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Midterm 1

M1–1 Consider g : R2 → R2 defined by
g(x, y) := (x, y2),

and let L be the line segment connecting (0, 0) to (2, 1). What is the image g(L)? Sketch a picture, and
give as precise a mathematical description as you can.

M1–2 Carefully explain why f
(
f−1(x)

)
= x for any x ∈ im (f). What happens if x 6∈ im (f)?

M1–3 Let f : R2 → R2 be a linear map. In class we showed that the image of the unit square whose lower left
vertex is at the origin has area det f . Prove that this is true for an arbitrary unit square in the plane.

M1–4 In class we’ve considered several times the linear map ρ : R2 → R2 which reflects across the horizontal
axis. In this problem we explore the more general reflection σL : R2 → R2 across a given line L.

(a) Prove that Rθ ◦ ρ = ρ ◦R−θ.
(b) Prove that if L is a line passing through the origin, then σL is linear. [Hint: Write σL as a composition
of linear maps. ]

(c) Suppose L and L′ are two distinct lines in the plane, both passing through the origin. Describe
σL ◦ σL′ geometrically, with justification. [Hint: Use parts (a) and (b).]

M1–5 We say a function φ : R2 → R2 is distance-preserving iff

|φ(x)− φ(y)| = |x− y| ∀x, y ∈ R2.

In other words, the distance between the images of any two points is the same as the distance between
the two points themselves.

(a) Give an example of a distance-preserving function which is not a linear map.

(b) Suppose f : R2 → R2 is distance-preserving and satisfies f(0) = 0. Prove that |f(x)| = |x| for all
x ∈ R2.

(c) Suppose f is as in (b). Prove that f(x) · f(y) = x · y for all x, y ∈ R2. [Hint: Start with the
distance-preserving relation |f(x)− f(y)| = |x− y|.]
(d) Suppose f is as in (b). Prove that f must be linear. [Hint: First prove that |f(αx)− αf(x)| = 0.]

(e) Suppose f is as in (b). Prove that there exists θ ∈ R such that either f = Rθ or f = Rθ ◦ ρ. Here
ρ : R2 → R2 is the reflection across the horizontal axis, i.e., ρ(x, y) := (x,−y). [Hint: What can you say
about f(1, 0)? What about f(0, 1)? Use the previous parts of this problem! ]

(f) Prove that any distance-preserving map φ : R2 → R2 can be written as the composition of a
translation, a rotation, and (possibly) a reflection. [A translation is a map Tk : R2 → R2 defined by
Tk(x) := x+ k. I’m asking you to prove that either φ = Tk ◦Rθ or φ = Tk ◦Rθ ◦ ρ.]

2


