Let's see a set theory power tod (failure that yo cannot use On the midterm):
Theorem (lantor-Schröder - Bernste in) (proved by Dedekind):
If $A \hookrightarrow B$ and $B \leftrightarrow A$, then $A \approx B$.
(The intuition makes sense - it A is at least as big as B and B is at least as big as A, they should have the same size.) This is surprisingly hard to prove! Were not going to prove it. (Note: Cantor wrote it down, Dedekind proved it, Schröder came up with an incorrect proof, and Bernstein came up with a different proof.)
This is useful! Let's do an example:
Claim: $[0,1] \approx(0,1)$.
$\{\times \in \mathbb{R} \cdot \hat{0} \leq \ll 13$
Proof: $(0,1) \hookrightarrow[0,1]$

$$
x \longmapsto x
$$

and $[0,1] \hookrightarrow(0,1)$

$$
x \longmapsto \frac{x+1}{x+2} \text { or } \frac{x}{10}+\frac{1}{2}
$$

Thus, $[0,1] \approx(0,1)$ by $(-S-B$. Q.E.D.
It's time for our last set theoryffurctions topic! What if $A \leftrightarrow B$?
Intuitively: A is strictly larger than B_{1}
Formally: $\forall f: A \rightarrow B, \exists b \in B$ s.t. $f(a)=b=f\left(a^{\prime}\right)$ for some $a \neq a^{\prime}$.
Thisis called the pigeonhde principle. (Editor's note: I absolutely love the prgeortide prixiple.)
Colloquially, this says that if there are more pigeons than pigeorndes, then one of the Pigeonholes has at least two pigeons in it,

Let's do some examples!
(1) Your sock drawer contains a burch of black, white, and blue socks. How many socks do you need to remove to guarantee a pair? Four. What are the pigeons and pigeonholes?
Pigeons: Socks.
Pigeorholes: Cdors-black, white, blue.
By drawing four socks, we guarantee that we have two pigeons in same hole. Here, having two pigeons in the same hole means we have two socks of the same color. That's a pair! (Note: we doit know that the first three socks are all different colors. We could have drawn three blue socks first, so we already would have had a pair by the time we draw the fourth sock. What we do know, though, is that we must have at least one pair after drawing four socks.)
(2) I picked 51 distinct integers out of the set $\{1,2,3, \ldots, 100\}$. Prove that two of my numbers are consecutive.
What are the pigeoandes?
Are they even and odd numbers? No ... having two even or tho odd numbers, doesn't tellus that we have two consecutive numbers:
What about $4,3,5,7, \ldots, 99$? No... what do we do if we
What about $\{1,2\},\{3,4\}, \ldots,\{99,100\}$? This looks good l We have 50 pigeonhoes. Our pigeons are the 51 numbers, so ore pigeonhole must hare two pigeons (since 51>50). One pigeonhole having two pigeons mears we have two consecutive numbers, so wive proved it!
(3) Prove that out of any 5 points on the surface of a sphere, 4 of them must lie on a hemisphere.

We could choose three of our ports and plane. However, which three do we choose? What it there's an evil configuration?
Here's how we do it:
Pick any two points, x and y. Corneas x and y by a geodesic see below for (the path of shortest distance along the surface of the sphere). Extending
alternative formulation. this path crates an equator. It splits the sphere rato two hemispheres, x and y both lie on this equator. We have three and two hempiphers. Now it's pigeochbe Anytime! One of these herwipheres must contain tho of the remanany points. Q.E.D.

Another way to think about this: pick two of the points x and y as above. There's a unique plane containing the three points x, y, and the center of the sphere. This plane splits the sphere into two hemispheres, with x and y lying on an equator. Now continue as above!

