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We began by proving our conjecture from last time.

Proposition 1. Given two linear maps f, g : R2 → R2. Then

det(f ◦ g) = (det f)(det g).

Proof. Since f and g are linear, we can write them as matrices, say,

f =

(
a b
c d

)
and g =

(
` m
n p

)
It follows from our earlier work that f ◦ g is also a linear map, and has the matrix

f ◦ g =

(
a`+ bn am+ bp
c`+ dn cm+ dp

)
Thus we have

det f = ad− bc det g = `p−mn det(f ◦ g) = (a`+ bn)(cm+ dp)− (am+ bp)(c`+ dn)

A straightforward computation verifies the identity det(f ◦ g) = (det f)(det g). �

Recall from last lecture that we asserted (without proof) that the quantity det f determines how f scales area.
Thus far we’ve rigorously proved only one special case of this: that the image under f of S (the unit square
with lower left corner at the origin) has area det f . We now use the proposition above to generalize this a bit:

Proposition 2. Suppose f : R2 → R2 is a linear map. Then

area f(R) = (det f) · areaR
whereR denotes the r × s rectangle with lower left corner at the origin.

The proof is most easily understood via the illustration below:
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Proof of Proposition. We first observe that R is the image of the unit square S under a pretty simple linear
map:

R =

(
r 0
0 s

)
S.

It follows that

f(R) = f ◦
(
r 0
0 s

)
S.
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Using Proposition 13.1 and Proposition 1, we see that

area f(R) = det

(
f ◦
(
r 0
0 s

))
= (det f) · det

(
r 0
0 s

)
= (det f) · rs = (det f) · areaR �

Next, we turned to a new topic:

VECTORS

Consider the linear map f : R2 → R2 defined by

f(x, y) := (x− y, 2x− y).

From your homework, you know that f maps line segments to line segments. For example:
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Or another example:
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The curious thing about the above is that if we remove the coordinate axes, both of them look like this:

L f−→ f(L)



Having removed the axes (and therefore any hope of labeling the endpoints), it’s a bit trickier to describe L.
Certainly, we can no longer write L as a set of points, since we have no way to label them! How else can we
describe it? Well, we can view L as a path from one endpoint to the other, and describe that path. Better yet,
all we have to do is to describe the relationship between the two endpoints; once we do that, it’s an easy task
to connect them with a straight line segment. For example, the relationship between the endpoints of L can be
described as follows:

Move 2 units to the right and 1 unit up.
Note that this instruction does not depend on where we start: pick any point A, follow the instructions above
to arrive at a second point B, and now connect A to B, and you have drawn L!

Because it’s tiresome to write everything in words, we introduce a couple of symbols. Let ~e1 denote ‘move
one unit to the right’ and ~e2 denote ‘move one unit up’. (The arrows are there to remind you that these variables
aren’t numbers or points, but instead are a direction of motion.) Using this notation, we can write L more
succinctly as

L = 2~e1 + ~e2.

Similarly,
f(L) = ~e1 + 3~e2.

Or to put it all in a single equation:
f(2~e1 + ~e2) = ~e1 + 3~e2. (†)

Now, we haven’t actually proved that this is true yet – all we did was to verify this in the two cases of starting
point (0, 0) and starting point (−1,−1). By contrast, (†) asserts a relationship which holds no matter which
starting point you choose. We will pick this up next time.


