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Results proved in class

[1] Proposition. The nth triangular number (denoted Tn) is n(n+1)
2 . (Two proofs.)

[2] Theorem.
√

2 is irrational (two proofs, both using the well-ordering principle).

[3] Lemma. Every integer n ≥ 2 has a prime factor.

[4] Theorem. There are infinitely many primes.

[5] Theorem. A conditional and its contrapositive are logically equivalent.

[6] Proposition. Given n ∈ Z. Then n2 − 1 is a perfect square if and only if n = ±1.

[7] Proposition. The function f : Z2
>0 → Z>0 defined by (x, y) 7→ 2x3y is injective, but not surjective.

[8] Proposition. Q>0 is countable.

[9] Theorem. The set (0, 1) is uncountable.

[10] Theorem. Given any set S, the cardinality of its power set P(S) is strictly larger than that of S.

[11] Proposition. (0, 1) ≈ (−1, 1).

[12] Theorem. (0, 1) ≈ R. (A visualization with explanation suffices for this one.)

[13] Proposition. In any set of 51 distinct integers from {1, 2, . . . , 100}, two must be consecutive.

[14] Proposition. In any set of five points on the surface of a sphere, four of them must lie on a single
hemisphere.

[15] Theorem. (Induction) If A ⊆ Z>0 satisfies

(i) 1 ∈ A and

(ii) n ∈ A =⇒ n+ 1 ∈ A,

then A = Z>0.

[16] Proposition. 1
12 + 1

22 + 1
32 + · · ·+ 1

n2 < 2 for any positive integer n.

[17] Theorem. (Strong Induction) If A ⊆ Z>0 satisfies

(i) 1 ∈ A and

(ii) {k ∈ Z>0 : k < n} ⊆ A =⇒ n ∈ A,

then A = Z>0.

[18] Theorem. Every positive integer has a unique binary expansion.



[19] Theorem. The nth Fibonacci number is

fn = (−1)n
βn+1 − αn+1

β − α

where α, β are the roots of 1− x− x2.

[20] Proposition. If fn denotes the nth Fibonacci number, then lim
n→∞

fn+1

fn
= 1+

√
5

2 .

[21] Quotient-Remainder Theorem. Given a, n ∈ Z with n > 0, there exist unique choices of q, r ∈ Z such
that a = qn+ r and 0 ≤ r < n.

[22] Proposition. Given a ∈ Z, n ∈ Z>0, and r ∈ {0, 1, 2, . . . , n− 1}. Then a (mod n) = r iff n | a− r.

[23] Proposition. Consider the ath row of the multiplication table (mod p). The sum of the kth and (p− k)th

entries is p.

[24] Proposition. The following are equivalent:

(i) The Sudoku Rule: Every row and column of the (mod p) multiplication table contains each of the
numbers {1, 2, . . . , p− 1} exactly once.

(ii) If a 6≡ 0 (mod p) and ax ≡ ay (mod p), then x ≡ y (mod p).

(iii) If k` ≡ 0 (mod p), then one of k or ` must be ≡ 0 (mod p).

(iv) If p | k`, then p | k or p | `.

[25] Theorem. If p is prime and k and ` are positive integers such that p | k`, then p | k or p | `.

[26] Fermat’s Little Theorem. Given a prime p, ap−1 ≡ 1 (mod p) for every a 6≡ 0 (mod p).

[27] Newton’s Binomial Theorem. We have

(x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

k

)
xn−kyk + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn

where
(
n
k

)
denotes the number of ways of picking k objects out of a set of n objects.

[28] Proposition.
(
n
k

)
= n!

k!(n−k)!

[29] Theorem. Given a finite set S, let P(S) denote its power set. Then |P(S)| = 2|S|.

[30] Proposition. The number of optimal routes from the origin to a point (m,n) on the integer grid is
(
m+n
m

)
.

[31] Proposition. There’s no way to cross each of the seven bridges of Königsberg exactly once.
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