
Instructor: Leo Goldmakher

Williams College
Department of Mathematics and Statistics

MATH 250 : LINEAR ALGEBRA

Midterm Exam 2 – KEY

M2–1 Consider the sequence 1, 2, 5, 12, 29, . . . where g1 := 1, g2 := 2, and gn+1 := 2gn + gn−1 for all n ≥ 2.
The goal of this exercise is to adapt the method we used to find an explicit formula for the Fibonacci
numbers to this sequence.

(a) Recall that

(
1 1
1 0

)
generates the Fibonacci numbers. Find a matrix which generates the sequence

gn. Prove that your matrix does so.

Claim.

(
2 1
1 0

)n
=

(
gn+1 gn
gn gn−1

)
for all n ≥ 2.

Proof. We proceed by induction. Suppose that the claim holds true for some integer n ≥ 2.
I claim that the claim must continue to hold for n+ 1. Indeed, we have(

2 1
1 0

)n+1

=

(
2 1
1 0

)n(
2 1
1 0

)
=

(
gn+1 gn
gn gn−1

)(
2 1
1 0

)
=

(
2gn+1 + gn gn+1

2gn + gn−1 gn

)
Using the recursive definition of gn, we deduce that

(*)

(
2 1
1 0

)n
=

(
gn+1 gn
gn gn−1

)
=⇒

(
2 1
1 0

)n+1

=

(
gn+2 gn+1

gn+1 gn

)
A quick calculation shows that the claim holds for n = 2. The relation (*) then implies that
the claim also holds for n = 3; applying (*) again implies the claim for n = 4; etc. Thus, the
claim must hold for all n ≥ 2.



(b) Use the matrix you found in (a) and the method from class to determine an explicit (i.e., non-
recursive) formula for gn. [If you are unable to solve part (a), this part of the problem will not be possible.

In this case, instead determine a formula for the top-left entry of

(
15 4
4 0

)n
]

First we find the eigenvalues by solving the equation

det

((
2 1
1 0

)
−

(
λ 0
0 λ

))
= 0.

Simplifying the left hand side yields λ2 − 2λ− 1 = 0; applying the quadratic equation gives
the eigenvalues:

λ1 = 1 +
√

2 λ2 = 1−
√

2.

Solving the equation (
2 1
1 0

)(
x
y

)
= λ1

(
x
y

)
gives x = λ1y. Taking y = 1, we find an eigenvector corresponding to λ1:

~v1 =

(
λ1
1

)
.

Similarly, we find that the eigenvector corresponding to λ2 is

~v2 =

(
λ2
1

)
.

Letting P denote the change of basis matrix

(
λ1 λ2
1 1

)
, we determine the spectral decom-

position of

(
2 1
1 0

)
: (

2 1
1 0

)
= P

(
λ1 0
0 λ2

)
P−1.

Some computation shows that

P−1 =
1

λ1 − λ2

(
1 −λ2
−1 λ1

)
We conclude that (

2 1
1 0

)
= P

(
λn1 0
0 λn2

)
P−1;

multiplying all three matrices together, we can determine all four entries of the resulting
matrix. On the other hand, by (a) we know that the bottom left corner is gn! Thus,

gn =
λn1 − λn2
λ1 − λ2

=
(1 +

√
2)n − (1−

√
2)n

2
√

2

2



M2–2 Given a linear map f : R2 → R2, say with matrix f =

(
a b
c d

)
. Define the function f t : R2 → R2

(called the transpose of f) to be the linear map corresponding to the matrix

(
a c
b d

)
. For example, if

f =

(
1 2
3 4

)
, then f t =

(
1 3
2 4

)
.

(a) Prove that for any two linear maps f, g : R2 → R2, we have (f ◦ g)t = gt ◦ f t.

Proof. Since f, g are linear, we can write

f =

(
a b
c d

)
and g =

(
p q
r s

)
.

Then

(f ◦ g)t =

(
ap+ br aq + bs
cp+ dr cq + ds

)t
=

(
ap+ br cp+ dr
aq + bs cq + ds

)
=

(
p r
q s

)(
a c
b d

)
= gt ◦ f t.

(b) Prove that R−1θ = Rtθ for any θ.

Proof.

R−1θ =
1

cos2 θ + sin2 θ

(
cos θ sin θ
− sin θ cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

)t
= Rtθ

(c) Is it true that f t = f−1 for all linear maps f : R2 → R2? If yes, prove it. If not, find a counterexample.

No, this is false. For example,(
1 1
1 0

)−1
=

(
0 1
1 −1

)
6=

(
1 1
1 0

)t

(d) Suppose the singular value decomposition of f is

f = Rα

(
k 0
0 `

)
Rβ .

What is the singular value decomposition of the function f ◦ f t?

From part (a) of this question (as well as associativity of function composition), we see that(
Rα

(
k 0
0 `

)
Rβ

)t
= Rtβ ◦

(
Rα

(
k 0
0 `

))t
= Rtβ ◦

(
k 0
0 `

)t
◦Rtα.

Applying part (b) to simplify this, we deduce

f ◦ f t = Rα

(
k 0
0 `

)
RβR

−1
β

(
k 0
0 `

)
R−1α = Rα

(
k2 0
0 `2

)
R−α
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(e) What’s the relationship between the singular values of f and its eigenvalues? Be as precise as you
can.

This is an open-ended question, and there were a number of nice observations people made.
Here are the three most common ones.

Proposition 1. The eigenvalues of f ◦ f t are the squares of the singular values of f .

Proof. In part (d) of this problem we proved that if the SVD of f is f = Rα

(
k 0
0 `

)
Rβ ,

then

f ◦ f t = Rα

(
k2 0
0 `2

)
R−1α .

Problem 6.3(a) implies that k2 and `2 are eigenvalues of f ◦ f t.

Note that this result is useful for determining the singular values of f : instead of finding
them directly, we can first find the eigenvalues of f ◦ f t and then use this proposition.

A different observation was about the magnitudes of the eigenvalues and singular values:

Proposition 2. Suppose k and ` are the singular values of f , say with k ≥ ` ≥ 0. Then
` ≤ |λ| ≤ k for any eigenvalue λ of f .

Proof. If λ is an eigenvalue of f , then by definition there exists some eigenvector ~u0 6= 0
such that

f(~u0) = λ~u0

Since any rescaling of an eigenvector is still an eigenvector, we may assume that ~u0 is a unit
vector. In particular, |f(~u0)| = |λ|. Since k is the length of the major axis and ` the length
of the minor radius of the ellipse f(U), we see that

k := max
|~u|=1

|f(~u)| and ` := min
|~u|=1

|f(~u)|

This immediately implies the claim.

It turns out that the products of the eigenvalues and the singular values are related.

Proposition 3. Given a diagonalizable f , let k, ` be its singular values and λ1, λ2 be its
eigenvalues. (If f only has a single eigenvalue, count it twice by setting λ1 = λ2.) Then
k` = λ1λ2.

Proof. Since f is diagonalizable, we can write

f = P

(
λ1 0
0 λ2

)
P−1

for some invertible linear map P . On the other hand, the SVD of f is

f = Rα

(
k 0
0 `

)
Rβ .

It follows that
λ1λ2 = det f = k`

since detP−1 = 1
detP and detRθ = 1.
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