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Problem Set 10

10.1 Use Fermat’s Little Theorem to prove that 341 is composite. Do not use a calculator or computer to
assist with any calculations. [Hint: you may find it helpful to compute 210 and 73 (mod 341).]

10.2 In class we noticed that every diagonal in the multiplication table (mod p) is a palindrome. State this
formally and then prove it.

10.3 Suppose n | ab, where a, b, n are positive integers and gcd(a, n) = 1. Prove that n | b.

10.4 Given an integer a such that 31 - a(a10 − 1), prove that 31 | a20 + a10 + 1.

10.5 In class we used Fermat’s Little Theorem to test whether or not a given integer is prime without manually
looking for factors; this is an example of a primality test. The goal of this problem is to develop a different
primality test.

(a) Prove that for any a ∈ {1, 2, . . . , p − 1} there exists a unique b ∈ {1, 2, . . . , p − 1} such that
ab ≡ 1 (mod p). (This b is called the inverse of a (mod p).)

(b) Given a prime p, find all x ∈ {1, 2, . . . , p− 1} such that x2 ≡ 1 (mod p), and prove that you’ve found
all such x.

(c) Prove that (p− 1)! ≡ −1 (mod p) for all primes p.

(d) Prove that if (n − 1)! ≡ −1 (mod n) for some integer n ≥ 3, then n must be prime. [Hint: suppose
n is a composite number larger than 5. What can you say about (n − 1)! (mod n)? Consider separately
two cases: n is the square of a prime, or it isn’t.]

(e) Combining (c) and (d) gives an algorithm for determining whether a given n is prime: evaluate
(n− 1)! (mod n), and check whether it’s congruent to −1. Is this a useful algorithm? Why or why not?

10.6 The purpose of this problem is to refine Fermat’s Little Theorem. Given a prime p and an integer
a 6≡ 0 (mod p), set

ordp(a) := min{k ∈ Z>0 : ak ≡ 1 (mod p)}

(read ‘order of a (mod p)’). For example, ord7(1) = 1, ord7(−1) = 2, and ord7(2) = 3.

(a) Work out (by hand, of course) the value of ord11(a) for each a ∈ {1, 2, . . . , 10}.
(b) Note that for any prime p ≥ 3 and any a ≡ −1 (mod p) we have ordp(−1) = 2. Does there exist a
prime p and an a ∈ {2, 3, . . . , p− 2} such that ordp(a) = 2? If so, give an example. If not, prove it.

(c) Work out (by hand, of course) the value of ordp(10) for all primes p between 7 and 19 (including both
7 and 19).

(d) Work out (by hand, of course) the decimal expansion of 1
p for all primes p between 7 and 19 (including

both 7 and 19). Describe all the connections to (c) you observe. (You don’t have to prove anything.)

10.7 The purpose of this problem is to explore the Diffie-Hellman Key Exchange a bit more.

(a) What makes p = 577 and g = 24 a particularly terrible choice for Alice and Bob to make if they
wanted to use DHKE?

(b) In practice for DHKE, Alice and Bob select g and p so that ordp(g) = p − 1; when this is the case,
g is called a primitive root (mod p). For example, both 2 and 3 are primitive roots (mod 5), but neither
1 nor 4 is. Work out (by hand, of course) the smallest positive primitive root (mod p) for all primes
between 7 and 23 (including both 7 and 23). [Comment: a remarkable theorem due to Gauss, which we
won’t prove in this course, is that there exists a primitive root (mod p) for every prime p.]

(c) Given a prime p and two positive integers a and b, it takes your computer on the order of 10−6 seconds
to compute ab (mod p). Suppose n is a positive integer that’s 100 digits long. Roughly how many years
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would it take to compute 2n (mod p) if you multiply each 2 (mod p) one at a time? Roughly how many
seconds would it take to compute 2n (mod p) if you use the successive squaring technique we discussed
in class? (You may assume that no additional computation is necessary to figure out how to express n
in binary. Also, you may use a calculator for this problem.)

(d) Suppose Alice and Bob use DHKE to establish a key, with g = 2 and p a 100-digit prime such that
2 is a primitive root (mod p). Eve intercepts Alice’s transmission of 2a (mod p). Assuming Eve is using
a computer like the one described in (c), roughly how long would it take Eve to determine the value of
a? You may use a calculator for this problem. [A famous unproved assertion, called Artin’s Conjecture,
asserts that 2 is a primitive root (mod p) roughly 37% of the time. In fact, it’s not even known whether
2 is a primitive root for infinitely many primes! ]
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