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Problem Set 6

6.1 Recall (from Lecture 21) the notion of an equivalence relation. Decide whether each of the following
binary relations is an equivalence relation. If it is, prove it. If not, give an example of how it fails.

(a) ∼ (matrix similarity)

(b) ≤ (less than or equal to)

(c) ≈ (given two sets A,B ⊆ Z we write A ≈ B if and only if A and B differ by finitely many elements. For
example, {0, 1, 2, 3, . . .} ≈ {1, 2, 3, . . .} since they differ by one element, while {1, 2, 3, 4, . . .} 6≈ {2, 4, 6, . . .}
since they differ by infinitely many elements.)

6.2 Suppose f and g are nonsingular linear maps from R2 → R2.

(a) Show by example that fg might not equal gf .

(b) Prove that fg ∼ gf (matrix similarity).

6.3 Suppose P is a nonsingular linear map, and that f = P

(
λ1 0
0 λ2

)
P−1.

(a) Prove that λ1 and λ2 are eigenvalues of f .

(b) Find (with proof) an eigenvector corresponding to λ1?

6.4 For each of the following linear functions, (i) determine all eigenvalues, (ii) for each eigenvalue, find a
corresponding eigenvector of unit length, and (iii) if possible, write down a spectral decomposition of f .

(a) f =

(
4 −1
2 1

)
(b) g =

(
0 1
1 0

)
(c) h =

(
5 2
−2 1

)
(d) k =

(
3 0
0 2

)
(e) f2, where f is the function from part (a) of this question.

6.5 Let fn denote the nth Fibonacci number (with f1 = f2 = 1).

(a) Determine lim
n→∞

fn+1

fn
[Hint: How big is 1−

√
5

2 ? ]

(b) Evaluate f2n + f2n+1 for n = 1, 2, 3, 4. Conjecture a formula.

(c) Prove your conjectured formula. [Hint: consider

(
1 1
1 0

)2n

]

6.6 (Bonus) Prove that any positive integer can be written as the sum of distinct Fibonacci numbers, no
two of which are consecutive. For example, 16 = f4 + f7. (In fact, every positive integer has a unique
representation in this form!)
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