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We begain by proving the theorem we finished with last lecture.

Theorem 1 (Rank-Nullity theorem). Given any linear map T : V → W where V andW are finite dimensional
vector spaces. Then

dim(im T ) + dim(ker T ) = dimV.

Colloquial version. This says that the total amount of data transmitted by T combined with the total amount of
data compression yields the total amount of data prior to transmission.

Proof. Since ker T is a subspace of V , it must also be a finite-dimensional vector space, hence admits a basis
Bker := {~u1, ~u2, . . . , ~uk}. In particular, this set of vectors is linearly independent, so (by problem 8.1) it is
contained in a basis of V , say,

BV = {~u1, . . . , ~uk, ~v1, . . . , ~vi}.
Finally, set

Bim := {T~v1, T~v2, . . . , T~vi}.
I claim that Bim is a basis of im T . We prove this in the usual way, using the Fundamental Property of Bases.

Spanning. Given ~w ∈ im T , we wish the show that ~w can be written as a linear combination of
the elements in Bim . Since ~w ∈ im T , there exists ~v ∈ V such that T~v = ~w. Write ~v in terms
of the basis BV , say,

~v = α1~u1 + · · ·+ αk~uk + β1~v1 + · · ·+ βi~vi.

Then we have
~w = T~v = T (α1~u1) + · · ·+ T (αk~uk) + T (β1~v1) + · · ·+ T (βi~vi)

= β1T~v1 + · · ·+ βiT~vi.

This shows that Bim spans im T . //
Linear Independence. Suppose

γ1T~v1 + · · ·+ γiT~vi = ~0.

Then T (γ1~v1 + · · · + γi~vi) = ~0, whence γ1~v1 + · · · + γi~vi ∈ ker T . Write this vector in terms
of our basis Bker , say,

γ1~v1 + · · ·+ γi~vi = δ1~u1 + · · ·+ δk~uk.

It follows that
γ1~v1 + · · ·+ γi~vi − δ1~u1 − · · · − δk~uk = ~0.

However, the set of vectors appearing in this linear combination are linearly independent (since
they form the basis BV ). It follows that all the coefficients must be 0. In particular,

γ1 = γ2 = · · · = γi = 0.

This shows that the only linear combination of the elements of Bim which produces ~0 is the
trivial one. //

We’ve shown that Bim is a basis of im T . It follows that dim(im T ) = i. We also know from above that
dim(ker T ) = k and dimV = k + i. This concludes the proof of the rank-nullity theorem. �
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One nice way to think about dimension is as a measure of the size of a vector space. For example, which is
larger: the space of 3 × 3 magic squares, or R2? Both of these have infinitely many elements, so it’s hard to
say. However, they have different dimension: the dimension of magic square space is 3, while the dimension
of R2 is 2. Thus the space of 3× 3 magic squares is ‘larger’ than the plane R2.

We reinterpret the Rank-Nullity theorem from this perspective. Fix vector spaces V and W . The theorem
asserts that the smaller the kernel of T is, the more faithfully the image of T captures V in terms of the elements
of W . In particular, the smaller the kernel of T is, the closer T is to being an isomorphism. We will make this
precise below. But first, we demonstrate the utility of the Rank-Nullity theorem.

Proposition 2. Suppose V andW are finite-dimensional vector spaces. Then V is isomorphic toW if and only
if dimV = dimW .

Proof. We prove the two statements separately.

(⇒)
If V is isomorphic W , then there exists an invertible linear map T : V → W . In particular, we
see that ker T = {~0}, and also that T−1(~w) 6= ∅ for every ~w ∈ W . From the latter we deduce
that W = im T . The Rank-Nullity theorem implies

dimV = dimW

as claimed. //
(⇐)

Given dimV = dimW . Then there exists a basis {~v1, . . . , ~vn} of V and a basis {~w1, . . . , ~wn}
of W . Define a map T : V → W by setting

T (α1~v1 + · · ·+ αn~vn) := α1 ~w1 + · · ·+ αn ~wn

for any scalars αi ∈ R. It’s straightforward to check that T is an invertible linear map. //
This concludes the proof. �


