LINEAR ALGEBRA: LECTURE 33

LEO GOLDMAKHER

We begain by proving the theorem we finished with last lecture.

Theorem 1 (Rank-Nullity theorem). *Given any linear map* $T : V \to W$ *where* V *and* W *are finite dimensional vector spaces. Then*

 $\dim(\operatorname{im} T) + \dim(\ker T) = \dim V.$

Colloquial version. This says that the total amount of data transmitted by T combined with the total amount of data compression yields the total amount of data prior to transmission.

Proof. Since ker T is a subspace of V, it must also be a finite-dimensional vector space, hence admits a basis $\mathcal{B}_{\text{ker}} := \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$. In particular, this set of vectors is linearly independent, so (by problem **8.1**) it is contained in a basis of V, say,

$$\mathcal{B}_V = \{\vec{u}_1, \ldots, \vec{u}_k, \vec{v}_1, \ldots, \vec{v}_i\}.$$

Finally, set

$$\mathcal{B}_{\rm im} := \{T\vec{v}_1, T\vec{v}_2, \dots, T\vec{v}_i\}.$$

I claim that \mathcal{B}_{im} is a basis of im T. We prove this in the usual way, using the Fundamental Property of Bases.

Spanning. Given $\vec{w} \in \text{im } T$, we wish the show that \vec{w} can be written as a linear combination of the elements in \mathcal{B}_{im} . Since $\vec{w} \in \text{im } T$, there exists $\vec{v} \in V$ such that $T\vec{v} = \vec{w}$. Write \vec{v} in terms of the basis \mathcal{B}_V , say,

$$\vec{v} = \alpha_1 \vec{u}_1 + \dots + \alpha_k \vec{u}_k + \beta_1 \vec{v}_1 + \dots + \beta_i \vec{v}_i.$$

Then we have

$$\vec{w} = T\vec{v} = T(\alpha_1\vec{u}_1) + \dots + T(\alpha_k\vec{u}_k) + T(\beta_1\vec{v}_1) + \dots + T(\beta_i\vec{v}_i)$$
$$= \beta_1 T\vec{v}_1 + \dots + \beta_i T\vec{v}_i.$$

This shows that \mathcal{B}_{im} spans im T.

Linear Independence. Suppose

$$\gamma_1 T \vec{v}_1 + \dots + \gamma_i T \vec{v}_i = \vec{0}.$$

Then $T(\gamma_1 \vec{v_1} + \cdots + \gamma_i \vec{v_i}) = \vec{0}$, whence $\gamma_1 \vec{v_1} + \cdots + \gamma_i \vec{v_i} \in \ker T$. Write this vector in terms of our basis \mathcal{B}_{ker} , say,

$$\gamma_1 \vec{v}_1 + \dots + \gamma_i \vec{v}_i = \delta_1 \vec{u}_1 + \dots + \delta_k \vec{u}_k.$$

It follows that

$$\gamma_1 \vec{v}_1 + \dots + \gamma_i \vec{v}_i - \delta_1 \vec{u}_1 - \dots - \delta_k \vec{u}_k = \vec{0}$$

However, the set of vectors appearing in this linear combination are linearly independent (since they form the basis \mathcal{B}_V). It follows that all the coefficients must be 0. In particular,

$$\gamma_1 = \gamma_2 = \dots = \gamma_i = 0.$$

This shows that the only linear combination of the elements of \mathcal{B}_{im} which produces $\vec{0}$ is the trivial one.

We've shown that \mathcal{B}_{im} is a basis of im T. It follows that $\dim(\operatorname{im} T) = i$. We also know from above that $\dim(\ker T) = k$ and $\dim V = k + i$. This concludes the proof of the rank-nullity theorem.

//

One nice way to think about dimension is as a measure of the size of a vector space. For example, which is larger: the space of 3×3 magic squares, or R^2 ? Both of these have infinitely many elements, so it's hard to say. However, they have different dimension: the dimension of magic square space is 3, while the dimension of \mathbb{R}^2 is 2. Thus the space of 3×3 magic squares is 'larger' than the plane \mathbb{R}^2 .

We reinterpret the Rank-Nullity theorem from this perspective. Fix vector spaces V and W. The theorem asserts that the smaller the kernel of T is, the more faithfully the image of T captures V in terms of the elements of W. In particular, the smaller the kernel of T is, the closer T is to being an isomorphism. We will make this precise below. But first, we demonstrate the utility of the Rank-Nullity theorem.

Proposition 2. Suppose V and W are finite-dimensional vector spaces. Then V is isomorphic to W if and only if $\dim V = \dim W$.

Proof. We prove the two statements separately.

 (\Rightarrow)

If V is isomorphic W, then there exists an invertible linear map $T: V \to W$. In particular, we see that ker $T = \{\vec{0}\}$, and also that $T^{-1}(\vec{w}) \neq \emptyset$ for every $\vec{w} \in W$. From the latter we deduce that W = im T. The Rank-Nullity theorem implies

$$\dim V = \dim W$$

as claimed.

(⇐)

Given dim $V = \dim W$. Then there exists a basis $\{\vec{v}_1, \ldots, \vec{v}_n\}$ of V and a basis $\{\vec{w}_1, \ldots, \vec{w}_n\}$ of W. Define a map $T: V \to W$ by setting

 $T(\alpha_1 \vec{v}_1 + \dots + \alpha_n \vec{v}_n) := \alpha_1 \vec{w}_1 + \dots + \alpha_n \vec{w}_n$

for any scalars $\alpha_i \in \mathbb{R}$. It's straightforward to check that T is an invertible linear map. This concludes the proof.

//

//