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In the first half of this course, we dealt with linear transformations of the plane; we found that it was con-
venient to represent these maps in the form of a 2 × 2 matrix (although it’s worth pointing out that many of
our proofs were matrix-free). More recently, we’ve been studying linear maps between arbitrary vector spaces.
The goal of today’s lecture is to describe any such linear map as a matrix. As you shall see, this process is
highly reminiscent of the two-dimensional case.

We first discuss coordinates in a vector space. Given a finite-dimensional vector space V , pick a basis of V ,
say, {~v1, ~v2, . . . , ~vn}. Then (by definition) any vector ~v ∈ V can be expressed as a linear combination of the
~vi’s in a unique way: there exists a unique (α1, α2, . . . , αn) ∈ Rn such that

~v = α1~v1 + · · ·+ αn~vn.

We abuse notation and write

~v =


α1

α2
...
αn


This notation explains why we call it a vector space – we can express any element of the vector space using
coordinates, just like we’re used to with ordinary vectors.

A word of caution. Coordinates only make sense once you have specified a basis (and an order on the elements
of the basis). As we have seen, a given vector space has many different bases, and the same vector might have
totally different coordinates depending on which basis you pick.
Recall that we represented linear maps from R2 to R2 by a 2× 2 matrix, whose first column was where ~e1 got
sent and second column where ~e2 got sent. We now develop an analogous matrix representation for abstract
linear maps. Suppose T : V → W is a linear map between two finite-dimensional vector spaces. Pick a basis
{~v1, . . . , ~vn} of V and a basis {~w1, . . . , ~wm} of W . Then we write the matrix of T as

T = (T~v1 T~v2 · · · T~vn)

where each T~vi is a column of numbers. What numbers? Well, since T~v1 ∈ W , we can write T~v1 in terms of
the basis {~w1, . . . , ~wm}, say,

T~v1 = α1 ~w1 + · · ·+ αm ~wm =


α1

α2
...
αm


This is the first column of our matrix for T . We do the same for all the remaining columns. Let’s work out a
couple of examples.

Example 1. Recall that Pn := {anxn + an−1x
n−1 + · · ·+ a1x+ a0 : ai ∈ R ∀i} (in words: Pn is the set of all

polynomials of degree at most n). Let’s try to write down the matrix of the differential operator d
dx

: P3 → P2.

STEP 1. Identify bases of the source and target spaces.
As we’ve discussed previously, a natural basis for Pn is {x0, x1, x2, . . . , xn}. We use this both
for P2 and P3.
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STEP 2. Evaluate where the map sends the basis elements.
We have

d

dx
x0 = 0 = 0x0 + 0x1 + 0x2 =

0
0
0

 .

Similarly, we find

d

dx
x1 = 1 =

1
0
0

 d

dx
x2 = 2x =

0
2
0

 d

dx
x3 = 3x2 =

0
0
3


STEP 3. Write down the matrix.

Making the above images our columns, we find

d

dx
=

0 1 0 0
0 0 2 0
0 0 0 3


Let’s verify that this makes sense, by differentiating a polynomial using this matrix:

d

dx
(2x3 − 9x2 + 5) =

0 1 0 0
0 0 2 0
0 0 0 3




5
0
−9
2


Evaluating this in the usual way – taking the dot product of each row of the matrix by the column vector – we
find 0 1 0 0

0 0 2 0
0 0 0 3




5
0
−9
2

 =

 0
−18
6


Translating these coordinates into an actual polynomial gives 6x2 − 18x. It works!

Example 2. Recall that MSS3(R) denotes the vector space of all 3 × 3 magic squares with real entries. Let
W := {(x, y, z) ∈ R3 : z = x+ y}, and consider the linear map T :MSS3(R)→ W defined by

T

 a b ∗
∗ ∗ ∗
∗ ∗ ∗

 := (a, b, a+ b).

What is the matrix of T ?

STEP 1. Identify bases of the source and target spaces.
Recall from the solution to problem 7.4(c) that a basis of MSS3(R) is given by {~m1, ~m2, ~m3}
where

~m1 :=
1 1 1
1 1 1
1 1 1

~m2 :=
1 −1 0
−1 0 1
0 1 −1

~m3 :=
0 −1 1
1 0 −1
−1 1 0

A nice basis of W is {~w1, ~w2} where

~w1 := (1, 0, 1) and ~w2 := (0, 1, 1).

STEP 2. Evaluate where the map sends the basis elements.



We have

T ~m1 = (1, 1, 2) = ~w1 + ~w2 =

(
1
1

)
.

Similarly, we find

T ~m2 = ~w1 − ~w2 =

(
1
−1

)
and T ~m3 = −~w2 =

(
0
−1

)
.

STEP 3. Write down the matrix.
Making the above images our columns, we find

T =

(
1 1 0
1 −1 −1

)

z

Having illustrated the concept with two examples, we return to our abstract discussion. First, note that a given
linear map T : V → W can be represented by infinitely many different matrices! Indeed, the matrix of T
depends very strongly on the bases we pick for V and W . One of the overarching goals of linear algebra
is, given a linear map T : V → W , to find bases of V and W which make the matrix of T as simple as
possible. For example, given a linear map T : V → V , the matrix of T is a square (it will be n × n, where
dimV = n); the simplest form a square matrix can take is a diagonal matrix. Can one find a basis of V such
that the corresponding matrix of T is diagonal? The answer is: sometimes, but not always. We will return to
this topic on Friday.


