A SHORT PROOF OF THE CANTOR-SCHRÖDER-BERNSTEIN THEOREM

LEO GOLDMAKHER

Abstract. We give a relatively short proof of the Cantor-Schröder-Bernstein.

1. Statement and proof

Motivated by Cantor's theory of infinite sets, we write $A \approx B$ to denote the existence of a bijection $A \rightarrow B$. In practice it can be quite difficult to construct a bijection between two sets. The Cantor-Schröder-Bernstein theorem ${ }^{1}$ is a tool for proving the existence of a bijection without ever having to construct one.

Notation. The symbol $A \hookrightarrow B$ means there exists an injection of A into B, and $A \rightarrow B$ means there exists a surjection of A onto B. The symbol $X \sqcup Y$ denotes the disjoint union of X and Y, i.e. $X \sqcup Y=X \cup Y$ but also connotes that $X \cap Y=\emptyset$.

Theorem 1 (Cantor-Schröder-Bernstein). If $A \hookrightarrow B$ and $B \hookrightarrow A$ then $A \approx B$.
This statement may seem intuitive, but it's surprisingly difficult to prove. I strongly urge the reader to stop reading here and take at least five minutes to take a stab at proving it; this is the best way I know of to appreciate the proof given below.

The heart of the proof is contained in the following special case of the theorem:
Theorem 2. If $A \hookrightarrow B$ for some $B \subseteq A$, then $A \approx B$.
Proof. Let's call our injection $f: A \hookrightarrow B$. Our goal is to partition B into two disjoint pieces, say $B:=B_{f} \sqcup \bar{B}$, in such a way that

$$
\begin{equation*}
f(\bar{B}) \subseteq \bar{B} \quad \text { and } \quad f(A \backslash \bar{B})=B_{f} \tag{1}
\end{equation*}
$$

Note that the latter condition tells us that f maps $A \backslash \bar{B}$ surjectively onto B_{f}. Since f is also injective, we deduce that f produces a bijection between $A \backslash \bar{B}$ and B_{f}. If f were also a surjection onto \bar{B} we'd be done, since f would then be a bijection of A onto B. However, we don't know this. There is one function that is an obvious bijection of \bar{B} onto \bar{B} : the identity map on \bar{B}. This inspires us to cobble together a function $g: A \rightarrow B$ by setting

$$
g(x):= \begin{cases}f(x) & \text { if } x \in A \backslash \bar{B} \\ x & \text { if } x \in \bar{B} .\end{cases}
$$

Note that $g(x) \in B_{f}$ iff $x \in A \backslash \bar{B}$ and $g(x) \in \bar{B}$ iff $x \in \bar{B}$.
From the definition it's clear that g surjects onto B, since it surjects onto each of the two pieces B_{f} and \bar{B}. In particular, $g^{-1}(y)$ is nonempty for all $y \in B$. Now pick any $y \in B$; since $B=B_{f} \sqcup \bar{B}$, we have $y \in B_{f}$ xor $y \in \bar{B}$. If $y \in B_{f}$, then $g^{-1}(y) \in A \backslash \bar{B}$. If $y \in \bar{B}$, then $g^{-1}(y)=y \in \bar{B}$. Since g is injective into each of B_{f} and \bar{B} individually, we conclude that $g: A \hookrightarrow B$. In other words, g is a bijection from A onto B, so $A \approx B$ as claimed!

All that remains to do is to define B_{f} and \bar{B} that satisfy the hypotheses (1). We start with the former:

$$
B_{f}:=\bigsqcup_{n \geq 1} f^{n}(A \backslash B)
$$

[^0]where f^{n} is defined recursively by setting $f^{1}:=f$ and $f^{n}:=f \circ f^{n-1}$. Then we have
$$
f(A \backslash \bar{B})=f\left((A \backslash B) \sqcup B_{f}\right)=f(A \backslash B) \sqcup f\left(\bigsqcup_{n \geq 1} f^{n}(A \backslash B)\right)=B_{f}
$$

The definition of \bar{B} is now forced upon us:

$$
\bar{B}:=B \backslash B_{f}
$$

We need to check that this satisfies (1). Pick any $y \in B_{f}$. Then $y \in f^{n}(A \backslash B)$ for some $n \geq 1$, whence

$$
f^{-1}(y) \in B_{f} \sqcup(A \backslash B)
$$

Thus for any $x \notin B_{f} \sqcup(A \backslash B)$ we have $f(x) \notin B_{f}$. It follows that

$$
f\left(B \backslash B_{f}\right) \subseteq B \backslash B_{f}
$$

as claimed.
Armed with the special case, we can now handle the general case with ease.
Proof of Cantor-Schröder-Bernstein. Given $f: A \hookrightarrow B$ and $g: B \hookrightarrow A$, set

$$
A^{\prime}:=g(B) \subseteq A
$$

By Theorem 2, $A \approx A^{\prime}$. But also, since g is injective, $A^{\prime} \approx B$. Thus $A \approx B$.
Dept of Mathematics \& Statistics, Williams College, Williamstown, MA, USA
E-mail address: leo.goldmakher@williams.edu

[^0]: ${ }^{1}$ So named because it was first proved by Dedekind; see the Wikipedia article for a history of the theorem.

