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Problem Set 5

Let ¢ := 251 - 36_’27 W= gl + 52.

(a) What is the change of basis matrix from €}, €5 to ¥, w?

(b) Use the change-of-basis matrix (as we did in the lecture 17-18 summary) to express the vector € +2¢&,
as a linear combination of ¥ and . (You should not solve a system of equations.)

The goal of this exercise is to explore linear maps which fix the unit circle U. Suppose f : R> = R? is a

linear map with det f > 0 and f(U) = U. Write the matrix of f as (Z Z)

(a) Prove that a® + ¢ = 1 and b* + d% = 1. [Hint: Consider f(1,0) and f(0,1).]
(b) Prove that a® + b? = ¢? + d?. [Hint: Consider f=(1,0) and f=1(0,1).]

(c) Prove that det f = 1.

(d) Prove that f = Ry for some 6.

(

e) Now suppose g : R? — R? is a linear map such that det g < 0 and g(U) = U. Prove that there exists
some angle 6 such that g = Ryp, where p is the reflection across the horizontal axis. [Hint: If you use
part (d), the proof is quite short.]

(f) Suppose a linear map h : R? — R? satisfies h(U) = U. Prove that either h = Ry or h = Ryp. [Hint:
The proof is short, but there is something to check:.]

Suppose f : R2 = R? is a linear map with det f < 0. Prove that f admits a singular value decomposition.
(State a precise theorem, analogous to Theorem 4 from the lectures 17-18 summary.)

Let f := 1 (1)

of f. It turns out the SVD of f is intimately linked to the so-called golden ratio:
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. The goal of this exercise is to determine and apply the singular value decomposition

Y28

As usual, let U denote the unit circle centered at the origin.

(a) As discussed in class, f(U) is an ellipse centered at the origin. Determine the lengths of the major
and minor radii of this ellipse. Express your answer in terms of ¢. [Hint: this is a calculus problem.]

(b) Let o denote the tilt of the ellipse f(U), i.e., the angle formed by the positive horizontal axis and the
radius of the ellipse in the first quadrant. Prove that tana = ¢ — 1.

(c) As discussed in lecture, there exists a square grid which gets mapped by f to a rectangular grid.
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- |
1 O)' [Note: det f < 0]

(d) Determine the singular value decomposition of f, i.e., determine «, 8, k, ¢ such that

Describe (as precisely as possible) these two grids for f = (

f=R, <’5 2) Rs.



