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Abstract. The volume growth of an open manifold of nonnegative sectional
curvature is proven to be bounded above by the difference between the codi-
mension of the soul and the maximal dimension of an orbit of the action of
the normal holonomy group of the soul. Additionally, an example of a simply-
connected soul with a non-compact normal holonomy group is constructed.

1. Introduction

For a Riemannian manifoldMn with nonnegative sectional curvature, the volume
of a ball BΣ(r) of radius r about a compact totally geodesic submanifold Σn−k can
be estimated by a generalized Bishop-Gromov type inequality which states that

V (r) :=
Vol(BΣ(r))

rk

is a monotonically nonincreasing function of r [3]. If M is open, this implies that
the volume growth of M is not greater than the codimension k of Σ, where the
volume growth, VG(M), of M is defined as follows:

VG(M) = inf

{

x ∈ R
∣

∣

∣

∣

lim
r→∞

Vol(Bp(r))

rx
= 0

}

Note that this definition is independent of the choice of p ∈ M .
The case where Σ is a soul of M (in the sense of [2]) and the volume growth of

M is maximal in the sense that VG(M) = k was studied by Schroeder and Strake
in [7]. Their main result states that in this case the reduced holonomy group Φ0

of the normal bundle ν(Σ) of Σ in M is trivial. Hence, as they pointed out, if M
is additionally assumed to be simply connected, the main result of [9] implies that
M splits isometrically.

Our main theorem is the following generalization of Schroeder and Strake’s result:
V G(M) ≤ k−m, where m denotes the maximal dimension of an orbit of the action
of Φ0 on the fiber νp(Σ) of ν(Σ) at p ∈ Σ. Additionally, we prove the related
fact that along almost every radial geodesic in M , there exist at least m linearly
independent bounded vertical Jacobi fields.

The possibility that Φ0 might be a non-closed subgroup of SO(k) introduces
certain technical difficulties in our proofs. In the final section, we justify these
worries by exhibiting a soul with non-compact reduced normal holonomy.
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2. Background: The Metric Projection onto the Soul

Perelman’s main result in [6] is the primary tool which allows us to simplify
and generalize the arguments of Schroeder and Strake. This result states that the
metric projection π : M → Σ, which maps the point x ∈ M to the point π(x) in Σ
to which it is closest, is well-defined and is in fact a C1 Riemannian submersion.

There is a simple way to describe the horizontal distribution of π. Let exp⊥ :

ν(Σ) → M denote the normal exponential map, and write T (ν(Σ)) = ˜H⊕ ˜V for the
decomposition of the tangent bundle of ν(Σ) into the horizontal and vertical spaces
associated to the connection on the normal bundle. Similarly, write TM = H⊕V for
the orthogonal decomposition of TM into the horizontal and vertical distributions

associated with the Riemannian submersion π. Then H = d exp⊥( ˜H).
If α(t) is a path in Σ from p = α(0) to q = α(1), and x ∈ π−1(p), then there

is a simple description of the horizontal lift ᾱ of α to x. Write x = exp⊥(v) for
some v ∈ νp(Σ). Then ᾱ(t) = exp⊥(Pα|[0,t](v)). Here Pα|[0,t](v) denotes the parallel
transport of v along the appropriate segment of α. This path is clearly a lift of α,
and it is horizontal because it’s preimage in ν(Σ) is horizontal.

It is worth noting that Perelman’s theorem provides an elementary proof of the
previously mentioned fact that VG(M) ≤ k. For, if ν(Σ) is endowed with the
connection metric with flat fibers, then exp⊥ becomes a distance non-increasing
map. To see this, take any v ∈ ν(Σ) and let x := exp⊥(v). The above considerations

show that d(exp⊥)v maps ˜Hv isometrically onto Hx. Also, Rauch’s theorem implies

that d(exp⊥)v maps ˜Vv in a distance non-increasing way into Vx. Since V G(ν(Σ)) =
k, it follows that VG(M) ≤ k.

3. Volume Growth and Holonomy

In this section, the main theorem is proven. Since Φ0 might be non-compact,
most of the theory of transformation groups does not apply to the action of Φ0 on
a fiber νp(Σ). We therefore require the following two lemmas about Lie subgroups
of SO(k).

Lemma 3.1. Let G be a (possibly non-compact) connected Lie subgroup of
SO(k). The union, Ω, of all orbits of the action of G on Sk−1(1) which have
maximal dimension is open and dense.

Proof. Ω is trivially open. To establish that Ω is dense, decompose the Lie algebra
G of G as G = Z⊕A, where Z is the center of G, and A is semisimple. Let Z and A
denote the Lie subgroups of G associated with Z and A respectively. Z is abelian
and A is compact. Z is a subgroup of a maximal torus of SO(k), and with respect
to a properly chosen basis of Rk, Z embeds in SO(k) as follows:

Z :=
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Here, each si is an linear function from Z to R. Write Rk = V1⊕· · ·⊕Vm⊕W for the
corresponding orthogonal decomposition of Rk; dim(Vi) = 2 and dim(W ) = k−2m.

For any v ∈ Sk−1(1), dim(G(v)) ≤ dim(Z(v)) + dim(A(v)), and we claim that
equality holds on an open dense subset E of Sk−1(1). To construct E, consider a
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basis {X1, ..., Xa} of Z and {Y1, ..., Yb} of A, and regard the elements Xi and Yi as
Killing vector fields on Rk. For each i = 1, ..., b, the set Ki := {w ∈ W | Yi(w) = 0}
is a linear subspace of W , which is not necessarily proper. Define:

E := {v1 + · · ·+ vm + w ∈ Sk−1(1) | each vi 6= 0 and if w ∈ Ki then Ki = W}.

E is clearly open and dense. For every v ∈ E and any i = 1, ..., b, Yi(v) /∈
span{X1(v), ..., Xa(v)}. If i is such that Ki 6= W , this is clear from construction;
otherwise, Yi(v) ∈ span{X1(v), ..., Xa(v)} implies Yi ∈ Z, which is impossible.
Therefore, dim(G(v)) = dim(Z(v)) + dim(A(v)) for every v ∈ E.

From the previous description of Z, one can easily see that the union, ΩZ , of
all orbits of the action of Z on Sk−1(1) which have maximal dimension is open
and dense in Sk−1(1). Further, ΩA (defined analogously) is open and dense by the
theory of compact group actions. Therefore, ΩZ ∩ΩA ∩E is an open dense subset
of Sk−1(1) which is contained in Ω. It follows that Ω is dense. £

Lemma 3.2. Let G be a (possibly non-compact) Lie subgroup of SO(k), and
C be a closed neighborhood of the identity in G. Let m denote the maximal
dimension of an orbit of the action of G on Rk. Then there exists a finite
union, W =

⋃

Wi, of (k −m)-dimensional subspaces Wi of Rk such that for
any u ∈ Rk, there exists some g ∈ C with g(u) ∈ W .

Proof. The proof is by induction on k. The statement is trivial in dimensions
k = 1 or 2. Assume that the lemma is true in dimensions less than k. Let C ⊂
G ⊂ SO(k), as in the statement of the lemma. For every v ∈ Sk−1(1) ⊂ Rk, we will
construct an open neighborhood U of v in Sk−1(1) and a finite union, W =

⋃

Wi,
of (k − m)-dimensional subspaces Wi of Rk which contain v, such that for every
u ∈ U , there exists some g ∈ C with g(u) ∈ W . Since Sk−1(1) is compact, this will
complete the proof.

Fix v ∈ Sk−1(1). Let mv denote the dimension of the orbit G(v). Decompose the
Lie algebra G of G as G = Gv⊕span{X1, ..., Xmv}, where Gv denotes the Lie algebra
of the stabilizer Gv, and the elements Xi, when considered as Killing vector fields
on Sk−1(1), form a basis of TvG(v) at v. Define Y to be the orthogonal compliment
of TvG(v) in TvRk ≈ Rk. Y is a (k −mv)-dimensional subspace of Rk containing
v, and we claim that the set {g(u) | g ∈ C, u ∈ Sk−1(1) ∩ Y } contains an open
neighborhood U of v in Sk−1(1). This follows from the fact that the derivative at
(id, v) of the map Ψ : G × (Y ∩ Sk−1(1)) → Sk−1(1) defined as Ψ(g, u) := g(u) is
surjective.

If the orbit G(v) has maximal dimension, that is if mv = m, then the single
subspace W := Y and the open set U will be as required for the construction.
Otherwise, the dimension of Y (= k − mv) is too large, so Y cannot serve as the
required subspace. In this case, we will choose W to be a union of smaller subspaces
of Y , as follows.

The stabilizerGv acts by isometries on the subspace Y ′ consisting of those vectors
in Y which are orthogonal to v; we claim that the maximal dimension of an orbit
of this action is m−mv. To see this, choose a neighborhood E of v in Y ∩Sk−1(1)
small enough so that {Xi(w)} is linearly independent and transverse to Y for all
w ∈ E. Then, for any w ∈ E, Gv(w) ⊂ Y ∩ Sk−1(1), and TwG(w) = TwGv(w) ⊕
span{Xi(w)}. Therefore, dim(G(w)) = dim(Gv(w)) + mv. From lemma 3.1 and
the fact that G(E) contains an open neighborhood of v in Sk−1(1), it follows that
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E must contain a vector w for which dim(G(w)) = m. For this w, dim(Gv(w)) =
m−mv = max{dim(Gv(w

′)) | w′ ∈ Y ′}.
By the inductive hypothesis, there exists a finite union, V :=

⋃

Vi, of (k−m−1)-
dimensional subspaces Vi of Y ′ such that for any u ∈ Y ′ there exist an element
g ∈ Gv ∩ C such that g(u) ∈ V . Define Wi := span{v, Vi}, and W :=

⋃

Wi. Each
subspace Wi has dimension k − m, and by construction, {g(u) | g ∈ Gv ∩ C, u ∈
W} = Y . It follows that the set {g(u) | g ∈ C, u ∈ Sk−1(1) ∩W} will contain the
open neighborhood U of v defined above. This completes the proof. £

Main Theorem. V G(M) ≤ k −m

Proof. Fix p ∈ Σ. The proof turns on a modification of [7, prop. 1], which states
that if Φ0 is compact, then all of Φ0 can be represented using loops at p in Σ of
bounded length. Even when the compactness assumption is dropped, the proof
of [7, prop. 1] still establishes the following: there exist a constant b1 and a closed
neighborhood C of the identity in Φ0 such that any g ∈ C can be represented as
parallel translation along a loop at p in Σ with length ≤ b1. By lemma 3.2, we can
then find a finite union, W :=

⋃

Wi, of (k−m)-dimensional subspaces Wi of νp(Σ)
which meets every orbit of C in the sense of the lemma.

Next we argue that all of M is contained in a ball of radius b2 := b1 + diam(Σ)
about exp⊥(W ). To see this, take any point x ∈ M , and write x = exp⊥(v) for some
v ∈ ν(Σ). There exists a path α in Σ of length less than b2 such that Pα(v) ∈ W
(namely, take any minimal path from q := π(v) to p, followed by a loop at p
which represents the proper holonomy element). The horizontal lift ᾱ of α to x is
then a path in M of the same length connecting x to y := exp⊥(Pα(v)) ∈ exp⊥(W ).
Therefore Bexp⊥(W )(b2) = M . Additionally, observe that if v was chosen so that the

radial geodesic t 7→ exp⊥(tv) provides a minimal connection from q to x, it follows
that the radial geodesic t 7→ exp⊥(tPα(v)) will provide a minimal connection from
p to y.

We conclude with an argument similar to the proof of [7, Thm. 2], by showing
that there is a constant K such that for large real numbers r > 0,

Vol(BΣ(r)−BΣ(r − 1)) ≤ Krk−m−1

This clearly implies the statement of the theorem.
Let W 1 be the set of unit-length vectors in W . Let r be a positive real number.

Take a net of points {vi} in W 1 such that every vector in W 1 makes an angle of less
than 1/r with some vi. Since W 1 is a finite union of round spheres of dimension
k−m− 1, we need no more than b3r

k−m−1 points vi, where b3 is a constant which
does not depend on r.

Now we claim that

BΣ(r)−BΣ(r − 1) ⊂
⋃

i

Bexp⊥(rvi)(b2 + 2).

To see this, take any point x ∈ M with r−1 ≤ dist(x,Σ) ≤ r. As described above, x
has distance ≤ b2 from some point y = exp⊥(v), where v ∈ W , and γ(t) := exp⊥(tv)
provides a minimal connection between p and y. Let vi be a point of the net which
makes angle less than 1/r with v. Since γ is minimizing, we can apply Toponogov
to conclude that d(y, exp⊥(rvi)) ≤ 2. Thus dist(x, exp⊥(rvi)) ≤ b2 + 2.

Finally, since the Bishop-Gromov inequality implies that the volume of each ball
Bexp⊥(tvi)(b2 + 2) is not greater than the volume b4 of a ball of the same radius in
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the Euclidean space of the same dimension, we have

Vol(BΣ(r)−BΣ(r − 1)) ≤ b4b3r
k−m−1.

So choosing K := b4b3 is as required to conclude the proof. £

4. Holonomy and Jacobi Fields

This section establishes the following relationship between the amount of holo-
nomy and the number of bounded vertical Jacobi fields along radial geodesics (ie,
geodesics which intersect the soul orthogonally):

Proposition 4.1. Along almost every radial geodesic in M , there exist at least
m linearly independent bounded vertical Jacobi fields.

Proof. Begin by choosing a collection {τ1, ..., τa} of paths in Σ beginning at p,
and collections {X1, ..., Xa}, and {Y1, ..., Ya} of vectors in TpΣ such that the set
{Vi := P−1

τi ◦ R(Pτi(Xi), Pτi(Yi)) ◦ Pτi} is a basis of the Lie algebra of Φ0. This
is possible by a theorem of Ambrose and Singer; see for example [5, Thm. 8.1].
Consider each Vi to be a vector field on the unit normal sphere ν1p(Σ). Let Ω be

the union of all orbits of the action of Φ0 on ν1p(Σ) which have maximal dimension.
By Lemma 3.1, Ω has full measure. Fix w ∈ Ω. {Vi(w)} spans an m-dimensional
subspace of Tw(ν

1
p(Σ)). To simplify notation, re-index so that {V1(w), ..., Vm(w)}

is linearly independent. For each i between 1 and m, consider the Jacobi field Ji(t)
along γ(t) := exp⊥(tw) with initial conditions Ji(0) = 0 and J ′

i(0) = Vi(w). We
claim that each Ji is a bounded vertical Jacobi field.

To see this, let J̃i(t) be the Jacobi field along γ̃i(t) := exp⊥(tPτi(w)) with initial

conditions J̃i(0) = 0 and J̃ ′
i(0) = Pτi(Vi(w)). We first claim that J̃i is a bounded

vertical Jacobi field. To see this, let X̃i(t), and Ỹi(t) be the lifts of X̃i(0) :=

Pτi(Xi) and Ỹi(0) := Pτi(Yi) to horizontal vector fields along γ̃i(t). Then, J̃i(t) =

−2A(X̃i(t), Ỹi(t)), where A denotes the A-tensor of π; see for example [8, Prop.

1.7]. Thus J̃i is vertical, and bounded because the A-tensor is bounded on M by
O’Neill’s formula.

Next observe that J̃i = (hτi)∗Ji, where hτi : π−1(p) → π−1(τi(1)) is the diffeo-
morphism between the fibers naturally associated to the path τi. This observation
is a re-wording of [4, Prop. 1.1.1]. Further, by [4, Lem. 4.2], hτi is a bi-Lipschitz
map with bi-Lipschitz constant depending only on the length of τi. It follows that
Ji is also a bounded vertical Jacobi field. £

5. A Soul with Non-Compact Holonomy

In this section we construct a simply-connected nonnegatively curved open man-
ifold such that the holonomy group of the normal bundle of the soul is non-compact.

Consider the following action of the Lie group R on S2 × C2 × R:

((ϕ, θ), z1, z2, t0)
t7→ ((ϕ, θ + t), eπitz1, e

λπitz2, t0 − t).

Here (ϕ, θ) denotes spherical coordinates on S2, and λ denotes an irrational real
number. The quotient, (S2 × C2) ×R R = (S2 × C2 × R)/R, is diffeomorphic to
S2 × C2, and this identification provides a new nonnegatively curved metric ĝ on
S2 × C2 under which the quotient map S2 × C2 × R → (S2 × C2)×R R ≈ S2 × C2

becomes a Riemannian submersion.
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Let g denote the product metric on S2×C2, and let V denote the Killing vector
field associated to the R action on S2×C2; namely, V ((ϕ, θ), z1, z2) = (θ̂, iz1, λiz2).
According to [1, Example 2], the new metric ĝ on S2 × C2 is obtained from g
simply by, at each point, rescaling the norms of vectors parallel to V by a factor of
1/(1 + |V |2)1/2.

It is easy to see that the soul of M := (S2 × C2, ĝ) will still be the zero section,
Σ = S2×(0, 0), and that the metric projection π : M → Σ will still be the projection
(q, z1, z2) 7→ q. It is straightforward to show that the horizontal distribution H of
π can be described as follows:

H((ϕ,θ),z1,z2) = span

{

(ϕ̂, 0, 0),

(

θ̂,
|θ̂|2

1 + |θ̂|2
iz1,

|θ̂|2

1 + |θ̂|2
λiz2

)}

The two vectors in this expression correspond to the horizontal lifts of the spherical
coordinate vectors ϕ̂ and θ̂ in T(ϕ,θ)S

2.

If σ(t) = (ϕ(t), θ(t)), t ∈ [0, 1], is a loop in S2 based at q := (ϕ(0), θ(0)), it
follows that the horizontal lift σ̄ of σ to the point (q, z1, z2) in M will end at the

point σ̄(1) = (q, eπit0z1, e
λπit0z2) where t0 =

∫ 1
0

|Ýθ|2

1+|Ýθ|2
θ′(t)dt.

In particular, the set of points in π−1(q) which can be achieved as endpoints of
horizontal lifts to (q, z1, z2) of loops in S2 at q is exactly {(q, eπit0z1, eλπit0z2) | t0 ∈
R}. It follows from this that the holonomy group Φ of the normal bundle of Σ is
exactly:

Φ :=

{

(

eπito 0
0 eλπit0

)

∣

∣

∣

∣

∣

t0 ∈ R

}

,

which is isomorphic to R.
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