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In class we made the following

Definition. The dimension of a vector space V is the number of elements in a basis of V .

There’s something fishy about this definition. We’ve seen that a vector space might have more than one basis.
Thus, for the notion of dimension to be well-defined, we need to know that any two bases of a given vector
space have the same number of elements. This motivates us to prove:

Theorem 1. Any two bases of a vector space V have the same number of elements.

We will deduce this from the following

Lemma 2. Any spanning set of a vector space is at least as large as any linearly independent set.

The proof of this lemma is quite clever. We postpone it temporarily, and instead show how to apply it to give a
short proof of the theorem.

Proof of Theorem 1. Let V be a vector space, and pick any two bases B1 and B2; it suffices to prove these two
have the same number of elements. By the Fundamental Property of Bases, both Bi’s span V and are linearly
independent. In particular, B1 spans V and B2 is linearly independent, and Lemma 2 implies that

#B1 ≥ #B2.
On the other hand, since B2 spans V and B1 is linearly independent, Lemma 2 implies

#B2 ≥ #B1.
Thus #B1 = #B2 as claimed. �

Having dispensed with Theorem 1, we can now focus on Lemma 2. The proof rests on a trick which is usually
called the Steinitz Exchange Trick: given a spanning set S and a linearly independent set L, we substitute
vectors from L into S one at a time without affecting the spanning property of S. Either we run out of vectors
from L to sub in before exhausting S, or else we completely replace S by elements from L. But then we have
a set of linearly independent vectors which span the space, meaning there can’t be any more vectors left over
in L! Let’s make this argument more precise.

Proof of Lemma 2. Let V be a vector space. Suppose

S := {~s1, ~s2, . . . , ~sm} ⊆ V

spans V , and that
L := {~̀1, ~̀2, . . . , ~̀k} ⊆ V

is a set of linearly independent vectors. Our goal is to prove that S is at least as large as L, i.e., that m ≥ k.
Since S spans V , we can express ~̀1 as a linear combination of the elements of S:

~̀
1 = α1~s1 + α2~s2 + · · ·+ αm~sm.

Note that at least one of the αi’s must be nonzero. (Why is this?) Without loss of generality, we may assume
α1 6= 0. It follows that

~s1 =
1

α1

~̀
1 −

α2

α1

~s2 − · · · −
αm

α1

~sm. (1)
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We conclude that {~̀1, ~s2, . . . , ~sm} spans V : any vector can be written as a linear combination of the ~si’s, and
(1) tells us that we can replace ~s1 by a linear combination of ~̀1 and the remaining ~si’s.

Now we iterate this procedure. Since {~̀1, ~s2, . . . , ~sm} spans V , we must be able to write ~̀2 as a linear
combination of {~̀1, ~s2, . . . , ~sm}:

~̀
2 = β1~̀1 + β2~s2 + β3~s3 + · · ·+ βm~sm.

One of the coefficients β2, β3, . . . , βm must be nonzero (why?). WLOG say β2 6= 0. Then we can solve for ~s2:

~s2 = −
β1
β2
~̀
1 +

1

β2
~̀
2 −

β3
β2
~s3 − · · · −

βm
β2
~sm

which shows that {~̀1, ~̀2, ~s3, . . . , ~sm} spans V .
Now we have two possibilities: either k < m, or k ≥ m. In the former case, we’re done with the proof!

If the latter holds, then (continuing the above process) we deduce that {~̀1, ~̀2, . . . , ~̀m} spans V . But this tells
us that any ~̀j with j > m could be written as a linear combination of {~̀1, ~̀2, . . . , ~̀m}, which contradicts the
linear independence of the set L. Thus, we conclude that in this case k = m, and we’re done with the proof in
this case as well. �


