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Problem Set 1

1.1 The goal of this problem is to give an alternative proof that
√

2 is irrational. Let

A := {n ∈ Z : n > 0, n
√

2 ∈ Z}.

(a) Prove that if a ∈ A, then a(
√

2− 1) ∈ A.

(b) Use part (a) to show that the set A must be empty.

(c) Use part (b) to explain why
√

2 6∈ Q.

1.2 The goal of this exercise is to explore how robust our proofs of irrationality are.

(a) Adapt the proof from class that
√

2 6∈ Q to prove that
√

7 6∈ Q.

(b) Adapt the approach from problem 1.1 to give a different proof that
√

7 6∈ Q.

1.3 Given α, β 6∈ Q and q ∈ Q.

(a) Must it be true that q+α 6∈ Q? If so, prove it. If not, give a counterexample (i.e. give explicit choices
of q and α such that q + α ∈ Q).

(b) Must it be true that qα 6∈ Q? If so, prove it. If not, give a counterexample.

(c) Must it be true that α+ β 6∈ Q? Justify your response with a proof or counterexamples.

(d) Must it be true that αβ 6∈ Q? Justify your response with a proof or counterexamples.

1.4 Let [x] denote the largest integer smaller than x; this is called the floor of x. For example, [π] = 3, [7] = 7,
and [−π] = −4. The goal of this problem is to explore the distribution of rationals and irrationals within
R. Note that the word between is used in a strict sense: x is between a and b means a < x < b.

(a) Given b > a+ 1, prove that there exists an integer between a and b.

(b) Given x < y, prove that there exists a rational number between x and y. [Hint: use part (a).]

(c) Prove that there exists an irrational number between 0 and 1. [Hint: don’t think too hard.]

(d) Prove that between any two rational numbers there exists an irrational number. [Hint: use part (c).]

(e) Prove that between any two real numbers there is an irrational. [Hint: use parts (b) and (d).]

1.5 Suppose f : R→ R satisfies the following three properties:

(i) f(x+ y) = f(x) + f(y) for all x, y ∈ R.

(ii) f(xy) = f(x)f(y) for all x, y ∈ R.

(iii) f(1) 6= 0.

(a) Prove that f(1) = 1.

(b) Prove that f(x) > 0 whenever x > 0. [Hint: start by proving that f(x) 6= 0 whenever x 6= 0.]

(c) Prove that f(x) > f(y) whenever x > y.

(d) Prove that f(x) = x for all x ∈ R. [Hint: Use 1.4(b)]
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