LINEAR ALGEBRA: LECTURE 21

LEO GOLDMAKHER

We started by making explicit something we’ve dealt with before: function composition is associative. What
does this mean? Given three function f, g, h : R*? — R2, consider the composition f o g o h. This is clearly
a function from R? to R?, but there is something fishy about this expression. The operation o is a way of
combining two functions to form a single function; we’re trying to compose three functions, but we can only
compose two at a time. The question is, does f o go hmean (f o g)ohor fo(goh)? A bit of thought shows
that either is fine:

(remren )@ =7 on)(n@) = £(s(n0)) ) = £ (o n)@) = (7o taom )@

for any z, whence (f o g) o h = f o (g o h). To sum up, even though the symbol f o g o h is in principle
ambiguous, it is perfectly well-defined — the two reasonable interpretations of the symbol turn out to be the
same. This property of o is called associativity. (By contrast, the operation + is not associative: 4 + 2 + 2
either equals 1 or 4, depending on your interpretation of where the parentheses go.) One consequence of o’s
associativity is that

frof=folf

since both are interpretations of f o f o f.
Having discussed associativity, we turned to Fibonacci numbers. Recall the Fibonacci sequence is

1,1,2,3,5,8,13,21, 34, 55,89, . ..

where each term is the sum of the two previous terms and the sequence begins with two 1’s. For convenience,
let us label the n™ term of this sequence by f, (so that, for example, f; = 3). It is also convenient to define
fo := 0. We can give a more succinct definition of the Fibonacci sequence via the recursion

fOZOa f1:1, fn+1:fn+fn—1 Vn > 1.
Question. What’s fi000? More generally, is there an efficient way to calculate f, for any n?

Last time we empirically discovered a connection between Fibonacci numbers and powers of a certain matrix.
We state and prove this now.

Proposition 1. For all integers n > 1 we have LN (o o :
10 fn fn—l

Proof. We prove this by a method known as induction. A quick computation shows that the claim holds for

n=1:
(G-
1 o) \f fo

Next, suppose that we happen to know that for some particular integer n,

<1 1)"_(fn+1 fn>
1 O - fn fn—l ’
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Then (by associativity) we have
1" 1 N1 1 (far fa N (11
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_ <fn+1 + fn fn+1> _ (fn+2 fn+1>
fn+fn—1 fn fn+1 fn '

whenever the claim holds true for some integer n, it must continue to hold true for the integer n + 1.

Thus, we have proved that

At the very beginning of this proof we saw that the claim holds for n = 1. Applying the italicized sentence
above, we immediately deduce (without any calculation!) that the claim must also hold for n = 2. Again
applying the italicized sentence we find that the claim must also hold for n = 3. We can continue in this way
as long as we like, therefore showing that the claim holds for all integers larger than 1. U

A proof of this type is called a proof by induction because it involves showing that if some property holds for
the number n, then this induces the property for the number n + 1.
999
The above result suggests an approach to finding the 1000th Fibonacci number: evaluate G (1) . At

first glance, this seems more difficult than the original question of determining the 1000th Fibonacci number —
composing the map G (1)) with itself 999 times doesn’t sound appealing. However, we will develop a method

which will allow us to raise this matrix to a large power very easily. To do this, we first discuss the concept of
similarity.

Given a line £ through the origin, let o, : R? — R? denote the reflection across £; on your midterm, you
proved that o, is linear. How could one determine the matrix of o,? It’s far from obvious by brute force.
However, we can change our point of view to greatly simplify our desired operation: first rotate £ until it’s

horizontal, then apply p = ((1) _01>, and finally rotate £ back to its original position. In symbols:

or = R_gpRy

where 6 is chosen so that Ry (L) is horizontal. We know the matrices of all three of the linear maps on the right
hand side, which means it is now a straightforward calculation to determine the matrix of o.

Here’s another example of this trick. We know how to rotate around the origin by 6; simply apply the map
Ry. What if we wish to instead rotate by @ around some other point p € R?? First translate the plane until p
is in the position of the origin; then apply the standard rotation map; then translate back to put p in its original
location. In symbols: T, R¢T",,.

In both examples above, we performed a complicated operation by first changing our perspective, then per-
forming a similar (but simpler!) operation, then changing our perspective back to the original point of view.
This motivates the following definition.

Definition. Given two linear maps f, g : R? — R2. We say f is similar to g, denoted f ~ g, if and only if
there exists a nonsingular linear map P such that f = P~1gP.

The intuition is as above: to understand f, we first put on some glasses which change our perception of the plane
(i.e., we apply P), then perform some simpler-to-understand operation (i.e., apply the map ¢), then remove our
glasses to look upon our work. (The choice of the word similar is because often f and g are similar types of
functions. For example, o, ~ p, and both are reflections across a line.)

Proposition 2. Similarity enjoys the following properties:
(1) (Reflexivity) f ~ f

f you find this unsatisfying, perhaps you would prefer this proof by contradiction. Suppose the claim is false at some point, and
let IV denote the smallest integer at which the claim fails. Then the claim must hold at N — 1. But we just showed that whenever the
claim holds at an integer, it must continue to hold at the next largest integer. Contradiction!



(2) (Symmetry) If f ~ g, then g ~ f
(3) (Transitivity) If f ~ gand g ~ h, then f ~ h

Any relation which satisfies these three properties is called an equivalence relation; thus ~ is an equivalence
relation. Another example of an equivalence relation is the notion of congruence = from Euclidean geometry.
However, equivalence relations aren’t restricted to math. All stereotyping is based on an implicit equivalence
relation. For example, we could consider two people equivalent iff they have the same hair color; this effec-
tively reduces any person to their hair color. This method of comparing two people is another example of an
equivalence relation. (Can you verify this?)

What does any of this have to do with our original question about Fibonacci numbers? Well, suppose

G (1)) ~ ¢ for some map ¢g. By definition, this means
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Thus, if we can find a matrix g which is similar to

This implies that

Similarly, for any n > 1 we have

11 . .
1 0 and is easy to raise to powers, we’ll be able to make
progress on our Fibonacci problem. There are many examples of maps which are easy to raise to powers. One
set of particularly nice ones are the diagonal matrices:

68 - #)

Thus our new goal becomes to determine a diagonal map g ~ G (1)) . We will take this up next lecture.



