Williams College
 Department of Mathematics and Statistics

 MATH 200 : DISCRETE MATH

 MATH 200 : DISCRETE MATH}

Results proved in class

[1] Proposition. The $n^{\text {th }}$ triangular number (denoted $\left.T_{n}\right)$ is $\frac{n(n+1)}{2}$. (Two proofs.)
[2] Theorem. $\sqrt{2}$ is irrational (two proofs, both using the well-ordering principle).
[3] Lemma. Every integer $n \geq 2$ has a prime factor.
[4] Theorem. There are infinitely many primes.
[5] Theorem. A conditional and its contrapositive are logically equivalent.
[6] Proposition. Given $n \in \mathbb{Z}$. Then $n^{2}-1$ is a perfect square if and only if $n= \pm 1$.
[7] Proposition. The function $f: \mathbb{Z}_{>0}^{2} \rightarrow \mathbb{Z}_{>0}$ defined by $(x, y) \mapsto 2^{x} 3^{y}$ is injective, but not surjective.
[8] Proposition. $\mathbb{Q}_{>0}$ is countable.
[9] Theorem. The set $(0,1)$ is uncountable.
[10] Theorem. Given any set S, the cardinality of its power set $\mathcal{P}(S)$ is strictly larger than that of S.
[11] Proposition. $(0,1) \approx(-1,1)$.
[12] Theorem. $(0,1) \approx \mathbb{R}$. (A visualization with explanation suffices for this one.)
[13] Proposition. In any set of 51 distinct integers from $\{1,2, \ldots, 100\}$, two must be consecutive.
[14] Proposition. In any set of five points on the surface of a sphere, four of them must lie on a single hemisphere.
[15] Theorem. (Induction) If $\mathcal{A} \subseteq \mathbb{Z}_{>0}$ satisfies
(i) $1 \in \mathcal{A}$ and
(ii) $n \in \mathcal{A} \Longrightarrow n+1 \in \mathcal{A}$,
then $\mathcal{A}=\mathbb{Z}_{>0}$.
[16] Proposition. $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}<2$ for any positive integer n.
[17] Theorem. (Strong Induction) If $\mathcal{A} \subseteq \mathbb{Z}_{>0}$ satisfies
(i) $1 \in \mathcal{A}$ and
(ii) $\left\{k \in \mathbb{Z}_{>0}: k<n\right\} \subseteq \mathcal{A} \Longrightarrow n \in \mathcal{A}$,
then $\mathcal{A}=\mathbb{Z}_{>0}$.
[18] Theorem. Every positive integer has a unique binary expansion.
[19] Theorem. The $n^{\text {th }}$ Fibonacci number is

$$
f_{n}=(-1)^{n} \frac{\beta^{n+1}-\alpha^{n+1}}{\beta-\alpha}
$$

where α, β are the roots of $1-x-x^{2}$.
[20] Proposition. If f_{n} denotes the $n^{\text {th }}$ Fibonacci number, then $\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}=\frac{1+\sqrt{5}}{2}$.
[21] Quotient-Remainder Theorem. Given $a, n \in \mathbb{Z}$ with $n>0$, there exist unique choices of $q, r \in \mathbb{Z}$ such that $a=q n+r$ and $0 \leq r<n$.
[22] Proposition. Given $a \in \mathbb{Z}, n \in \mathbb{Z}_{>0}$, and $r \in\{0,1,2, \ldots, n-1\}$. Then $a(\bmod n)=r$ iff $n \mid a-r$.
[23] Proposition. Consider the $a^{\text {th }}$ row of the multiplication table $(\bmod p)$. The sum of the $k^{\text {th }}$ and $(p-k)^{\text {th }}$ entries is p.
[24] Proposition. The following are equivalent:
(i) The Sudoku Rule: Every row and column of the $(\bmod p)$ multiplication table contains each of the numbers $\{1,2, \ldots, p-1\}$ exactly once.
(ii) If $a \not \equiv 0(\bmod p)$ and $a x \equiv a y(\bmod p)$, then $x \equiv y(\bmod p)$.
(iii) If $k \ell \equiv 0(\bmod p)$, then one of k or ℓ must be $\equiv 0(\bmod p)$.
(iv) If $p \mid k \ell$, then $p \mid k$ or $p \mid \ell$.
[25] Theorem. If p is prime and k and ℓ are positive integers such that $p \mid k \ell$, then $p \mid k$ or $p \mid \ell$.
[26] Fermat's Little Theorem. Given a prime $p, a^{p-1} \equiv 1(\bmod p)$ for every $a \not \equiv 0(\bmod p)$.
[27] Newton's Binomial Theorem. We have

$$
(x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{k} x^{n-k} y^{k}+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}
$$

where $\binom{n}{k}$ denotes the number of ways of picking k objects out of a set of n objects.
[28] Proposition. $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
[29] Theorem. Given a finite set S, let $\mathcal{P}(S)$ denote its power set. Then $|\mathcal{P}(S)|=2^{|S|}$.
[30] Proposition. The number of optimal routes from the origin to a point (m, n) on the integer grid is $\binom{m+n}{m}$.
[31] Proposition. There's no way to cross each of the seven bridges of Königsberg exactly once.

