Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

MATH 200 : DISCRETE MATH

Results proved in class

- [1] Proposition. The n^{th} triangular number (denoted T_n) is $\frac{n(n+1)}{2}$. (Two proofs.)
- [2] Theorem. $\sqrt{2}$ is irrational (two proofs, both using the well-ordering principle).
- [3] Lemma. Every integer $n \ge 2$ has a prime factor.
- [4] *Theorem.* There are infinitely many primes.
- [5] Theorem. A conditional and its contrapositive are logically equivalent.
- [6] Proposition. Given $n \in \mathbb{Z}$. Then $n^2 1$ is a perfect square if and only if $n = \pm 1$.
- [7] Proposition. The function $f: \mathbb{Z}_{>0}^2 \to \mathbb{Z}_{>0}$ defined by $(x, y) \mapsto 2^x 3^y$ is injective, but not surjective.
- [8] Proposition. $\mathbb{Q}_{>0}$ is countable.
- [9] Theorem. The set (0,1) is uncountable.
- [10] Theorem. Given any set S, the cardinality of its power set $\mathcal{P}(S)$ is strictly larger than that of S.
- [11] Proposition. $(0,1) \approx (-1,1)$.
- [12] Theorem. $(0,1) \approx \mathbb{R}$. (A visualization with explanation suffices for this one.)
- [13] Proposition. In any set of 51 distinct integers from $\{1, 2, ..., 100\}$, two must be consecutive.
- [14] *Proposition.* In any set of five points on the surface of a sphere, four of them must lie on a single hemisphere.
- [15] Theorem. (Induction) If $\mathcal{A} \subseteq \mathbb{Z}_{>0}$ satisfies
 - (i) $1 \in \mathcal{A}$ and (ii) $n \in \mathcal{A} \implies n+1 \in \mathcal{A}$,
 - then $\mathcal{A} = \mathbb{Z}_{>0}$.
- [16] Proposition. $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2$ for any positive integer n.
- [17] Theorem. (Strong Induction) If $\mathcal{A} \subseteq \mathbb{Z}_{>0}$ satisfies
 - (i) $1 \in \mathcal{A}$ and
 - (ii) $\{k \in \mathbb{Z}_{>0} : k < n\} \subseteq \mathcal{A} \implies n \in \mathcal{A},$

then
$$\mathcal{A} = \mathbb{Z}_{>0}$$
.

[18] Theorem. Every positive integer has a unique binary expansion.

[19] Theorem. The n^{th} Fibonacci number is

$$f_n = (-1)^n \frac{\beta^{n+1} - \alpha^{n+1}}{\beta - \alpha}$$

where α, β are the roots of $1 - x - x^2$.

- [20] Proposition. If f_n denotes the n^{th} Fibonacci number, then $\lim_{n \to \infty} \frac{f_{n+1}}{f_n} = \frac{1+\sqrt{5}}{2}$.
- [21] Quotient-Remainder Theorem. Given $a, n \in \mathbb{Z}$ with n > 0, there exist unique choices of $q, r \in \mathbb{Z}$ such that a = qn + r and $0 \le r < n$.
- [22] Proposition. Given $a \in \mathbb{Z}$, $n \in \mathbb{Z}_{>0}$, and $r \in \{0, 1, 2, \dots, n-1\}$. Then $a \pmod{n} = r$ iff $n \mid a r$.
- [23] *Proposition.* Consider the a^{th} row of the multiplication table (mod p). The sum of the k^{th} and $(p-k)^{\text{th}}$ entries is p.
- [24] *Proposition*. The following are equivalent:
 - (i) The Sudoku Rule: Every row and column of the (mod p) multiplication table contains each of the numbers $\{1, 2, \ldots, p-1\}$ exactly once.
 - (ii) If $a \not\equiv 0 \pmod{p}$ and $ax \equiv ay \pmod{p}$, then $x \equiv y \pmod{p}$.
 - (iii) If $k\ell \equiv 0 \pmod{p}$, then one of k or ℓ must be $\equiv 0 \pmod{p}$.
 - (iv) If $p \mid k\ell$, then $p \mid k$ or $p \mid \ell$.
- [25] Theorem. If p is prime and k and ℓ are positive integers such that $p \mid k\ell$, then $p \mid k$ or $p \mid \ell$.
- [26] Fermat's Little Theorem. Given a prime $p, a^{p-1} \equiv 1 \pmod{p}$ for every $a \not\equiv 0 \pmod{p}$.
- [27] Newton's Binomial Theorem. We have

$$(x+y)^{n} = \binom{n}{0}x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \dots + \binom{n}{k}x^{n-k}y^{k} + \dots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^{n}$$

where $\binom{n}{k}$ denotes the number of ways of picking k objects out of a set of n objects.

- [28] Proposition. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- [29] Theorem. Given a finite set S, let $\mathcal{P}(S)$ denote its power set. Then $|\mathcal{P}(S)| = 2^{|S|}$.
- [30] Proposition. The number of optimal routes from the origin to a point (m, n) on the integer grid is $\binom{m+n}{m}$.
- [31] *Proposition*. There's no way to cross each of the seven bridges of Königsberg exactly once.