the soul is
simply connected, the ideal boundary of M can be determined completely from a single fiber of .
We also explore consequences outside of the field of nonnegative curvature; in particular, we prove
that there are only finitely many isomorphism types among the class of Riemannian submersions
whose base space and total spaces both satisfy fixed geometric bounds.

6.1 A bound on the folding of the fibers

Let w : M™% — B™ denote a Riemannian submersion. Assume that B is compact. Let A and T
denote the fundamental tensors of m. Assume that |A] < C4 and |T| < Cr. The main purpose
of this chapter is to explore consequences of these bounds. For p € B, denote by dr, the intrinsic
distance function of the fiber F, = 7~!(p), and by djs the distance function of M restricted to Fj.
In this section we establish the following global metric property of the fibers of 7:

Theorem 6.1.1. If B is simply connected then:
1. There exists a constant C1 = C1(B,Cyx,Cr, k) such that for any p € B, dp, < Cy -dy.

2. If m has compact holonomy then there exists a constant Cy = Ca(w) such that for any
two points x,y € F, between which there exists a piecewise smooth horizontal path,
de(LL',y) < Cg.

We begin by proving two lemmas which provide technical bounds on a Riemannian submersion
with bounded tensors. Hereafter we denote by YV and Y the vertical and horizontal components
of a vector Y € TM.

Lemma 6.1.2.

1. Along any horizontal path o(t) in M it is possible to construct an orthonormal vertical
frame {Vi(t), ..., Vi(#)} with |[V/(t)] <4k - k!-Ca-|o'(t)|.

2. If Y (t) is any vector field along any horizontal path o(t) in M, then

%\Y(t)vl S K[(Y'(0)Y]+ k4" k- Ca- o’ (@) [Y (D).
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Proof. To establish part 1, let o(t) be a horizontal path in M. Let {Y;(t)}, ¢ = 0..k, denote the
parallel transport along o(t) of an orthonormal basis {Y;(0)} of the vertical space at o(0). Denote
by Y;(t) = X;(t) + Vi(t) the decomposition of Y;(¢) into horizontal and vertical components. Notice
that

Vi) = VIO + V()Y = V() = Xi(1)Y = A(o'(t), V(1) — A(o"(t), X (1)).

Therefore, |V/(t)] < 2C4lo’(t)|. We next define the frame {V;(t)} as the Gram-Schmidt or-
thonormalization of the (ordered) frame {V;(¢)}. For example, V1(t) = (Vi(t), V1 (t))~2Vi(t). Dif-
ferentiating this expression gives: |V{(0)] < 2|V/(0)] < 4C4|0o’(0)|. Continuing the Gram-Schmidt

process gives:
1

I—
Vi(t) = (vz(t> = > (i), Vl<t>>v;<t>>
i=1 normalized

Differentiating this expression gives:

V/(0) < ( |+Z|V |+2|V<))>
2(210A|a |+2Z|V ) ()Cala’(0)],

A

IN

where a(l) is the solution to the following recurance relation: a(0) =0 ; a(l) = 4 (l + ZZ 1 Yali ))

It is easy to see that a(l) < 4'- 1!, which proves part 1 of the lemma.
Part 2 of the lemma follows by writing [Y (£)Y|2 = Y25, (Y (¢), Vi(t))? for the frame {V;(¢)} given
in part 1, and then differentiating with respect to ¢. O

We use the previous Lemma to establish the following bound, which will be central to our proof
of Theorem 6.1.1:

Lemma 6.1.3. Let a4(t) = a(s,t) (s € [0,€),t € [0,1]) denote a family of piecewise-smooth
paths in B with fived endpoints: as(0) = p,as(1) = q. Assume |af(t)| < Cy. Assume for the
variational vector field V(t) := %O&(O,t) along ag that |V (t)| < Cy. Let x € F,. For each fized
s, let t — as(t) = a(s,t) denote the horizontal lift the path t — as(t) with as(0) = x. Then
7(s) := as(1) is a path in the fiber Fy, and |7'(0)| < p(1), where p(t) denotes the solution to
the following differential equation:

P (t) = kCaC Oy (1 4 4FkY) + kCy (Cr + 4FKICA)p(t) 5 p(0) = 0. (6.1.1)

Later, in section 7.3, we will be interested in the case Cr = 0. In anticipation of this we mention
now that when C'r = 0, differential equation 6.1.6.1 simplifies greatly, and it is easy to show that:

p(1) < 205kt (HDICCa (6.1.2)
Proof. Let 2. 5;0(s,1) and 2 yr d(s t) denote the natural coordinate vector fields along the parameter-
ized surface a. Notice that ato‘ is everywhere horizontal. Also, |6t a(0,t)] = |%o¢(0,t)\ < Cy and

|(5:0(0,6))"] = | F-a(0,1)] < Ca.
Applying part 2 of Lemma 6.1.2 to the vector field %64(0, t) along the horizontal curve t — &(0, t)
gives:
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In other words,

= ] (ga 0,1) ) ] < kCACICo(1 + 4 K1) + kCy (Cr + 4’%@)) (%a(o,t))v‘.

Since 7/(0) = 2£a(0,1) = (£a(0,1))Y, this proves the lemma. O

proof of Theorem 6.1.1. Let x,y € F,, and let v : [0,]] — M be a shortest unit-speed path in M
from x to y. Let [ denote the smallest integer which is not less than [ := length(v). For each integer
i between 0 and [ — 1, choose a point z; of F, closest to (i), and choose a shortest unit-speed
path 7; from z; to (7). Next, for each integer i between 1 and [, define ; as the concatenation of
7;—1 followed by ~|[;_1 4 followed by Ti_l. By construction, ; is a path in M between z;_; and z;,
whose length, I;, is not greater than D := 2 - diam(B) + 1. We describe next how to construct a
path 8; between x;_; and z; which remains in the fiber F},, such that the length of 3; can bounded
linearly in terms of [;.

Let a; := mory;, which is a loop at p in B whose length is not greater than ;. Let z; := h®i+1 (a;).
We first construct a path 8} in F, from z;_1 to z;_1, and then construct a path 3? in F, from z;_;
to x;.

To construct the path 3}, first re-parameterize a; proportional to arclength, so that «; : [0,1] —
B. Find a piecewise smooth nulhomotopy H : [0, 1] x [0 1] — Bof a;. That is, H(0,t) = p, H(1,t) =

a;(t). By Lemma 4.4.2, H can be chosen so that |2 H| < Ql; and |2 H| < Q, where Q depends
only on B. Lift the homotopy H to M by defining, for each s € [0,1], the curve ¢ — H(s,t) to be
the horizontal lift of the curve t — H(s,t) beginning at H(s,0) = x;_;. Let 8}(s) := H(s,1). By
Lemma 6.1.3, |(3})'(s)] < pi,(1), where py, (t) is the solution to the following differential equation:

(p1,)/(£) = KCAQ2L(1 + 4K1) + kQU(Cr + 45 KICa)pi () 3 1, (0) = 0.

In particular, length(3}) < C - 1;, where C is a bound on the derivative of the function I; — py, (1)
between [; =0 and [ = D.

We continue by constructing a path 87 in F, between z;_1 and x;, whose length is also con-
trolled linearly in terms of ;. Let 82(s) := h*(v(s)), where h* : F, (5 — F, is the holonomy
diffeomorphism associated to the curve a;(,,). It is clear from construction that (% connects z;_1
to x; and that (3?)'(s) = dh®(y(s)Y). Thus, length(8?) < L - l;, where L is a Lipschitz bound on
all holonomy diffeomorphisms associated to curves in B of length < D (such a Lipschitz bound
exists by Lemma 4.1.2).

The concatenation, 3;, of 3} followed by (? satisfies length(3;) < (C + L)I; < (C + L)D. The
concatenation of the paths 3; (i =1,...,1) is a path from x to y in F},. Therefore,

dp,(z,y) <I{(C+L)D < (I+1)(C+L)D < 2(C + L)D
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The final inequality is valid only when [ > 1, but when [ <1, dp, (x,y) < (C'+ L) - 1. So the choice
Cy :=max{2(C + L)D,C + L} is as required for part 1 of the theorem.

To prove part 2, let z,y € F, be two points between which there exists horizontal path @. Let
a = mo a. Notice that h*(z) = y. One can choose a different loop o at p in B such that h7 = h®
and length(o) < by, where by is the constant from Lemma 4.1.1. The horizontal lift, &, of o provides
an alternative horizontal path from x to y. Thus dp, (z,y) < C1-da(z,y) < C1-length(o) < Cy-by,
so the choice Cy := C1b; is as required for part 2. O

Example 6.1.4. The conclusions of parts 1 and 2 Theorem 6.1.1 both fail for 7 : 7.5 — S? when
TS? is given the connection metric with flat fibers, which has unbounded A-tensor. It’s easy to see
that two rays from the origin of 7,52 grow apart linearly in the fiber 7,52, while they maintain a
distance < length(a) in T'S?, where « is a loop in S? which parallel translates the initial tangent
vector of the first ray to the initial tangent vector of the second ray.

Example 6.1.5. The conclusions of parts 1 and 2 of Theorem 6.1.1 both fail for the following
example in which the base space is not simple connected. Let M be the following flat manifold:
M = R? x [0,1]/{(r,0,0) ~ (r,0 + X\,1)}. Here X is any non-zero angle. Guijarro and Petersen
studied this manifold in [16]. The soul of M is the circle 0 x [0,1]/ ~, and each fiber F), of the
metric projection onto the soul is isometric to flat R2. Two rays from the same point p of the soul
which make an angle A will grow apart linearly in the fiber F},, but will remain at distance <1 in
M.

Example 6.1.6. In section 4.3 we constructed a metric of nonnegative curvature on S? x R* for
which the holonomy group of the metric projection onto the soul is noncompact. It is straightfor-
ward to see that the conclusion of part 2 of Theorem 6.1.1 fails for the metric projection onto the
soul of this manifold.

Example 6.1.7. Let M™t* be a simply connected open manifold of nonnegative curvature, and
let 7 : M™% — ¥ denote the metric projection onto its soul. Theorem 6.1.1 provides the bound
dr, < C - dy for each fiber F), of m. According to the theorem, C' depends on ¥,C4,Cr, and
k, where C'4 and C7 denote bounds on the A and T-tensors of 7 respectively. But by O’Neill’s
formula (2.4.2.1), C'4 depends only on the maximum curvature of ¥. Further, by Proposition 2.1.4,
Cr depends only on the injectivity radius of ¥. In other words, C' depends only on ¥ and k. This
means that our bound on the “folding of the fibers” holds uniformly over all open manifolds of
nonnegative curvature of a fixed dimension and with a fixed soul!

6.2 Measuring size in the holonomy of a submersions

In Section 4.4 we proved that, for a vector bundle with a connection, the size of a holonomy element
is bounded in terms of the length of the loop which generates it. In this section we generalize this
result to bounded Riemannian submersions. Let 7 : M — B denote a Riemannian submersion
whose fundamental tensors are bounded: |A| < Cy4 and |T| < Cr. Assume that the holonomy
group, @, of 7 is a (possibly noncompact) finite dimensional Lie group. We develop a notion of
“size” in the holonomy group, and show how to control the size of h® in terms of length(«). Let
g denote a loop in B at p for which A% = id. For example, this is the case when ag is the trivial
loop, but it may also occur for nontrivial loops. Let « denote a variation of ap. Then h®s defines
a path in ® beginning at id, and V := (h*=)’(0) is an element of the Lie algebra, G, of ®. Every
vector of G can be described in this way; see the proof of Lemma 4.1.1. It is natural to consider
V as a vertical vector field on F,,. We write V(z) for the value of this vector field at = € F,,. It is
clear from Lemma 6.1.3 that this vector field has bounded norm. This observation is particularly
interesting for the metric projection onto a soul. In this setting, one can prove through other routes
that such “holonomic” vertical vector fields are bounded; see for example Proposition 5.3.1.
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We call a left invariant metric, m, on ® acceptable if the following condition is satisfied: for
all V € G, |Vl < sup,ep, [V(2)]. Notice that any left invariant metric can be made acceptable
by rescaling. For g € ®, we denote by |g| the supremum over all acceptable metrics on ® of the
distance in ® between g and id. This provides a natural notion of the “size” of a holonomy element.
Notice that |g1 - g2] < |g1] + |g2|. We prove the following analog of Proposition 4.4.1:

Proposition 6.2.1. If B is simply connected and ® is a finite dimensional Lie group, then
there exists C = C(B,Ca,Cr, k) such that for any loop a in B, |h*| < C - length(c).

Proof. By an argument used many times in this paper, it will suffice to find a constant C' such
that |h*| < C - length(a) for all loops « of length < D = 2. diam(B) + 1. Let « : [0,1] — B
be a constant speed loop at p € B with [ := length(«) < D. By Lemma 4.4.2, there exists a
piecewise smooth nulhomotopy H : [0,1] x [0,1] — B of a such |2 H| < Ql and | £ H| < Q. Here
Hy(t) = H(0,t) = p and H,(t) = H(1,t) = a(t). Let g(s) = hls, which is a piecewise smooth path
in ® between the identity and h®. It will suffice to find C such that for any acceptable metric, m,
on @, |¢'(s)|m < C-1. So choose any fixed acceptable metric, m. For fixed s € [0,1], let o, be
the following family of loops: o, = H,, * (Hs)~'. Notice that h° = id, and hffs o hor = pHs+r,
Let V € G be the element V := (h")(0). Since the metric is left invariant, |¢'(s)|m = |V|m. By
Lemma 6.1.3, for any = € F,, |V(z)| < pi(1), where p;(t) denotes the solution to the following
differential equation:

p)(t) = 2kCAQ%1(1 + 48 k!) + 2kQI(Cr + 4*K\CA)pi(t) 5 pi(0) = 0.

In particular, |¢'(s)|m < C -1, where C is a bound on the derivative of the function [ — p;(1)
between [ = 0 and [ = D. This completes the proof. O

We remark that Proposition 6.2.1 implies a weak version of Proposition 4.4.1. More precisely,
if the unit sphere bundle of a Riemannian vector bundle with a connection is endowed with the
natural connection metric, then the projection map becomes a Riemannian submersion. The T
tensor of this submersion vanishes, and the A tensor depends on RY. This argument produces only
a week version of Proposition 4.4.1, because it does not establish the bound to be linear in Cg.

6.3 The ideal boundary is determined by one fiber

We return in this section to our previous set up, in which M denotes an open manifold of nonnegative
sectional curvature with soul ¥ € M, and 7 : M — 3 denotes the metric projection. A nice way
to rephrase the conclusion of Theorem 6.1.1 is that the inclusion map ¢ : F}, — M is a biLipschiptz
map for any p € . Since any point of M has distance < diam(X) from some point of the fiber F),
1 is a quasi-isometric embedding. In other words, M is quasi-isometric to any single fiber of the
metric projection onto its soul.

From the above considerations, one expects a fiber F}, to share with M all large-scale geometric
properties. In this section we prove that the ideal boundary of M is determined by a single fiber
of 7.

Corollary 6.3.1. If m1(X) =1, then the topology of the ideal boundary, M(o0), of M can be
determined by the pointed manifold (F,,p) for any p € X.

Proof. Choose p € 3, and use the construction of M (oo) described in section 2.3. Any ray in
F, from p is also a ray in M, so we could equally well have defined M (c0) as the set of rays in
F, from p. By Theorem 6.1.1, we get the same topology on M (oc0) if we replace dy; with dp, in
equation 2.3.2.1. The statement of the corollary follows. O
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It does not make sense to speak of the “ideal boundary of a fiber”, since the term “ideal
boundary” has only been defined for open manifolds of nonnegative curvature. However, speaking
loosely, the above proof demonstrates that the ideal boundary of M is homeomorphic to the ideal
boundary of any fiber.

Example 6.3.2. Corollary 6.3.1 fails for the open manifold of nonnegative curvature described in
example 6.1.5 because the soul is not simple connected. In this example, M (c0) = St if the angle
A is rational, and M (00) is a single point if A is irrational. However, each fiber is isometric to flat
R? regardless of the value of \.

Example 6.3.3. The manifold M = (5% xR*, §) constructed in Section 4.3 provides a nice illustra-
tion of Corollary 6.3.1. Here M (o0) = [0,7/2]. There are two totally geodesic fibers of the metric
projection 7 : M — ; namely the fibers over the north and south poles of the soul ¥ = 52 x (0, 0).
Each of these fibers is itself a manifold of nonnegative curvature whose ideal boundary also equals
[0,7/2]. We do not know whether in general the ideal boundary of a totally geodesic fiber is
necessarily isometric (rather than just homeomorphic) to the ideal boundary of the manifold.

We conclude this section by describing an alternative and substantially different way to prove
(at least a weak version of) Theorem 6.1.1 in the special case of the metric projection onto a soul.

Proposition 6.3.4 (Special Case of Theorem 6.1.1). Let M be a simply connected open
manifold of nonnegative curvature, and let m: M — 3 denote the metric projection its soul.
Then there exists a constant C depending on M such that for any two points x,y in the
same fiber F,, which can be connected by a horizontal path v in M, dr, (x,y) < C - length(y).

This proposition follows immediately from Theorem 6.1.1. In fact, since this proposition does
not claim that C' depends only on ¥, it is quite a bit weaker than Theorem 6.1.1 (see Example 6.1.7).
Still, we wish to prove this proposition independently in order to exhibit a nice argument which is
specific to nonnegative curvature. We begin with a lemma. Fix p € ¥ and consider each vector V'
of the Lie algebra G of the holonomy group ® of v(X) as a Killing vector field on the unit normal
sphere v} (X). We write V(w) for the value of this Killing field at w € v(X). Also, an fix an inner
product on G, and to consider ® with the associated left-invariant metric.

Lemma 6.3.5. There exists a constant K, depending only on M and the chosen inner
product for G, such that for any unit-length vector V. € G and any w € V;(E), the Jacobi
field J(t) along the geodesic t — exp®(tw) with J(0) =0 and J'(0) = V(w) satisfies |J(t)| < K
for all t.

Proof. In the proof of Proposition 5.3.1, we constructed a basis {V1, ..., V,} of G such that for any
w € vj(¥) and any i between 1 and a, the Jacobi field J;(t) along () := exp®(tw) with initial
conditions J;(0) = 0 and J/(0) = V;(w) is bounded in norm by a constant which does not depend
on the choice of ¢ or w. Since any unit-length vector V' € G can be written as V' = >_ \;V;, with
each A; bounded in absolute value by a constant which reflects the extent to which the basis {V;}
of G fails to be orthonormal, the statement of the lemma follows. O

Proof of Proposition 6.53.4. Let x,y be two points of the same fiber F}, between which there exists
a horizontal path . Let o := 7 o~y, which is a loop at p in ¥. Fix an inner product, m, on the Lie
algebra G of ® which is acceptable in the sense of Section 4.4. Consider m as a left-invariant metric
on ®. By Proposition 4.4.1, there exists a constant C depending on ¥ and on the connection of
v(X) such that

|Palm < C -length(a) < C - length(v).

This means that there is a vector V € G of length |V| < C - length(7) such that exp(V) = P, € ®.
Choose w € v (%) such that = = exp™(rw), where r := dy(p, ). Define o(s) := exp(s - V)(w),
which is a path in v} () with o/(s) = V(0(s)). Next define 3(s) := exp™(r - o(s)), which is a path
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in the fiber F}, between 3(0) = z and (1) = y. Notice that §'(s) = d(exp™),..(s)(r-o'(s)) = Js(r),
where J,(t) is the Jacobi field along the radial geodesic t ~— exp™(t - o(s)) with J(0) = 0 and
J'(0) = V(o(s)). Therefore |3'(s)] < K - |V|, where K is the constant given by Lemma 6.3.5. This
means that length(8) < K - C - length(y). This completes the proof. O

6.4 Two finiteness theorems for Riemannian submersions

In this section we prove two theorems which say that there are only finitely many equivalence classes
of Riemannian submersions whose base space and total space both satisfy fixed geometric bounds.
We consider two Riemannian submersions, m; : M7 — B; and 7o : My — Bs, to be C’k—equivalent
if there exists a C* map f : M; — M, which maps the fibers of 71 to the fibers of 7. Every
Riemannian submersion is a fiber bundle, and this notion of equivalence just means equivalence up
to C* fiber bundle isomorphism. Our first result is a finiteness theorem for C'-equivalence classes
of submersions. Our second result will show that some of the geometric hypotheses of the first can
be weakened if we are willing to settle for proving finiteness only up to C°-equivalence classes.

Theorem 6.4.1 (Finiteness Theorem #1). Let n,k € Z and V,D, XA € R. Then there are only
finitely many C' fiber bundle isomorphism classes in the set of Riemannian submersions
7w MR — B for which:

1. B is simply connected.
2. vol(B) > V,diam(B) < D,|sec(B)| < .
3. vol(M) > V,diam(M) < D, |sec(M)| < A.

Some of the bounds in this theorem are redundant. For example, since Riemannian submersions
are curvature non-decreasing, the lower curvature bound on the base space is redundant to the lower
curvature bound on the total space. Also, the upper diameter bound on B is redundant to the
upper diameter bound on M.

This theorem is based on the following result of P. Walczak ([36], as corrected in [37]):

Theorem 6.4.2 (Walczak). Let n,k € Z and V,D,\,Cs,Cr € R. Then there are only
finitely many C' fiber bundle isomorphism classes in the set of Riemannian submersions
7w MR — B for which:

1. ‘A| S CA and ‘T| S CT.
2. vol(B) > V,diam(B) < D,|sec(B)| < .
3. There exists a fiber F, for which vol(F,) >V, diam(F,) < D, |sec(Fp)| < A.

Proof of Theorem 6.4.1. Let n,k € Z and let V,D,\ € R. Suppose that 7 : M"t* — B" is a
Riemannian submersion satisfying conditions 1-3 of Theorem 6.4.1. By O’Neill’s Formula (2.4.2.1),
the A-tensor of 7 is bounded in norm by a constant, Cs, depending only on A. Similarly, by
Proposition 2.1.4, the T-tensor of 7 is bounded by a constant C'r which depends only on A and
on inj(B). By a well known lemma of Cheeger, inj(B) is in turn bounded below by a constant
depending only on n, V, D, and X (see [25]).

Let p € B and let F, := m~!(p). It remains to bound the volume, diameter, and curvature of
F, in terms of {n,k,V,D,\,Cy4,Cr}, and then apply Theorem 6.4.2. First, by Gauss’ formula,
|sec(Fp)| < A+ 2Cp. Second, to control vol(F}), notice that any two fibers have similar volumes.
More precisely, the diffecomorphism h® : F}, — Fj associated to a minimal path, a, in B between
p and ¢ satisfies the Lipschitz constant eC71en8th(@) < ¢C1D (see Lemma 4.1.2), so vol(F,) <
(ekC¢r'PY . yol(F,). But by Fubini’s theorem, vol(M) = prB vol(F,) dvolg, which implies that for
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any p € B, vol(F,) > ‘;le((g)) (e~k¢r-P) By the Bishop-Gromov inequality, vol(B) is bounded

above by a constant depending only on D, A, and n. This observation completes our argument that
vol(F}) is bounded below.

Finally, diam(F,) < Cy-diam(M) < C; - D, where C; is the constant from Theorem 6.1.1, which
depends on {B, C4, Cr, k}. In fact, it is clear from the proof of theorem 6.1.1 that Cy really depends
only on {diam(B),Q(B),Ca,Cr,k}, where Q(B) is the constant in Lemma 4.4.2. We argue now
that Q(B) depend only on the assumed geometric bounds of B. Let 9t denote the class of all n
dimensional Riemannian manifolds for which vol > V, diam < D, and [sec| < A. By assumption,
B € 9. M is pre-compact in the Lipschitz topology and contains only finitely many diffeomorphism
types (see [25]). This means that it is possible to choose a finite set, {Bi,..., B} C M, and a
constant L = L(n,V, D, \) such that for any M € 9, there exists an L-biLipschitz diffeomorphism
between M and some B;. Therefore, for any M € 9, Q(M) < L? - max{Q(B;)}. This proves that
Q(B) satisfies an upper bound depending only on {n,V, D, A}, which completes the proof. O

Next we discuss the following question: if the upper curvature bound on the base space and/or
the total space is removed from Theorem 6.4.1, is it still true there are only finitely many C° fiber
bundle isomorphism classes in this set of Riemannian submersions? We begin this exploration by
recalling a Theorem of J.Y. Wu [43]:

Theorem 6.4.3 (J.Y. Wu). Let B™ be a compact Riemannian manifold. Let k € Z and
V,D, A €R. Assume k > 4. Then there are only finitely many C° fiber bundle isomorphism
classes in the set of Riemannian submersions ©: M™% — B™ for which:

1. sec(M) > A
2. For each fiber F,, vol(F,) >V, diam(F,) < D, sec(Fp,) > A.
8. Each fiber F, is totally convex (that is, dp, = dpr).

The advantage of Wu’s theorem is that he requires no upper curvature bounds. The disadvan-
tages of Wu’s theorem are as follows:

e The fiber dimension is restricted to k > 4. Wu stated in [43] that he believes the result should
still hold when k& = 2, 3.

e He fixes the base space rather than fixing geometric bounds on the base space.

e He assumes geometric bounds on the fibers rather than only assuming geometric bounds on
the total space.

e The condition that the fibers are totally convex is very strong. For example, it is much
stronger than assuming that the fibers are totally geodesic.

The following is a fairly immediate application of Theorem 6.1.1:
Theorem 6.4.4. Wu’s Theorem 6.4.3 remains true if hypothesis 8 is removed.

Proof. Tt follows immediately from Wu’s proof that hypothesis 3 can be replace by the following
weaker assumption:

3’) For any fiber F,, if z,y € F, and dy(z,y) < 1inj(B), then dp, (z,y) < C - dy(z,y),

where C' is any fixed constant.

Now suppose that 7 : M — B be a Riemannian submersion satisfying conditions 1 and 2 of
Theorem 6.4.3. As before, the A-tensor is bounded in norm by a constant C4 depending only on
B and A, and the T-tensor is bounded in norm by a constant Cr depending only on inj(B) and .
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So if the base space B is simply connected then it is immediate from Theorem 6.1.1 that
condition 3’ is satisfied automatically for a constant C' depending only on {B,V, D, \ k}. In fact,
this is true when B is not simply connected as well. To see this, notice that if z,y € F), satisfy
dy(z,y) < %inj(B), then the projection to B of a minimal path in M between z and y will be
nulhomotopic, so the proof of Theorem 6.1.1 goes through in this setting. O

Wu states in [43, p. 513] that his theorem remains true if “Riemannian submersion” is replaced
by “L-Lipschitz map”, where L is any fixed number. It is not clear to us that his proof goes through
in this generality; however, it is obvious that the proof still holds when “Riemannian submersion” is
replaced by “submersion 7 for which 7. | is at every point an L-biLipschitz linear map”, where H
denotes the distribution orthogonal to the fibers. We will call such a submersion an “L-Riemannian
submersion”. In review, the following generalization of Wu’s Theorem is true:

Theorem 6.4.5 (Generalization of Wu’s Theorem). Let B" be a compact Riemannian
manifold. Let k € Z and V,D,\,L € R. Assume k > 4. Then there are only finitely many C°
fiber bundle isomorphism classes in the set of L-Riemannian submersions w: M"tk — B"

for which:
1. sec(M) > A
2. For each fiber F,, vol(F,) >V, diam(F,) < D, sec(F,) > A.

This jump to the generality of L-Riemannian submersions allows us to replace the fixed base
space with a base space which only has fixed geometric bounds. We also replace the geometric
bounds on the fibers with only geometric bounds on the total space:

Theorem 6.4.6 (Finiteness Theorem #2). Let n,k € Z and V,D,\ € R. Assume k >
4. Then there are only finitely many C° fiber bundle isomorphism classes in the set of
Riemannian submersions m: M™% — B™ for which:

1. B is simply connected.
2. vol(B) >V, diam(B) < D, |sec(B)| < \.
3. vol(M) >V, diam(M) < D, sec(M) > .

Proof. Let 9 denote the set of all candidates for the base space (that is, all Riemannian n-manifolds
satisfying vol > V,diam < D, and |sec| < A). Choose {By, ..., B;} C 9 and L € R such that for
each B € M, there exists an L-biLipschitz diffeomorphism f : B — B; for some i (as in the proof
of Theorem 6.4.1).

Now if 7 : M — B is a Riemannian submersion satisfying the hypotheses of Theorem 6.4.6,
then fow: M — B; is an L-Riemannian submersion. Further, the two submersions, © and f o7,
are clearly isomorphic as fiber bundles. By arguments in the proof of Theorem 6.4.1, each fiber
of m (equivalently of f o m) satisfies a curvature, diameter, and volume bound depending only on
V,D,\,n, k. Therefore, applying Theorem 6.4.5 to each of the base spaces By, ..., B; finishes the
proof. O

This theorem is probably not optimal. For example, the assumption that £ > 4 can probably be
removed, as well as the upper curvature bound on the base space. Also, we do not know whether
the theorem holds without the assumption that the base space is simple connected. This hypothesis
is used in the proof only to achieve an upper diameter bound for the fibers, so instead of assuming
that the base space is simply connected, we could instead assume a diameter bound for the fibers.
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Chapter 7

Finiteness theorems for fiber
bundles

In this chapter we prove finiteness theorems for vector bundles and principal bundles. For example,
there are only finitely many vector bundles of a fixed rank over a fixed compact Riemannian
manifold capable of admitting a connection whose curvature tensor satisfies a fixed bound in norm.
An analogous statement holds for principal bundles, and the proof of this analog is based on the
“folding of the fibers” bound from Chapter 6.

We provide two applications of these finiteness theorems to nonnegative curvature. First, there
are only finitely many vector bundles of a fixed rank over a fixed soul (that is, a fixed compact Rie-
mannian manifold of nonnegative curvature) which are capable of admitting nonnegatively curved
metrics for which the vertical curvatures at the soul satisfy a fixed upper bound. Second, most
vector bundles over Bieberbach manifolds do not admit metrics of nonnegative curvature.

7.1 Introduction

Guijarro and Walschap recently proved that for fixed n,k € Z and A € R, if M™% is an open
manifold of nonnegative curvature whose soul is isometric to S := S™(1), and the curvature of M
is bounded above by A, then there are only finitely many possibilities for the isomorphism class of
the normal bundle of the soul in M [18, Theorem A]. The purpose of this chapter is 1) to prove
this theorem for an arbitrary soul S, and 2) to use variations on Guijarro and Walschap’s idea to
produce finiteness theorems for vector bundles and principal bundles with connections.

We begin in section 7.2 by proving the following finiteness theorem for vector bundles with
connections:

Theorem 7.1.1. For any set of positive constants V,D,A\,A,n,k (n,k € Z), denote by N =
N(V,D,\, A,n, k) the number of isomorphism classes of rank k vector bundles R¥ — E — B"
which admit the following structure:

1. A metric on B for which vol(B) >V, diam(B) < D, |sec(B)| < A.
2. A Euclidean structure (i.e., a smoothly varying inner product on the fibers).

3. A connection V which is compatible with the FEuclidean structure, whose associated
curvature tensor, RV, satisfies |RYV| < A (here |RY| is defined with respect to the
metric on B and the inner products on the fibers).

Then N < C- (14 A)°, where ¢,C depend only on V,D ;A\, n k.
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Notice that Cheeger’s Finiteness Theorem implies that there are only finitely many possibilities
for the diffeomorphism type of the base space B, which is necessary for this theorem to make sense.
Notice also that, for a fixed base B with a fixed metric, a bound on |RY| implies bounds on the
characteristic classes of the bundle, which implies that there are only finitely many possibilities for
the isomorphism class of the bundle; see for example [1, Chapter 7]. However, it seems difficult to
obtain from this line of reasoning an explicit upper bound for N in terms of A as in Theorem 7.1.1.

Using Corollary 3.1.8, we get as an immediate corollary to Theorem 7.1.1 the following version
of Guijarro and Walschap’s result for arbitrary souls:

Corollary 7.1.2. Suppose that M"** is an open manifold of nonnegative sectional curvature
such that:

1. The soul, ¥, of M satisfies: vol(X) >V, diam(X) < D, sec(X) < A.
2. The curvature of every vertical 2-plane at every point of 3 is < A.

Then the number, N = N(V,D,\,A,n,k), of possibilities for the isomorphism class of the
normal bundle of the soul is < C - (1+ A)°, where ¢,C depend only on V, D, \,n, k.

By a vertical 2-plane we mean a plane spanned by two vectors which are both normal to the
soul.

Notice that Corollary 7.1.2 is stated somewhat carefully. It would be a stronger statement to
say that “there are only finitely many isomorphism classes of vector bundles which admit a metric
of nonnegative curvature with fixed bounds on the geometry of the soul and on the curvatures of
vertical 2-planes at the soul”. This statement would be stronger than Corollary 7.1.2 because the
total space of a given vector bundle £ could conceivably admit a metric of nonnegative curvature,
but not one for which the soul is the zero section, and hence not one for which the normal bundle of
the soul is necessarily isomorphic to £&. The problem is that two vector bundles with diffeomorphic
total spaces need not be isomorphic as vector bundles.

Next, in section 7.3, we prove the following analog of Theorem 7.1.1 for principal bundles:

Theorem 7.1.3. For any compact Lie group G with a fized bi-invariant metric, and any set
of constants V,D,\,A,n (n € Z), let N := N(G,V,D,\,A,n) denote the number of isomor-
phism classes of principal G-bundles G — P — B™ which admit the following structure:

1. A metric on B for which vol(B) >V, diam(B) < D, |sec(B)| < A.

2. A connection, w, whose curvature form, Q, satisfies | < A (here |Q] is defined with
respect to the metrics on B and G).

Then N < ec(l"‘eCA), where ¢,C depend only on G,V,D,\,n.

Notice that Theorem 7.1.3 does not quite imply Theorem 7.1.1 because the bound is linear in
the latter theorem, but double exponential in the former. We do not know whether the double
exponential bound can be improved to exponential or linear.

Our proof of Theorem 7.1.3, viewed properly, provides a solution to the following problem: given
a compact manifold B"™ and a compact Lie group G, find a bound (depending on B and G) for the
number of isomorphism classes of principal G-bundles over B which admit a flat connection. Notice
that B and G do not have metrics in this problem, which is why the statement of Theorem 7.1.3 is
not helpful. Nevertheless, the proof of Theorem 7.1.3 allows us to find a bound which depends on
following invariants of B™ and G:

1. I(B) := the size of a minimal atlas for B (that is, the minimal number of open sets diffeo-
morphic to R™ necessary to cover B).

51



2. P(G,n) := the number of points necessary to form an ;ﬂgci)g—net in (G, go), where g denotes

the bi-invariant metric associated to the killing form on G.

Specifically, we prove the following:

Theorem 7.1.4. Let B™ be a compact manifold and let G be compact Lie group. Then the
number of isomorphism classes of principal G—I;undles over B which are capable of admitting
a flat connection is finite and is < P(G,n)/(P)",

As a consequence of Theorem 7.1.4, we prove that most vector bundles over Bieberbach mani-
folds (i.e., compact manifolds which are capable of admitting flat metrics) do not admit metrics of
nonnegative curvature. More precisely,

Corollary 7.1.5. Let S™ be a Bieberbach manifold, and let k € Z. Let N = N(S,k) denote
the number of isomorphism classes of rank k vector bundles over S which admit a metric
of nonnegative curvature for which the zero section is the soul. Then N is finite and is in
fact < P(O(k),n)I5)”

This result is related to a theorem of Walschap and Ozaydin7 who proved that no nontrivial ori-
entable rank 2 vector bundle over the torus 7" can admit a metric of nonnegative curvature [42]. As
they showed, a vector bundle over a Bieberbach manifold admits a metric of nonnegative curvature
for which the zero-section is the soul iff it admits a flat connection. To the best of our knowledge, it
is reasonable to ask whether any nontrivial vector bundle over any Bieberbach manifold can admit
a flat connection (and hence a metric of nonnegative curvature). Corollary 7.1.5 provides evidence
that the answer might be no.

Finally, we address the question of whether Theorem 7.1.3 is valid when G is a noncompact Lie
group with a left-invariant metric.

7.2 A finiteness theorem for vector bundles

In this section we prove Theorem 7.1.1. The proof depends on the following result of Gromov ([10,
2.16], [11, 0.5.E)):

Lemma 7.2.1 (Gromov).

1. (Easy version) Let Y be a compact path-connected length space which satisfies the
following regularity condition: there exists 6 = §(Y) such that any two maps f1, fa
from the same space into Y with dg,(fi, f2) < 0 must be homotopic. Let X™ be a
compact Riemannian manifold. Then the number, N, of homotopy classes of maps
X — Y which admit an L-Lipschitz representative is < e“L", where ¢ depends on X
and Y.

2. (More difficult version) If Y is a compact Riemannian manifold with a finite funda-
mental group, then N < C-(14+L)°, where the exponent ¢ depends only on the homotopy
types of X and Y, while the constant C depends on their metrics as well.

Later, in the proof of Theorem 7.1.3, we will need to copy the idea of Gromov’s proof of part 1
of Lemma 7.2.1; in anticipation of this, we include here the proof:

Proof of Part 1 of Lemma 7.2.1. Let § := §(Y). Let Ry denote a -net in Y, and let Rx denote
a ﬁ—net in X. Any map f: X — Y induces a (non-unique) map f: Rx — Ry, defined so that
f(p) is any point of Ry whose distance from f(p) is < 8. If fi,fo: X — Y are two L-Lipschitz

maps for which f1 = fg, it is easy to see that dsup(fi, f2) < 6, so fi is homotopic to fo. This
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proves that the number, N(X,Y, L), of distinct homotopy classes of maps X — Y which admit an
L-Lipschitz representative is < card(Ry ) d(fx),

Next we establish a bound for card(Rx). Denote by cap,(X) the minimal cardinality of an
r-net in X. We prove that cap, (X) < K((%)n + 1), where K depends on X. Notice that without
the “41” term, this bound would be incorrect when r is very large. Let B,, denote the open ball of
radius 1 in R™. Choose an atlas for X; that is, an open covering {U;} of X, and diffeomorphisms
®,: B, —U;,t=1,..,1. Let L denote a common Lipschitz bound for the maps ®;. Clearly,

(Ba) 20 k. (f)n

where K depends only on n. In particular, we can choose R small enough so that for any r < R,
cap,(X) < K’ (%)n, where K’ :=2-1-K- L™, So defining K := max{K’, capy(X)} will insure that
cap,(X) < K((1)" +1) for any r.

Thus, N(X,Y, L) < card(Ry)K((%)n‘H) < e“(I"+1) for properly chosen ¢. Since N(X,Y,L) =
1 for L sufficiently close to zero (specifically for L < m), it is easy to see that ¢ can be

redefined such that N(X,Y,L) < e*L". O

I
L

!
cap,(X) < anpT(Ui) <lI- cap;
i=1

Proof of Theorem 7.1.1. Let B" be a compact Riemannian manifold, and let £ = B be a rank
k vector bundle endowed with a Euclidean structure and a compatible connection, V. Assume
that |RV| < A. We prove that the number of candidates for the isomorphism class of this bundle
is < e(tCN" where ¢,C depend only on B and k. This result implies Theorem 7.1.1 by the
following argument: given bounds V, D, A, n, let M = M(V, D, A\, n) denote the class of Riemannian
n-manifolds satisfying vol > V, diam < D, and |sec| < A. 91 is precompact in the Lipschitz
topology and contains only finitely many diffeomorphism types (see [25]). This means that it is
possible to choose a finite collection { My, ..., M,,} C 9 and a constant L = L(V, D, A\, n) such that
for any M € 90t there exists an L-biLipschitz diffeomorphism from M to some M;. Therefore, any
vector bundle over any manifold M € 91 which admits a Euclidean structure and a compatible
connection satisfying the bound |RV| < A is isomorphic to a vector bundle over some M; which
admits a Euclidean structure and a connection satisfying |[RV| < L? - A; namely, the pull-back
bundle with the pull back Euclidean structure and connection. From this observation it is easy
to see that the above stated “fixed base space” version of the theorem implies the more general
version of the theorem.

We begin by choosing an explicit atlas of local trivializations for the bundle £ = B. Choose a
value r < %min{inj (B), %}, where A denotes an upper curvature bound for B. Notice that any
Jacobi field, J(t), along any unit-speed geodesic of B with J(0) = 0 has monotonically increasing
norm for ¢ € [0,r]; This follows, for example, from the version of Rauch’s theorem stated in [3,
Lemma 6.3.5]. Choose a finite collection {p1, ..., p;} of points of B such that the collection of r-balls
{B; := By, (1)} covers B. Let {n;} denote a partition of unity subordinate to {B;}.

The connection, V, provides a natural collection of local trivializations, ®; : B; x R¥ — 7=1(B;).
More precisely, for each i, choose a fixed orthogonal identification s; : RF — E,, =7 1(pi), and
define ®,(q, v) to be the parallel transport of s;(v) along the minimal geodesic, 72, between p; and
q- That is, ®i(q,v) := Py (si(v)). Also define h; : 7= YB;) — R¥ as h; := p; o &', where p; :
B; xR* — RF denotes the projection onto the second factor. Notice that h;(v) = s{l(P(vjr(v))fl (v)).

For any pair (¢, j) for which B;; := B; N B; is nonempty, we have a transition function g;; :
B;; — O(k), defined as

9 (@)(v) = hy (7 (W) Vw1 (q)) = (571 0 P gyr 0 Py 05,)(v).

We wish to establish a Lipschitz bound on each g;;. Suppose that ¢ € B;;, and let X € T; B with
|X| = 1. Let q(s) := exp(sX) and let v € R* be any unit-length vector. Let 7,(s) := g;;(q(s))(v),
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which is a path on the unit sphere of R¥. In order to bound |(gi;)«(X)], it will clearly suffice to
find a bound on |7} (0)| which does not depend on the choice of v.

For small values of s, let t — 04(t) = o(s,t) be a minimal unit-speed path between p; and
q(s) followed by a minimal unit-speed path between ¢(s) and p;. By construction, 7,(s) = (s;l o
P, o s;)(v). Let area(sg) denote the area of the homotopy between oy and o, determined by
the family of curves o4, s € [0,50]. By [3, Proposition 6.2.1], Z(7,(0),7,(s0)) < A - area(sg).

Therefore |7/(0)] < A - area’(0). But area’(0) = t(izt(p“p’) | 25(0,t)|ds < dist(pi, p;) < 2r. To see
the first inequality, notice that the vector field %O’ is a Jacobi field along 'yé and along 75, and
that both Jacobi fields have norms which vary monotonically between 0 and |X| = 1. Therefore,
|7,,(0)] < 2rA, which implies that |(g;;)«(X)| < 2krA. In other words, each transition function g;;
is (2krA)-Lipschitz.

The isomorphism class of the vector bundle E 5 B is determined by the homotopy type of
its classifying map f : B — G(RY), where G\ (RY) denotes the Grassmannian of k-dimensional
subspaces of RY, and N = k- {. The map f can be described explicitly in terms of our chosen
atlas of trivializations of the bundle as follows (see for example [19, Theorem 3.5.5]): think of

N = le R* and define

f(0) ={(mp)-h1(v),....m(p) - hi(v)) | v e (p)}.

Our goal is to establish a Lipschitz bound for f which is linear in A. For this purpose, the most
useful description of the homogeneous metric on G (RY) is as follows. Fix orthonormal bases of
RM and R*. Let I, denote the k x k identity matrix, and let Ifcv = (16“) denote the N x k matrix
whose top k rows form I, and whose bottom N — k rows are zeros. An arbitrary point, V', of
Gr(RN) can be described as V = im(P - I ) for some P € O(N). An arbitrary path, v(t), with
7(0) = V can be described as () = im(P - A(t)), where A(t) : R¥ — R¥ is a family of linear
embeddings with A(0) = Iy. Then |y/(0)|*> = trace(BT - B), where B := A’(0) — I} - (IY)T - A’(0)
(that is, B is obtained from the matrix A’(0) by replacing the top k rows with zeros). In particular,
if all components a;;(t) of A(t) satisfy |aj;(0)| < ¢, then [/(0)] < kc.

Now fix ¢ € By and X € T, B with |X| =1, and let ¢(t) = exp(tX). Let A(t) = (a;;(t)) : R¥ —
RY be defined as

A(t)(v) == (m(q(t)) - v,m2(q(t)) - g12(q(t))(v), ..., m(q(t)) - gui(q(t))(v)).

It is clear that f(g(t)) = im(A(t)). Choose S = (s;;) : R® — R* such that the matrix A(0) - S is
an orthogonal map onto its image. That way, P - A(0)-S = Iy for some P = (p;;) € O(N). Since
A(0) already maps an orthonormal basis of R¥ onto an orthogonal set in R, S can be chosen as
a diagonal matrix, and it is clear that the components of S satisfy |s;;| < k. f(q(t)) = im(A(t)) =
m(P~tP - A(t) - S). So, by the previous discussion of the homogeneous metric on Gy (R ):

|f(X)] < k-max|((P-A-5)(0))]
< K’N(max |pi;|) - (max |aj;(0)]) - (max |sq;])
= ng(maX|a;j(O)|)
< kP N{(max [(1;)+(X)]) - (max [(g15)i;(9)])
+(max [(n:(q)]) - (max|((g1s);)«(X)])]
< EPN(L-141-2rA) = E°N(L + 2rA),

where L denotes a Lipschitz bound on the functions i
Thus, f satisfies the Lipschitz constant L := k>N (L + 2rA). The homotopy type of this map
classifies the bundle, so the proof is completed by part 2 of Lemma 7.2.1. O
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Example 7.2.2. There is a countable collection of rank 2 vector bundles over S?, which can be
described as My, := (83 x R?)/S!, k € Z*, where S* acts diagonally as

0/ i0

(p7 ’U) = (6 .p’e—k:i@ ! U)'

Notice that M is isomorphic to the normal bundle of CP! in CP?, and M, is isomorphic to T'S2.
The quotient metric on M} has nonnegative curvature by O’Neill’s formula. Denote by [p,v] the
equivalence class in My, of (p,v) € S3xR?. It is easy to see that the soul X of My, is {[p,0] | p € S3},
which is isometric to $%/S! = 52(1). The metric projection 7 : M — ¥ acts as 7([p,v]) = [p,0].
Let ¢ = [p,v] € Mj. The distance, r, between ¢ and ¥ in My, is just r = |v|. By studying the
double Riemannian submersion S3 x R?2 — M, — X, it is straightforward to compute that the
norm of the A tensor of m at ¢ is |4,] = % =: fi(r). Therefore, for any p € £,V € v,(X)
and X,Y € T,% with |X|,|Y[,|[V]=1and X LY, |RV(X,Y)V|=2[(DyA)xY| = 2f(0) = 2k.
In other words, |RY| = 2k. Each M}, has totally geodesic 7-fibers. By Corollary 7.1.2, the vertical
curvatures at their souls must also grow proportionally to k, as can be verified computationally.

7.3 A finiteness theorem for principal bundles

In this section we prove Theorem 7.1.3. Our proof begins with a lemma which essentially says that
two principal G-bundles whose transition functions are sufficiently close must be isomorphic.

Lemma 7.3.1. Let G be a compact Lie group with a bi-invariant metric. Let § := %m](G)
Let B be a compact manifold. Let {By,...,B;} be a covering of B by contractible open
sets. Let z denote the mazimal multiplicity of intersections (that is, no point of B lies in
more than z of the open sets). Let m° : P — B,x' : P* — B be two principal G-bundles
over B. Let g?j,gilj : BN Bj — G denote the transition functions associated to atlases of
trivializations of the two bundles over the sets B;. If for all pairs (i,7) and for allp € B;,NB;,

da(93;(p), 9i;(p)) < € := 52—, then the two bundles are isomorphic.

Our proof will use only the following properties of (G,dg,d):
1. dg((a") ™1 v',a=t-b) <dg(a,a)+ dg(b,b) for all a,a’,b,b' € G.

2. For any two points a,b € G with dg(a,b) < §, there is a canonical path 7, : [0,1] — G
from a to b (namely the minimal path) which varies continuously with a and b and for which
de(Yab(t), a), da(Vas(t),b) < da(a,b).

Proof. We begin by reviewing Milnor’s construction of the classifying space for a principal G-bundle
(see [19, Section 4.11]). Define:

EG(Z) = {(tlgla "'atlgl) | gi € thl S [07 1]7th = 1}/ ~

where two vectors, (t1g1,...,t19;) and (£1§1, ..., £,G;), are considered equivalent iff for each 4, either
1) g; = §i and t; = t; or 2) t; = t; = 0. Then define Bg(l) := Eg(l)/G, where G acts on
E¢(l) component-wise on the left. Suppose m : P — B is a principal G-bundle over B, and
®; : B; x G — 7 1(B;) is an atlas of trivializations for m over the open covering {Bj, ..., B;} of
B. Let {n,...,m} denote a partition of unity subordinate to the open cover {Bjy, ..., B;}. Define
hi : 7 Y(B;) — G as h; := p; o @;1, where p; : B; Xx G — G denotes the projection onto the
second factor. Let g;; : B; N B; — G denote the transition functions associated to this collection of
trivializations.
Define f : P — Eg(1) as follows:

f(2) = (m(x(2)) - ha(2), s m(w(2)) - hu(2)).
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f maps fibers to fibers, so it induces a well-defined map f : B — Bg(l). f is called the classifying
map of the bundle. It is useful to describe f in terms only of the transition functions. For example,
f restricted to By can be described as follows:

f() = [m(p) - e,n2(p) - g12(p); -, m(p) - g (p)],

where e denotes the identity element of G. Of course, f satisfies the analogous description when
restricted to the other balls Bo, ..., B;.

Now let 7% : P® — B, 7! : P! — B be two principal G-bundles over B. Let g?j, gilj :B;NB; — G
denote the transition functions associated to atlases of trivializations of the two bundles over the
same atlas {Bj, ..., B;} of B. Let f° f!: B — Bg(l) denote their classifying maps, constructed as
above using the same partition of unity {7;}. Assume that for all pairs (¢, j) and for all p € B;N B,
da(99;(p), 9i;(p)) < €. In order to define a homotopy, f*, between f° and f', first define for every
pair (i,7) and for every ¢ € B; N Bj, gi;(q) (t € [0,1]) to be the canonical path in G between g{;(q)
and g};(q). Next define f* restricted to B as:

' p) = m) - e,n2(p) - gi2(®)s -, m(P) - 95,(p)]. (7.3.1)

It is tempting to define f! restricted to the other balls Bs, ..., B; analogously; however, this definition
would only be well defined on the overlaps when t = 0 and ¢t = 1. So instead we must extend f* one
open set at a time. For example, extend f* to By U By as follows. First notice that for p € By N Bo,
the following description of f* is equivalent to equation 7.3.7.1:

frp) = [m) - (gl2() " m2(p) - €, com(p) - (952 ()" - gt (p)]- (7.3.2)

The formula has just been rewritten so that e appears in the second component, which makes it
easier to compare to the natural definition of f* restricted to Bo:

Fi(0) = m(p) - g5 (), m2(p) - €, .. m(p) - ghi (p)]. (7.3.3)

At time ¢ = 0 and ¢t = 1, equations 7.3.7.2 and 7.3.7.3 agree on By N By. For t € (0,1), we redefine
ft on By N By as the weighted average of equations 7.3.7.2 and 7.3.7.3. More precisely, for each of
the [ components in these two expressions, the coefficients are equal and the elements of G have
distance < 3¢ < § in G. To see this, consider, for example, the group elements in the I** component:

(g12() " - g5 (p), g1 (p)) (7.3.4)
da((g12(p) ™" - ghi(p), ggz(p))+d (9% (p), g% (p))
), 9

da((9Y2(p), 912(p)) + da (g (p), 911 (p) + da (9% (p), 95 (p))
et+et+e=3e<é.

de

A

IA A IA

. . : m 12
So it makes sense to take a weighted average of the two elements of G, using P and s

the weights (by the weighted average of two nearby points a,b € G we mean the the point v4(to),
where ¢ is determined in the obvious way by the weights). To make the weights well defined,
choose a partition of unity such that n;(p) > 0 for all p in the interior of B;.

Finally, extend the definition of f! to the other balls Bs,..., B; one at a time in exactly the
same way. That is, if f? is already defined on U = By U --- U B,,_1, then describe a component-
wise formula for f* on U N B,, with e in the m*™ position. Then re-define f* on U N B,, as the
component-wise weighted average of this formula and the natural definition for f* on B,,. Use
";ﬁr Jﬁ’" + and 12— as the weights. The pairs of elements of G to be averaged will alwayb
agree when t =0 and t = 1 further, by repeating the argument of equation 7.3.7.4 inductively, it
is easy to see that they will have distance < (2° — 1)e = § in G for ¢ € (0,1). The homotopy f* is
clearly well-defined and continuous. Since the classifying maps of the two bundles are homotopic,
the bundles are isomorphic. This proves the lemma. O
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Proof of Theorem 7.1.3. Let B™ be a compact Riemannian manifold, G a compact Lie group with
bi-invariant metric, and 7 : P — B a principal G-bundle with a connection, w, whose associated
curvature form, Q, satisfies |Q2| < A. We prove that the number of candidates for the isomorphism
class of this bundle is < eC(HeCA), where ¢, C' depend only on B and G. By the argument which
began our proof of Theorem 7.1.1, this “fixed base space” version implies the more general version
of Theorem 7.1.3.

There is a unique Riemannian metric on P for which 7 is a Riemannian submersion whose
horizontal distribution is defined by w, and each fiber G, := 71 (p) is totally geodesic and isometric
to G (with the given bi-invariant metric). Since the fibers are totally geodesic, T' = 0. Further, the
A tensor of m agrees with the curvature form, €, so |4| < A.

1

As before, choose r < 5 min{inj(B), %}, where A denotes an upper curvature bound for B,

and choose points {p1,...,p;} C B such that the balls {B; := B,,(r)} cover B. Choose isometries
s; + G — Gp,. The natural trivializations, ®; : B; x G — 7 (B;), are defined as ®;(q,v) =
RV (s;(v)). Remember that 7. denotes the minimal path from p; to ¢, and Wa . G, — G,
denotes the diffeomorphism between the fibers which is naturally associated to this path. Let
gij : Bij = B; N Bj — G denote the transition functions associated to this atlas of trivializations of
the bundle.

We require a new argument to establish Lipschitz control on the transition functions. As before,
let ¢ € B;j, X € T,B with |X| = 1, and ¢(s) = exp(sX). As before, let t — o4(t) = o(s,t) be
a minimal unit-speed path between p; and ¢(s) followed by a minimal unit-speed path between
q(s) and p;. Let 7(s) := gi;(q(s)). Notice that 7(s) = (s;1 o h?= o s;)(e), where e denotes the
identity element of G. Denote k := dim(G). Since C; := length(op) < 2r, and since Cs :=
SUDe(0,d(p;,p; )] |%0’(07t)| < 1 as before, Lemma 6.1.3 and Equation 6.1.6.2 provides the following
bound:

[7(0)] = |(5; 0 7Y/ (0)] < 224 U414 _

This value L provides a Lipschitz bound for the transition functions, g;;.

The most obvious strategy for completing the proof is the following: 1) describe a natural metric
on the classifying space B (1), 2) establish a Lipschitz bound for the classifying map f : B — Bg(l)
depending on Lipschitz bounds for the transition functions and for the partition of unity functions,
3) verify that Bg(l) satisfies the regularity hypothesis of part 1 of Lemma 7.2.1, and apply this
lemma. We believe that this approach works. But in the case where A = 0 (the flat bundle case),
the bound obtained from this approach for the number of isomorphism class possibilities of the
bundle would depend on the metrics of B and G. Therefore, we use a different approach in order
to obtain bounds in the flat bundle case which depend only on the topology of B and the Lie group
structure of G. Rather than applying Gromov’s lemma, we must use a variation on its proof.

The variation of Gromov’s argument goes as follows. Let § := %inj (G@). Let X denote the disjoint
union of all of the nonempty intersections B;;. Let N denote the number of components of X, and
let z denote the maximal multiplicity of intersections for the open cover {B;} of B. Let € := 5:2~.

e 2rk4® (k+1)1A

Let Rg denote a §-net in G, and let Rx denote a j7-net in X (remember L = 2e

is a Lipschitz bound on the transition functions). As argued in our proof of Lemma 7.2.1, the
net Rx can be chosen such that card(Rx) < K - ((%)n + 1), where K = K(X). Think of

the collection {g;;} of transition functions as defining a single L-Lipschitz map g : X — G. ¢
induces a (non-unique) map §: Rx — Rg, defined so that §(p) is any point of Rg whose distance
€

from g(p) is < §. It is easy to see that if ¢°,g" : X — G are any two L-Lipschitz maps, and

gA0 = gAl, then dgup (¢°,g') < e If g° and g* happen to be the transition functions associated to two
different bundles, 7° : P° — B and 7! : P! — B, then Lemma 7.3.1 implies that the two bundles
must be isomorphic. Thus, the number of candidates for the isomorphism class of our bundle is
< card(Rg)®rdfix) < card(Rg)K((%)n“). Substituting the above value of L and simplifying
completes the proof. ]
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To conclude this section, discuss the case A = 0 in the previous proof in order to prove Theo-
rem 7.1.4

Proof of Theorem 7.1.4. When A = 0, the transition functions satisfy the Lipschitz bound L = 0,
so we can use a net Rx in X containing exactly one point from each component of X. In this
case, there is no reason to use a coverings of B by small metric balls; any covering by open
sets diffeomorphic to R™ would suffice. For example, if we use a minimal such covering, then
card(Rx) < I(B)?. Tt is easy to choose a minimal open covering for which the maximum multiplicity
of intersections is z = n + 1. For convenience, we can work with the bi-invariant metric on G
associated to the kiling form. R is defined in the above proof as an r-net in G, where r = ¢/4 =

(%mj(G)> /4= Qi:i(ﬁ)s. By definition, card(R¢g) = P(G,n). This establishes Theorem 7.1.4. O

22—-1

We end this section by proving Corollary 7.1.5 as a consequence of Theorem 7.1.4.

Proof of Corollary 7.1.5. Suppose that M is an open manifold of nonnegative curvature whose
soul, ¥, is homeomorphic to a Bieberbach manifold. By [6, Corollary 9.5], any metric of non-
negative curvature on a Bieberbach manifold is flat, so ¥ is flat. It then follows from O’Neill’s
formula (2.4.2.1) that the A-tensor of the metric projection m : M — 3 vanishes, which implies
by Lemma 3.1.1 that the connection on the normal bundle of ¥ in M is flat. This flat connection
induces a flat connection in the principal O(k)-bundle associated to the normal bundle of the soul.
Theorem 7.1.4 bounds the number of possibilities for the isomorphism type of the principal bundle,
and hence also of the normal bundle of the soul. O

We end this section by discussing whether Theorem 7.1.3 is still true when G is only a non-
compact Lie groups with a left-invariant metric. In this case, we can still prove a finiteness theorem
as long as we add the assumption that the base space is simply connected:

Theorem 7.3.2. Let G be a non-compact Lie group with a left-invariant metric, B a compact
simply connected Riemannian manifold, and A a constant. Then there exist only finitely
many isomorphism classes of principal G-bundles G — P — B which admit a connection,
w, whose curvature form, 2, satisfies | < A.

Proof. The compactness assumption for G was used in the proof of Theorem 7.1.3 to insure that
there exists a finite §-net Rg in G. When G is non-compact, we use the assumption that B is
simply connected to insure that the images of the transition functions all lie in a fixed compact

subset G’ of G; thus, we can complete the proof by settling for a finite £-net in G’ rather than in

G. !

More precisely, with the setup from the proof of Theorem 7.1.3, we show that the functions s;
can be contrived so that im(g) lies in the ball of radius R about e in G, where g : X — G denotes
the collection of transition functions, and R depends only on B, A, k. The construction is as follows:
choose s1 arbitrarily, and for each i = 2, ..., [, define s; = h?* 0s1, where o; is any minimal path in B
from p; to p;. This construction insures that for any pair (i, ), any g € B;j, s1(g:5(q)) = h*(s1(e)),
where o denotes the path « := g x4} * (vJ) ™" * (0;)~". Therefore,

da(e,9ij(q)) = da, (s1(e),51(9ij(q)))

C1 - dp(si(e), s1(gi5(q)))
C - length(a)

Cy(2r + 2 - diam(B)) =: R,

INIA A

Where Cy = C1(B, A, k) is the constant in Lemma 6.1.1. Tt follows that im(g) C G’ := B.(R).
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A second difficulty is that Lemma 7.3.1 is not necessarily valid when G is a noncompact Lie
group with a left-invariant metric. The problem is that, even though any two points of G whose
distance is < § = %inj(G) do have a canonical path between them, it is not necessarily true that:

da((@)™' -V, a7t b) < dg(d,a) + dg(V',b) for all a,a’, b,V € G.
However, the following is true: There exists C := C(R) such that:
da((a)™'-b,a7tb) < C(dg(d,a) + dg (Vb)) for all a,d’,b,b € G'.
To see this inequality, let v;(¢) be a minimal path from a to @’ and y2(¢t) a minimal path from b
to b, t € [0,1]. Let v := ;' -9, which is a path from a=' - b to (a’)~' - ¥’'. By the product rule,

Y (O] < [y (t)] + Clvi(t)], where C = |dR,, (;-1| - |[dR,,)|. This weaker statement suffices to
complete the proof. O
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