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Problem Set 2

2.1 The goal of this exercise is to build up your intuition for rational and irrational numbers.

(a) Prove that
√
2
2 is irrational. [Hint: you shouldn’t have to work too hard! ]

(b) Suppose a and b are rational. Prove that a + b and ab are both rational.

(c) Suppose a and b are rational. Show (by example) that ab can be rational or irrational.

(d) Suppose a is rational and b is irrational. Must a + b be irrational? What about ab? In each case,
either prove that it must be irrational or give an example where it isn’t.

(e) Suppose a and b are irrational. Must a + b be irrational? What about ab? In each case, either prove
that the outcome must be irrational or give an example where it is rational.

2.2 Prove that there exist irrational numbers a and b such that ab is rational. [Hint: start by considering
√

2
√
2
... but then keep thinking about what choices you could make for a and b.]

2.3 Recall from class that we invented an algorithm for generating a new prime from a given list. Following
our algorithm in class starting with the single prime 2 we generated the sequence 2, 3, 7, 43, . . ., and
starting with the single prime 7 we generated 7, 2, 3, . . . For each of the following choices of initial prime
p, determine the first six primes generated by the algorithm (the starting prime p counts as one of the
six). You are allowed to access the website

https://primes.utm.edu/lists/small/100000.txt

for a list of primes, and you may use a calculator (including google’s free calculator), but—as always—do
not use any other websites.

(a) p = 2

(b) p = 3

(c) p = 5

(d) p = 7

(e) p = 11

(f) p = 13

[Hint: In all the parts of this problem, almost all the primes you generate should have one or two digits;
the only exceptions are one three-digit prime, one four digit prime, and one five-digit prime.]

2.4 In this exercise you’ll explore a few basic properties of primes.

(a) Prove that every prime larger than 2 is odd.

(b) Prove that for any prime p > 2 there exists an integer k such that p = 4k + 1 or p = 4k − 1.

(c) Prove that for any prime p > 3 there exists an integer k such that p = 6k + 1 or p = 6k − 1.

2.5 We define a prime triple to be a triple of numbers n, n + 2, n + 4 such that all three are prime. (For
example, 3, 5, 7 is a prime triple.) Find all prime triples, and prove that your list is complete.

2.6 Prove that there are infinitely many primes of the form 4k−1. [Hint: Given any finite list of such primes
p1, p2, . . . , pk, consider the number 4p1p2 · · · pk − 1.]
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