(Note: The final is a 24 hour take home exam. We can pick it up at any point starting the Saturday after classes end and ending the Sunday after the Sunday after classes end. However, Professor Goldmakher strongly encourages not taking the exam the first Saturday or Sunday, as he's planning a review session for Monday in morning.)
Let's talk about the sudoku rule from last time!
Sudoku Rule: Given p a prime, fix any $a \in\{1,2, \ldots, p-1\}$. The $a^{\text {th }}$ row of the multiplication table $(\bmod p)$ consists of all the numbers in $\{1,2, \cdots, p-1\}$, each appearing exactly once.
(The rule also covers columns, but since multiplication is commutative, if it's true for the rows, it's true for the columns.)
That's a relatively long definition of the rule. Let's tighten it up by writing it with mathematical symbols. But how? We need a way to say that any two elements of the $a^{\text {th }}$ row are distinct. Note that every element of the a ${ }^{\text {th }}$ row is a times sone number between 1 and $p-1, \bmod p$. If we want to Say two elements are unique, then, we get:

$$
\forall k, l \in\{1,2, \cdots, p-1\} \text { s.t. } k \neq l, a k(\bmod p) \neq a l(\bmod p) \text {. }
$$

We don't ever need to restrict k and l to being in this set! k and l can be any integers - They just have to be distinct $(\bmod p)$. Thus, we can condense this fur the:

$$
k \neq l(\bmod p) \Rightarrow a k \neq a l(\bmod p) .
$$

If this is true, every element in the $a^{\text {th }}$ row must be distinct. However, there are $p-1$ possible elements and $p-1$ spaces so eachis used exactly once.

This means:

$$
\begin{gathered}
k \neq l(\bmod p) \Rightarrow a k \neq a l(\bmod p) \\
\mathbb{V} \\
\forall k, l \in\{1,2, \cdots, p-1\} \text { sot. } k \neq l, a k(\bmod p) \neq a l(\bmod p)
\end{gathered}
$$

I
The Sudoku Rule.
That one line is equivalent to the sudoku rule, and it's much faster to write! Note that that statement is equivalent to its contrapositive:
$k \neq l(\bmod p) \Rightarrow a k \neq a l(\bmod p) \Leftrightarrow$ Given $a \neq 0(\bmod p)$, if $a k \equiv a l(\bmod p)$, then $k \equiv \ell(\bmod p)$.

$$
\begin{aligned}
& \begin{array}{l}
\text { To prove this, it } d \text { be rather nice to } j \text { dst hay } \\
a k \equiv d \ell(\bmod p) \Rightarrow a k-a l \equiv O(\operatorname{mad} p) \rightarrow a(k-l) \equiv O \bmod p)
\end{array} \\
& a k \equiv \operatorname{Ll}(\bmod p) \Rightarrow a k-a l \equiv O(\operatorname{mad} p) \Rightarrow a(k-l) \equiv O(\bmod p) \\
& \begin{array}{c}
\Rightarrow a \equiv 0(\text { mod } p) \text { or } k-l \equiv 0(\text { mod } p) \text {. How can } \\
\text { we }
\end{array} \\
& \text { we show that last step? }
\end{aligned}
$$

All we need to do to prove that contrapositive is show the last step in the wishful thinking cloud, given $a \equiv O(\bmod p)$, if $a k \equiv a l(\bmod p)$, then $k \equiv l(\bmod p) \Leftrightarrow$ Proposition: If $w q \equiv 0(\bmod p)$, then $w \equiv 0(\bmod p)$ or $q \equiv 0(\bmod p)$.

Exercise for you: why are the previous two propositions equivalent?
Next, we observe that the latter proposition is equivalent to the following result about prime numbers:
Proposition: $\quad p \mid w q \Rightarrow p l w$ or $p \mid q$.
Lets prove this!. (The proof is wild!)
Proof: Suppose plo but $p X(w$. Then $g(d)(p, w)=1$ (since p only has 2 factors). By Bézout's theorem (which is on the homework, this means $\exists x, y \in \mathbb{Z}$ s.t. $p x+w y=1$.

Multiply both sides by q: we get
This means $p \times q+w q y=q$. $p \mid p \times q$ and $p l w q y(s i n c e$ $p(w q)$ so $p l(p \times q+w q y)$. Thus, $p \mid q$.
Hooray! The Sudoku rule is true!
Awesome consequence of this:
What's the product of all the elements appearing in the $a^{\text {th }}$ row of the multiplication table $(\bmod p)$?
On one hand, it's $(p-1)$! (map) since the sudoku rule 3 the
On the other hand, by definition, its $a(2 a)(3 a) \ldots(p-1) a(\bmod p)$.
Thus, $(p-1)!\equiv a(2 a)(3 a) \cdots(p-1) a(\operatorname{mon} p) \equiv a^{p-1}(p-1)!(\bmod p)_{m}$ $\Rightarrow 1 \equiv a^{p-1}(\bmod p)$.
We've proved Fermat's Little Theorem:

$$
\alpha^{p-1} \equiv 1(\bmod p) \forall a \neq 0(\bmod p)
$$

