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Problem Set 1 – KEY

1.1 The goal of this problem is to give an alternative proof that
√

2 is irrational. Let

A := {n ∈ Z : n > 0, n
√

2 ∈ Z}.

(a) Prove that if a ∈ A, then a(
√

2− 1) ∈ A.

First, since 1 < 2 < 4, we deduce that 1 <
√

2 < 2. In particular,

0 <
√

2− 1 < 1. (*)

Now suppose a ∈ A. By definition of A, this means

• a > 0;

• a ∈ Z; and

• a
√

2 ∈ Z.

We now verify that the same hold true of a(
√

2− 1):

• From above, we know a > 0 and
√

2− 1 > 0, so a(
√

2− 1) > 0.

• a(
√

2− 1) = a
√

2− a ∈ Z, since both a and a
√

2 are integers.

• a(
√

2− 1)
√

2 = 2a− a
√

2 ∈ Z as above.

Thus a(
√

2− 1) ∈ A, since it satisfies all the membership requirements. qed

(b) Use part (a) to show that the set A must be empty. [Hint: Start by using (a) to prove that 1 6∈ A.]

Suppose A weren’t empty, and let ` denote the smallest element of A. By part (a),
we would have `(

√
2 − 1) ∈ A as well. But by the inequality (*) above, `(

√
2 − 1)

is smaller than `. Contradiction! qed

(c) Use part (b) to explain why
√

2 6∈ Q.

Suppose
√

2 ∈ Q. Then we could write
√

2 = a
n for some positive integers a and n.

But then this would imply that n ∈ A, contradicting part (b). Thus
√

2 6∈ Q. qed

1.2 The goal of this exercise is to explore how robust our proofs of irrationality are.

(a) Adapt the proof from class that
√

2 6∈ Q to prove that
√

7 6∈ Q.



Suppose
√

7 ∈ Q. We will show that this leads to a contradiction.
Write

√
7 = a

b , where we may safely assume that a
b is a reduced fraction (i.e., that

a and b are both positive integers with no common factor greater than 1; if not,
reduce the fraction!). It follows that

a2 = 7b2, (†)

which implies that a2 is a multiple of 7. I now claim:

Lemma 1. Given n ∈ Z. If n2 is a multiple of 7, then so is n.

I’ll prove this below, but first let’s use it to complete the current proof. Since a2 is
a multiple of 7, the lemma implies that a must be a multiple of 7. In other words,
there exists some k ∈ Z such that a = 7k. Plugging this into (†) yields b2 = 7k2.
Thus, b2 is a multiple of 7; the lemma implies that b must also be a multiple of 7.
Thus both a and b are multiples of 7, contradicting that the fraction a

b was reduced.
qed

Proof of Lemma. Given n ∈ Z such that n2 is a multiple of 7. Let q :=
[
n
7

]
(the

floor function; see problem 1.4 below). By definition of the floor function, q ∈ Z
and

q ≤ n

7
< q + 1.

It follows that 7q ≤ n < 7q + 7; since both n and q are integers, we deduce that

n = 7q + r

for some r = 0, 1, 2, 3, 4, 5, or 6. Thus,

r2 = n2 − 7(7q2 + 2qr)

which is a multiple of 7. It is easy to verify by trial and error that the only possible
value of r such that r2 is a multiple of 7 is r = 0. But this means that n = 7q, i.e.,
that n is a multiple of 7.

(b) Adapt the approach from problem 1.1 to give a different proof that
√

7 6∈ Q.

Let B := {n > 0 : n ∈ Z, n
√

7 ∈ Z}, and let b denote the smallest element of B. But
then b(

√
7 − 2) is a smaller element of B, contradicting the minimality of b. This

shows that B must be empty, whence
√

7 6∈ Q by the same argument as in 1.1(c).
qed

1.3 Given α, β 6∈ Q and q ∈ Q.

(a) Must it be true that q+α 6∈ Q? If so, prove it. If not, give a counterexample (i.e. give explicit choices
of q and α such that q + α ∈ Q).

We first prove a useful

Lemma 2. For any a, b ∈ Q we have a± b, ab ∈ Q. If b 6= 0 we also have a/b ∈ Q.

Proof. Write a = a1

a2
and b = b1

b2
with all the ai, bi ∈ Z. The assertions are now

straightforward to verify.

Armed with this, it’s easy to prove that q + α 6∈ Q. Indeed, if q + α = r ∈ Q, then
α = r − q ∈ Q by the lemma.
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(b) Must it be true that qα 6∈ Q? If so, prove it. If not, give a counterexample.

Usually, but not always. If q = 0 (which is rational: 0 = 0
1 ) then qα ∈ Q. On the

other hand:

Proposition 3. If q ∈ Q and q 6= 0, and α 6∈ Q, then qα 6∈ Q.

Proof. If qα = r ∈ Q, then (since q 6= 0) we would have α = r/q ∈ Q, contradicting
the irrationality of α.

(c) Must it be true that α+ β 6∈ Q? Justify your response with a proof or counterexamples.

Not necessarily. For example, −
√

2+
√

2 ∈ Q, even though ±
√

2 6∈ Q. On the other
hand, often the sum of two irrationals is irrational; it’s a fun exercise to prove that√

2 +
√

3 6∈ Q.

(d) Must it be true that αβ 6∈ Q? Justify your response with a proof or counterexamples.

Not necessarily:
√

2 ·
√

2 ∈ Q. On the other hand, one can show (using either of
the two methods we’ve seen) that

√
2 ·
√

3 6∈ Q.

1.4 Let [x] denote the largest integer smaller than x; this is called the floor of x. For example, [π] = 3, [7] = 7,
and [−π] = −4. The goal of this problem is to explore the distribution of rationals and irrationals within
R. Note that the word between is used in a strict sense: x is between a and b means a < x < b.

(a) Given b > a + 1, prove that there exists an integer between a and b. [Hint: write down an explicit
formula for such an integer.]

I claim that a < [a] + 1 < b. Indeed, from the definition of the floor function we
deduce

[a] ≤ a < [a] + 1.

It follows that a < [a] + 1 ≤ a+ 1 < b, as claimed. qed

(b) Given x < y, prove that there exists a rational number between x and y. [Hint: use part (a).]

Pick any integer b > 1
y−x . (In particular, b > 0.) Then by > bx+ 1, so by part (a)

there must exist some integer a such that bx < a < by. But this implies that

x <
a

b
< y.

qed

(c) Prove that there exists an irrational number between 0 and 1. [Hint: it suffices to give a specific
example. Of course, you must still prove that your example is irrational.]

Consider
√

2/2. By the Lemma from 1.3(a), this must be irrational. From 1.1(a)
we know

1

2
<

√
2

2
< 1.
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(d) Prove that between any two rational numbers there exists an irrational number. [Hint: use part (c).]

Suppose A < B are two rationals. We know by (c) the existence of an irrational
number α such that 0 < α < 1. Note that (B−A)α+A is irrational by 1.3(a) and
(b). Now 0 < (B −A)α < B −A, whence A < (B −A)α+A < B; we’ve found an
irrational between A and B. qed

(e) Prove that between any two real numbers there is an irrational. [Hint: use parts (b) and (d).]

Given two reals x and y. By (b), there exists a rational number A with x < A < y.
Again by (b), there exists a rational number B with A < B < y. By (d), there is
an irrational α between A and B. It follows that x < α < y. qed

1.5 Suppose f : R→ R satisfies the following three properties:

(i) f(x+ y) = f(x) + f(y) for all x, y ∈ R.

(ii) f(xy) = f(x)f(y) for all x, y ∈ R.

(iii) f(1) 6= 0.

(a) Prove that f(1) = 1.

By (ii),
f(1)2 = f(1),

whence f(1) = 0 or 1. By (iii), f(1) = 1. qed

(b) Prove that f(x) > 0 whenever x > 0. [Hint: As a warm-up, prove that f(
√

2) = ±
√

2.]

Given x > 0. Then, by (ii), we have

f(x) = f(
√
x)2 ≥ 0.

It therefore suffices to prove that f(x) 6= 0. By (ii) and (a),

f(x)f(1/x) = f(1) = 1,

whence f(x) 6= 0. qed

(c) Prove that f(x) > f(y) whenever x > y. [Hint: use part (b).]

Given x > y. By (b) we know that

f(x− y) > 0.

Additivity of f implies that f(x− y) = f(x)− f(y), whence

f(x) > f(y).

qed
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(d) Prove that f(x) = x for all x ∈ R. [Hint: What happens if this isn’t true? Use 1.4(b)]

Suppose the statement is false. Then there exists some x such that f(x) 6= x. It
follows that one of x or f(x) must be larger than the other. Say x < f(x) (the
proof of the other case is exactly the same). By 1.4(b), there is a rational number
q such that

x < q < f(x). (‡)

From class and part (a), we know that f(q) = qf(1) = q. Thus (‡) becomes

x < q = f(q) < f(x). (**)

Since x < q, part (c) implies f(x) < f(q). But this contradicts (**)! Thus, no such
number x can exist, and the proof is done. qed
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