LINEAR ALGEBRA: LECTURE 22-24

LEO GOLDMAKHER

1. A COMMENT ON NOTATION

Thus far, we’ve been writing points in the form (a, b) or and vectors in the form aé} + be,. I've been

a
b
insisting on this to emphasize the distinction between points and vectors. However, as we’ve seen, linear maps
can’t distinguish between the two. Since this is a course on linear algebra (and therefore concerned almost

exclusively with linear maps) we will use point notation to denote both points and vectors. In other words, we

) . ay . - 5
will write ( instead of ae; + bé,.

b

2. AN EXPLICIT FORMULA FOR FIBONACCI NUMBERS
Recall that we are trying to find a formula for the n™ Fibonacci number f,, using matrices. Our strategy

(described last time) is to find a diagonal matrix which is similar to G (1)) , say,
A0y (11
(b n)=r"(1 )7 d

Question 1. Do there exist A1, Ay € R and an invertible matrix P such that (1) holds?

We thus rephrase our goal as follows:

If the answer to this question is affirmative, then it would follows that
11 _ A O
(1 O)P_P<O /\2)

G (1)> p(ey) =P ()(\)1 /{)2) (€1) = P(\i€1) = A P(ér). )

Further, note that P(¢}) # 0, since we are hoping to find an invertible map P. (Can you justify this sentence?)
Thus, to have any hope of answering Question 1 in the affirmative, we must be able to find a number A and a

vector U such that
11\, .
(1 O) U= \. 3)

. . 11 )
In other words, we wish to find some nonzero vector v such that when we apply (1 0) to it we get the same

whence

vector back, just stretched out by a factor of \. Note that no matter what A and ¢ are, there’s one map which
has the desired effect:

Thus, we wish to find A and ¥ such that
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or equivalently

(1IA_3>6:0

Recall from above that ¥ # 0. What sort of linear map sends a nonzero vector to the zero vector? Only a
singular one! (Can you explain why?) Thus, we deduce that we must have

1—X 1
det( 1 _)\):0,

M —A—-1=0.
Recall that we’re searching for a number \ and a nonzero vector ¢ which satisfy the relation (3). What we’ve
just proved is that if these exist, then
1£45
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or in other words,

A
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5 and Ay 1= 5

Returning to (3), it remains to find some nonzero vector #; such that

1 1)\ . -
(1 0) ’1}1:)\1111.

. I x .
How do we construct such a vector? The most natural approach is to write v; = (y) plug it in above, and

)\1 =

solve for z and y. When we did this in class, we discovered that x = A,y and that y satisfies (\2 —\; — 1)y = 0.
Note that the latter relationship holds for every y! (Why is this?) Although this looks like a failure at first glance,
it’s actually a success — this tells us that we can choose y to be anything, and then set z = A\;y. For example,

we can take
— .- Al
1 -— 1

1 1)\, -
(1 0) U1 :>\1U1.

Going back to (2) shows that we’d like to find an invertible map P such that

With this choice, it is easy to verify that

- ()

Combining the two previous statements tells us how to choose P:

(M
r= (i )

Now that we’ve determined \;, Ao, and P, it’s straightforward to verify (1).
Having done all of this, it’s not so hard to find an explicit formula for the n'" Fibonacci number. Manipulating

(1), we see that
1 1\ A0 1
(o)="(s v)7



(make sure you can explain why!). Raising both sides to the n™ power gives

i )=o) = ()= ) (TR (G ) = (e )
frn fa1 1 0 0 A} 1 1 0 A3/ \1 1 vl
It follows that
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where \{, \, are the two solutions to the equation A\ — X\ — 1 = 0. We’ve discovered our formula!

3. SPECTRAL THEORY

The key to figuring out the formula for f,, above was finding numbers \; and ), along with an invertible

matrix P, such that
1 1\ A O 1
(0)=r(5 %)

In addition to being useful for calculating powers of G é), this gives us a nice geometric interpretation of

the action of (1 1) on the plane. Recall from above that

10
]— ]- — —
(1 0) vj = AjUj

where P(€7) = v; and P(e3) = vs. In other words, P is the change-of-basis map from €7, €, to ¥, U, and if we

replace the usual coordinate system (generated by €] and é5) by the one generated by #; and ¥, then 1 (1)

has a simple geometric description: it stretches the plane out by a factor of )\, in the ¥; direction and by A, in

the v direction.
Let’s generalize this. Suppose f : R? — R? is a linear map. Suppose we can find numbers \;, Ay and an

invertible matrix P such that
_ A O 1
for(y D)

This is called the spectral decomposition of f, and it gives us a nice way to interpret f. Think of P as the
change-of-basis matrix from €7, €5 to some vectors v, . Then it is straightforward to verify that

f(ﬁl) =\ and f(?72) = Aol

Now label each point of the plane in terms of how to get there using v, and v>. For example:




Once we adopt this perspective, it’s very easy to describe what f does to any point: it stretches the first
coordinate by \; and the second by \,. For example, where does f send the point (3, —2) indicated above?
(Note: this isn’t the usual (3, —2); it’s 30; — 20,.) Easy: f(3,—2) = (3A;, —2)2). The quantities \; and ¥
play a pivotal role in understanding the spectral decomposition, so they get a special name.

Definition. Given a linear map f : R? — R2. We say a number ) is an eigenvalue of f if and only if there
exists a nonzero vector ¢ such that

f(¥) = M.
In this case, we say ¥ is an eigenvector corresponding to the eigenvalue \.

Example 1. We discovered above that the map G é) has eigenvalues

1 5 1-—
= V5 and Ay =
2 2

and that their corresponding eigenvectors are

U = ()il) and Uy = (?)

One immediate remark is that eigenvectors aren’t uniquely determined.

S

A

Proposition 1. Suppose f has eigenvalue \ with corresponding eigenvector v. Then av is an eigenvector
corresponding to \ for every o # 0.

- . . 11
3.1. Finding the spectral decomposition. We now generalize the process used to analyze <1 O) to deter-

mine the spectral decomposition of an arbitrary linear map f : R? — R?. We break the process into a few steps.

STEP 1. Solve the equation det(f — AI) = 0 for A, where [ = (é (1)) is the identity matrix. The eigenvalues
of f are the solutions to this equation.
Why does this work? Suppose X is an eigenvalue of f. Then by definition, there exists a

nonzero U such that f(U) = A\U. Just as in the Fibonacci example, this happens iff 307 # 0
such that (f — M)t = 0. But this is occurs iff the map [ — M\ is singular.

STEP 2. Solve the equation f(x,1) = (Az, A) for x. Then ¢ := (f) is an eigenvector corresponding to \.
Why does this work? We found an eigenvalue )\ above, and we wish to find a corresponding
eigenvector v. Since any rescaling of U remains an eigenvector, we may as well rescale in such

. Now by definition, U must satisfy the equation f (V) = \U.

a way that v = (f

STEP 3. Say the two eigenvalues of f are A\; and \,, with corresponding eigenvectors v; = (Z) and v, = (Z) .

LetP.—(C d).Thenf—P(O )\Q)P .

Why is this? A good exercise!

Before exploring specific examples, let’s try to predict what sorts of problems might arise in the steps above.
In Step 1, we might only find a single eigenvalue; when this happens, this usually bodes ill for the spectral
decomposition, as we shall see below. In Step 2, it’s possible that €; is an eigenvector, in which case no
renormalization would make it possess the form we described. Finally, in Step 3, we need to worry about the



possibility that P is not invertible. These fears are all justified, and some of these problems are fatal to the
process. In fact, as we shall see, not every linear map admits a spectral decomposition. By contrast, every
linear map admits a Singular Value Decomposition. (On the other hand, when a map does admit a spectral
decomposition, it’s much easier to find than the SVD.)

Let’s explore a few representative examples.

Ex. 1. f= (; g)

To find the eigenvalues, we first solve the equation
det(f —AI)=0
for A\. The LHS is

det<(; )-() g)):det(ly ,25) = NE-n 15

Expanding this, setting equal to zero, and solving yields A = —2, 6. Let’s set
A= —2 and Ay 1= 6.

These are the eigenvalues.

Next, we find corresponding eigenvectors. We first solve the equation

)06

From this we easily deduce that x = —1, whence our first eigenvector is v; := (_11)
Similarly, solving
1 3\ [z x
63 ()=o)
. . (35 . . . .
yields z = 3/5, whence v, := 1) If we wish, we can make this look nicer by rescaling

itto Uy := 3
Vg = 5]
The final step of the process is to determine the change of basis map P:
-1 3
r=(3 )

Thus, our spectral decomposition is
1 3\ -2 0\ -1
G 3)-r (v 6)r

As before, we begin by finding the eigenvalues of R/, via the equation
det(Rrj2 — AI) = 0.
This equation can be rewritten as

N 4+1=0,



so the eigenvalues of R, /; are A\; = 7 and A, = —¢. Next, we find the corresponding eigen-

N x ,
vectors. Write v; = (1) ; we’re supposed to solve

0 =1\ (z\ . (=
1 0)\1)""\1 )
which immediately yields z = ¢. It follows that v; = (i) A similar argument shows that

Uy = (_Z) . Finally, let P be the change-of-basis

1
v —1
r=(1 7).

Then we have the spectral decomposition

0 -
Rﬂ—/QZP(O _Z)P 1.

Note that we’ve successfully found a spectral decomposition of R/, but only if we allow
ourselves to use imaginary numbers. This is a bit odd, since the original function ./, has
nothing to do with imaginary numbers! This hints at a connection between rotations in R? and
complex numbers. On the other hand, a bit more thought shows that it’s not unreasonable that
the spectral decomposition of a rotation should be unusual, since a rotation doesn’t stretch the
plane in any direction.

1 1
-1 3
Following the above procedure, we find that the only eigenvalue of g is A = 2. Continuing

along shows that the only eigenvectors of g are scalar multiples of 1). It follows that any

1
change-of-basis matrix P would not be invertible, which means that g has no spectral decom-
position. An alternative way to express this is that g is not diagonalizable.

Note that we could have seen that g wasn’t diagonalizable without solving for the eigenvalues.
For, suppose g did have a spectral decomposition. Since we know the only eigenvalue is 2, we

would be able to write
B 2 0 1
g=~P (0 2) P

for some matrix P. But this would immediately imply g = , which isn’t the case! Put

2

0 2
differently, we’ve just shown that the only diagonalizable matrix with both eigenvalues equal
to21s 2/.
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