
LINEAR ALGEBRA: LECTURE 22–24

LEO GOLDMAKHER

1. A COMMENT ON NOTATION

Thus far, we’ve been writing points in the form (a, b) or
(
a
b

)
and vectors in the form a~e1 + b~e2. I’ve been

insisting on this to emphasize the distinction between points and vectors. However, as we’ve seen, linear maps
can’t distinguish between the two. Since this is a course on linear algebra (and therefore concerned almost
exclusively with linear maps) we will use point notation to denote both points and vectors. In other words, we

will write
(
a
b

)
instead of a~e1 + b~e2.

2. AN EXPLICIT FORMULA FOR FIBONACCI NUMBERS

Recall that we are trying to find a formula for the nth Fibonacci number fn using matrices. Our strategy

(described last time) is to find a diagonal matrix which is similar to
(
1 1
1 0

)
, say,(

λ1 0
0 λ2

)
= P−1

(
1 1
1 0

)
P. (1)

We thus rephrase our goal as follows:

Question 1. Do there exist λ1, λ2 ∈ R and an invertible matrix P such that (1) holds?

If the answer to this question is affirmative, then it would follows that(
1 1
1 0

)
P = P

(
λ1 0
0 λ2

)
whence (

1 1
1 0

)
P (~e1) = P

(
λ1 0
0 λ2

)
(~e1) = P (λ1~e1) = λ1P (~e1). (2)

Further, note that P (~e1) 6= 0, since we are hoping to find an invertible map P . (Can you justify this sentence?)
Thus, to have any hope of answering Question 1 in the affirmative, we must be able to find a number λ and a
vector ~v such that (

1 1
1 0

)
~v = λ~v. (3)

In other words, we wish to find some nonzero vector ~v such that when we apply
(
1 1
1 0

)
to it we get the same

vector back, just stretched out by a factor of λ. Note that no matter what λ and ~v are, there’s one map which
has the desired effect: (

λ 0
0 λ

)
~v = λ~v.

Thus, we wish to find λ and ~v such that (
1 1
1 0

)
~v =

(
λ 0
0 λ

)
~v
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or equivalently (
1− λ 1
1 −λ

)
~v = 0.

Recall from above that ~v 6= 0. What sort of linear map sends a nonzero vector to the zero vector? Only a
singular one! (Can you explain why?) Thus, we deduce that we must have

det

(
1− λ 1
1 −λ

)
= 0,

or in other words,
λ2 − λ− 1 = 0.

Recall that we’re searching for a number λ and a nonzero vector ~v which satisfy the relation (3). What we’ve
just proved is that if these exist, then

λ =
1±
√
5

2
Set

λ1 :=
1 +
√
5

2
and λ2 :=

1−
√
5

2
Returning to (3), it remains to find some nonzero vector ~v1 such that(

1 1
1 0

)
~v1 = λ1~v1.

How do we construct such a vector? The most natural approach is to write ~v1 =

(
x
y

)
, plug it in above, and

solve for x and y. When we did this in class, we discovered that x = λ1y and that y satisfies (λ21−λ1−1)y = 0.
Note that the latter relationship holds for every y! (Why is this?) Although this looks like a failure at first glance,
it’s actually a success – this tells us that we can choose y to be anything, and then set x = λ1y. For example,
we can take

~v1 :=

(
λ1
1

)
With this choice, it is easy to verify that (

1 1
1 0

)
~v1 = λ1~v1.

Going back to (2) shows that we’d like to find an invertible map P such that

P (~e1) = ~v1 =

(
λ1
1

)
The exact same arguments show that we’d like

P (~e2) =

(
λ2
1

)
Combining the two previous statements tells us how to choose P :

P =

(
λ1 λ2
1 1

)
Now that we’ve determined λ1, λ2, and P , it’s straightforward to verify (1).

Having done all of this, it’s not so hard to find an explicit formula for the nth Fibonacci number. Manipulating
(1), we see that (

1 1
1 0

)
= P

(
λ1 0
0 λ2

)
P−1



(make sure you can explain why!). Raising both sides to the nth power gives(
fn+1 fn
fn fn−1

)
=

(
1 1
1 0

)n
= P

(
λn1 0
0 λn2

)
P−1 =

(
λ1 λ2
1 1

)(
λn1 0
0 λn2

)(
λ1 λ2
1 1

)−1

=

(
∗ ∗

λn1−λn2
λ1−λ2 ∗

)
It follows that

fn =
λn1 − λn2
λ1 − λ2

where λ1, λ2 are the two solutions to the equation λ2 − λ− 1 = 0. We’ve discovered our formula!

3. SPECTRAL THEORY

The key to figuring out the formula for fn above was finding numbers λ1 and λ2, along with an invertible
matrix P , such that (

1 1
1 0

)
= P

(
λ1 0
0 λ2

)
P−1

In addition to being useful for calculating powers of
(
1 1
1 0

)
, this gives us a nice geometric interpretation of

the action of
(
1 1
1 0

)
on the plane. Recall from above that(

1 1
1 0

)
~vj = λj~vj

where P (~e1) = ~v1 and P (~e2) = ~v2. In other words, P is the change-of-basis map from ~e1, ~e2 to ~v1, ~v2, and if we

replace the usual coordinate system (generated by ~e1 and ~e2) by the one generated by ~v1 and ~v2, then
(
1 1
1 0

)
has a simple geometric description: it stretches the plane out by a factor of λ1 in the ~v1 direction and by λ2 in
the ~v2 direction.

Let’s generalize this. Suppose f : R2 → R2 is a linear map. Suppose we can find numbers λ1, λ2 and an
invertible matrix P such that

f = P

(
λ1 0
0 λ2

)
P−1.

This is called the spectral decomposition of f , and it gives us a nice way to interpret f . Think of P as the
change-of-basis matrix from ~e1, ~e2 to some vectors ~v1, ~v2. Then it is straightforward to verify that

f(~v1) = λ1~v1 and f(~v2) = λ2~v2

Now label each point of the plane in terms of how to get there using ~v1 and ~v2. For example:

(2, 1)

(3,−1)

(−3, 2)

~v1

~v2



Once we adopt this perspective, it’s very easy to describe what f does to any point: it stretches the first
coordinate by λ1 and the second by λ2. For example, where does f send the point (3,−2) indicated above?
(Note: this isn’t the usual (3,−2); it’s 3~v1 − 2~v2.) Easy: f(3,−2) = (3λ1,−2λ2). The quantities λj and ~vj
play a pivotal role in understanding the spectral decomposition, so they get a special name.

Definition. Given a linear map f : R2 → R2. We say a number λ is an eigenvalue of f if and only if there
exists a nonzero vector ~v such that

f(~v) = λ~v.

In this case, we say ~v is an eigenvector corresponding to the eigenvalue λ.

Example 1. We discovered above that the map
(
1 1
1 0

)
has eigenvalues

λ1 =
1 +
√
5

2
and λ2 =

1−
√
5

2
and that their corresponding eigenvectors are

~v1 =

(
λ1
1

)
and ~v2 =

(
λ2
1

)
One immediate remark is that eigenvectors aren’t uniquely determined.

Proposition 1. Suppose f has eigenvalue λ with corresponding eigenvector ~v. Then α~v is an eigenvector
corresponding to λ for every α 6= 0.

3.1. Finding the spectral decomposition. We now generalize the process used to analyze
(
1 1
1 0

)
to deter-

mine the spectral decomposition of an arbitrary linear map f : R2 → R2. We break the process into a few steps.

STEP 1. Solve the equation det(f − λI) = 0 for λ, where I =

(
1 0
0 1

)
is the identity matrix. The eigenvalues

of f are the solutions to this equation.

Why does this work? Suppose λ is an eigenvalue of f . Then by definition, there exists a
nonzero ~v such that f(~v) = λ~v. Just as in the Fibonacci example, this happens iff ∃~v 6= 0
such that (f − λI)~v = 0. But this is occurs iff the map f − λI is singular.

STEP 2. Solve the equation f(x, 1) = (λx, λ) for x. Then ~v :=

(
x
1

)
is an eigenvector corresponding to λ.

Why does this work? We found an eigenvalue λ above, and we wish to find a corresponding
eigenvector ~v. Since any rescaling of ~v remains an eigenvector, we may as well rescale in such

a way that ~v =

(
x
1

)
. Now by definition, ~v must satisfy the equation f(~v) = λ~v.

STEP 3. Say the two eigenvalues of f are λ1 and λ2, with corresponding eigenvectors ~v1 =
(
a
c

)
and ~v2 =

(
b
d

)
.

Let P :=

(
a b
c d

)
. Then f = P

(
λ1 0
0 λ2

)
P−1.

Why is this? A good exercise!

Before exploring specific examples, let’s try to predict what sorts of problems might arise in the steps above.
In Step 1, we might only find a single eigenvalue; when this happens, this usually bodes ill for the spectral
decomposition, as we shall see below. In Step 2, it’s possible that ~e1 is an eigenvector, in which case no
renormalization would make it possess the form we described. Finally, in Step 3, we need to worry about the



possibility that P is not invertible. These fears are all justified, and some of these problems are fatal to the
process. In fact, as we shall see, not every linear map admits a spectral decomposition. By contrast, every
linear map admits a Singular Value Decomposition. (On the other hand, when a map does admit a spectral
decomposition, it’s much easier to find than the SVD.)

Let’s explore a few representative examples.

EX. 1. f =

(
1 3
5 3

)
To find the eigenvalues, we first solve the equation

det(f − λI) = 0

for λ. The LHS is

det

((
1 3
5 3

)
−
(
λ 0
0 λ

))
= det

(
1− λ 3
5 3− λ

)
= (1− λ)(3− λ)− 15.

Expanding this, setting equal to zero, and solving yields λ = −2, 6. Let’s set

λ1 := −2 and λ2 := 6.

These are the eigenvalues.

Next, we find corresponding eigenvectors. We first solve the equation(
1 3
5 3

)(
x
1

)
= −2

(
x
1

)
From this we easily deduce that x = −1, whence our first eigenvector is ~v1 :=

(
−1
1

)
.

Similarly, solving (
1 3
5 3

)(
x
1

)
= 6

(
x
1

)
yields x = 3/5, whence ~v2 :=

(
3/5
1

)
. If we wish, we can make this look nicer by rescaling

it to ~v2 :=
(
3
5

)
.

The final step of the process is to determine the change of basis map P :

P :=

(
−1 3
1 5

)
Thus, our spectral decomposition is(

1 3
5 3

)
= P

(
−2 0
0 6

)
P−1

EX. 2. Rπ/2 =

(
0 −1
1 0

)
As before, we begin by finding the eigenvalues of Rπ/2 via the equation

det(Rπ/2 − λI) = 0.

This equation can be rewritten as

λ2 + 1 = 0,



so the eigenvalues of Rπ/2 are λ1 = i and λ2 = −i. Next, we find the corresponding eigen-

vectors. Write ~v1 =
(
x
1

)
; we’re supposed to solve(

0 −1
1 0

)(
x
1

)
= i

(
x
1

)
,

which immediately yields x = i. It follows that ~v1 =

(
i
1

)
. A similar argument shows that

~v2 =

(
−i
1

)
. Finally, let P be the change-of-basis

P =

(
i −i
1 1

)
.

Then we have the spectral decomposition

Rπ/2 = P

(
i 0
0 −i

)
P−1.

Note that we’ve successfully found a spectral decomposition of Rπ/2, but only if we allow
ourselves to use imaginary numbers. This is a bit odd, since the original function Rπ/2 has
nothing to do with imaginary numbers! This hints at a connection between rotations in R2 and
complex numbers. On the other hand, a bit more thought shows that it’s not unreasonable that
the spectral decomposition of a rotation should be unusual, since a rotation doesn’t stretch the
plane in any direction.

EX. 3. g =
(

1 1
−1 3

)
Following the above procedure, we find that the only eigenvalue of g is λ = 2. Continuing

along shows that the only eigenvectors of g are scalar multiples of
(
1
1

)
. It follows that any

change-of-basis matrix P would not be invertible, which means that g has no spectral decom-
position. An alternative way to express this is that g is not diagonalizable.

Note that we could have seen that g wasn’t diagonalizable without solving for the eigenvalues.
For, suppose g did have a spectral decomposition. Since we know the only eigenvalue is 2, we
would be able to write

g = P

(
2 0
0 2

)
P−1

for some matrix P . But this would immediately imply g =
(
2 0
0 2

)
, which isn’t the case! Put

differently, we’ve just shown that the only diagonalizable matrix with both eigenvalues equal
to 2 is 2I .
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