Wednesday, March 6

Can a countable set be finite? Ne. By definition, a cartable set hers a ore-to-ore correspondence with \mathbb{Z}_{70}, so a countable set must have infinitely many elements.
A set A is countable if and only if you can enumerate the elements of A, i.e. $A=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$. We cant do this for $(0,1)$ (we proved this), but we can for $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$. As written, it's not clear that we can enumerate \mathbb{Z}, but we car write $\mathbb{Z}=\{0,1,-1,2,-2, \ldots$, which should make it clearer that \mathbb{Z} can be enumerated the above set lists all elements of \mathbb{Z} with a first element, then a second, then. a third and so on, eventually hitting all of \mathbb{Z}).
A car can be safe. A car can be fun to drive. It can be both. It can be neither. This is like functions, which can be injectire, surjective, both or neither.
Last time, we showed that $f: \mathbb{Z}_{z-2} \rightarrow 4 \mathbb{Z}_{>0}-1$

$$
n \longmapsto 4 n+11
$$

is a function that is both injective and surjective, and $g: \mathbb{Z}_{0} \rightarrow \mathbb{Z} \geq 0$ defined by $g(n)$ is the exponent of the largest power of 2 dividing n is a Surjective function, but rot an injective one (for example, $g(4)=g(12)$). $G: \mathbb{Z} \rightarrow \mathbb{Z}$ is a function, but it's not injective $(G(4)=G(-4))$

$$
x \mapsto x^{2}
$$

and it's not surjective $(-1 \in \mathbb{Z}$, but there's no $n \in \mathbb{Z}$ such that $G(n)=-1)$. $\begin{aligned} & F: \mathbb{Z}_{\rightarrow 0} \rightarrow \mathbb{Z}_{>0} \text { is a function, It's not surjective for the same reason } \\ & x \mapsto x^{2}\end{aligned}$
G isn't surjective, but F is irjective $F(x)=F(y) \Rightarrow x^{2}=y^{2} \Rightarrow x^{2}-y^{2}=0$ $\Rightarrow(x-y)(x+y)=0 \Rightarrow x= \pm y$. Since x and y are both positive, $\left.x=y_{\text {w }}\right)$.
Reminder: A function from a set A to a set B sends an element of A to exeretly oreelement of B,

These examples show is that functions can be injective, surjective, both, or neither. If a function happens to be both, it's a one-to-one correspondence.
(Note: we 've started referring to functions as nouns, when in the past, wive treated them as verbs acting on numbers. This also comes up in linear algebral:)
Notation: Given $f: A \rightarrow B$ a function, if f B injective, we write $f: A c B$. If $+B$ surjective, we write $f: A \rightarrow B$.
(Note using the new rotation: $A \approx B$ iff $\exists f: A \hookrightarrow B$.)
If $A \hookrightarrow B$, then intuitively B is at least as large as A, ©T hB makes sense - if every element of A gets mapped to a different element of B, there have to be at least as many elements of B as there are of A, or else wed have to send two cements of A to the same element of B. .)
If $A \hookrightarrow B$ and $A \not \approx B$, then $B B$ strictly larger than A. (This makes sense with the same reasoning as above - since B must be at least as large as A and it int the same size as A, B must be larger than A.)
For example, $\mathbb{Z}_{>0} \hookrightarrow(0,1)$, but we shaved that $\mathbb{Z}_{0} \neq(0,1)$,

$$
x \mapsto \frac{1}{x+1}
$$

Question: Given a set S, can you produce a strictly larger set?
Answer: Yes,., the power set of $S(P(s))$.
Theorem: $S \subseteq P(S)$ and $S \notin P(S)$ in words, $P(S)$ is strictly larger than S.
Proof: $S \hookrightarrow P(S)$. Th B sends every element of S to a unique $x \mapsto\{x\}$.
element of $P(S)$, so $S \longrightarrow P(S)$. Now well prove any $f: S \rightarrow P(S)_{\text {cart the subjective }}$

Pick any function $f: S \rightarrow P(S)$. Consider $A:=\{x \in S: x \notin f(x)\}$. Clearly, $A \subseteq S$. We claim that A isn't an output of f.
Suppose $f(a)=A$. Then either $a \in A$ or $a \notin A$. If $a \in A, a \notin f(a)=A$, which is a contradiction. If $a \notin A, a \in f(a)=A$, which is a contradetion. Thus, A Brit an output of F. Contradiction! Q.E.D,
Quick contimum hypothesis rote: if we have two sets S and $P(S)$, is there a set with a cardinality between S and $P(S)$? We dort know! Kurt Godel proved that this can't be disproven, and Paul Cohen proved that this cant be proven!

