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Problem Set 1 — KEY

1.1 The goal of this problem is to give an alternative proof that v/2 is irrational. Let
A={neZ:n>0 n/2eZ}.

(a) Prove that if a € A, then a(v/2 — 1) € A.

First, since 1 < 2 < 4, we deduce that 1 < v/2 < 2. In particular,
0<vV2-1<1. (*)

Now suppose a € A. By definition of A, this means

e a > (;

e a €Z;and

e a2 e Z.
We now verify that the same hold true of a(v/2 — 1):

e From above, we know a > 0 and v/2 —1 > 0, so a(v/2 — 1) > 0.

° a(\/§ —-1)= aV/2 — a € Z, since both a and a/2 are integers.

° a(\/i — 1)\/5 = 2a — a2 € 7 as above.

Thus a(v/2 — 1) € A, since it satisfies all the membership requirements. QED

(b) Use part (a) to show that the set A must be empty. [Hint: Start by using (a) to prove that 1 ¢ A.]

Suppose A weren’t empty, and let £ denote the smallest element of A. By part (a),
we would have £(v/2 — 1) € A as well. But by the inequality (*) above, £(v/2 — 1)
is smaller than ¢. Contradiction! QED

(c) Use part (b) to explain why v2 ¢ Q.

Suppose v/2 € Q. Then we could write /2 = < for some positive integers a and n.
But then this would imply that n € A, contradicting part (b). Thus v/2 ¢ Q. QED

1.2 The goal of this exercise is to explore how robust our proofs of irrationality are.
(a) Adapt the proof from class that v/2 ¢ Q to prove that /7 ¢ Q.



Suppose V7 € Q. We will show that this leads to a contradiction.

Write /7 = ¢, where we may safely assume that § is a reduced fraction (i.e., that
a and b are both positive integers with no common factor greater than 1; if not,
reduce the fraction!). It follows that

a® = 7b?, (t)
which implies that a? is a multiple of 7. I now claim:

Lemma 1. Given n € Z. If n? is a multiple of 7, then so is n.

I'll prove this below, but first let’s use it to complete the current proof. Since a? is

a multiple of 7, the lemma implies that a must be a multiple of 7. In other words,
there exists some k € Z such that a = Tk. Plugging this into (1) yields b? = 7k2.
Thus, b2 is a multiple of 7; the lemma implies that b must also be a multiple of 7.
Thus both a and b are multiples of 7, contradicting that the fraction 3 was reduced.

QED

Proof of Lemma. Given n € Z such that n? is a multiple of 7. Let ¢ := [%] (the
floor function; see problem 1.4 below). By definition of the floor function, ¢ € Z
and
n
q< - <q+1.

7
It follows that 7¢ < n < 7q + 7; since both n and ¢ are integers, we deduce that
n="Tq¢+r
for some r =0,1,2,3,4,5, or 6. Thus,
r? =n? —7(7¢* + 2qr)

which is a multiple of 7. It is easy to verify by trial and error that the only possible
value of r such that 2 is a multiple of 7 is 7 = 0. But this means that n = 7q, i.e.,
that n is a multiple of 7. O

(b) Adapt the approach from problem 1.1 to give a different proof that v/7 & Q.

Let B:={n > 0:n € Z,n\/7 € Z}, and let b denote the smallest element of B. But
then b(1/7 — 2) is a smaller element of B, contradicting the minimality of b. This
shows that B must be empty, whence v/7 ¢ Q by the same argument as in 1.1(c).

QED

1.3 Given o, 8 ¢ Q and g € Q.

(a) Must it be true that ¢+« &€ Q? If so, prove it. If not, give a counterexample (i.e. give explicit choices
of ¢ and « such that ¢ + a € Q).

We first prove a useful
Lemma 2. For any a,b € Q we have a+b,ab € Q. If b # 0 we also have a/b € Q.

Proof. Write a = ¢* and b = 2—; with all the a;,b; € Z. The assertions are now

straightforward to Vzerify. ]

Armed with this, it’s easy to prove that ¢ + « € Q. Indeed, if ¢ + @ = r € Q, then
a=r1r—q¢€ Q by the lemma.




(b) Must it be true that ga & Q7 If so, prove it. If not, give a counterexample.

Usually, but not always. If ¢ = 0 (which is rational: 0 = %) then ga € Q. On the
other hand:

Proposition 3. If g € Q and q # 0, and o € Q, then qa & Q.

Proof. If qa = r € Q, then (since ¢ # 0) we would have oo = r/q € Q, contradicting
the irrationality of «. O

(¢) Must it be true that a+ 8 & Q7 Justify your response with a proof or counterexamples.

Not necessarily. For example, —v/2++v/2 € Q, even though +v/2 ¢ Q. On the other
hand, often the sum of two irrationals s irrational; it’s a fun exercise to prove that

V2+V/3¢Q.

(d) Must it be true that a3 € Q7 Justify your response with a proof or counterexamples.

Not necessarily: V2 -v/2 € Q. On the other hand, one can show (using either of
the two methods we've seen) that v/2-v/3 € Q.

1.4 Let [x] denote the largest integer smaller than x; this is called the floor of x. For example, [7] = 3, [7] =7,
and [—7] = —4. The goal of this problem is to explore the distribution of rationals and irrationals within
R. Note that the word between is used in a strict sense: x is between a and b means a < x < b.

(a) Given b > a + 1, prove that there exists an integer between a and b. [Hint: write down an explicit
formula for such an integer.]

I claim that a < [a] + 1 < b. Indeed, from the definition of the floor function we

deduce
[a] <a < [a] + 1.

It follows that a < [a] + 1 < a+ 1 < b, as claimed. QED

(b) Given x < y, prove that there exists a rational number between x and y. [Hint: use part (a).]

Pick any integer b > yim. (In particular, b > 0.) Then by > bx + 1, so by part (a)
there must exist some integer a such that bx < a < by. But this implies that

<a<
< - .
b Y

QED

(¢) Prove that there exists an irrational number between 0 and 1. [Hint: it suffices to give a specific
example. Of course, you must still prove that your example is irrational.]

Consider v/2/2. By the Lemma from 1.3(a), this must be irrational. From 1.1(a)
we know

< < 1.

N =
o[
[\




(d) Prove that between any two rational numbers there exists an irrational number. [Hint: use part (c).]

Suppose A < B are two rationals. We know by (c) the existence of an irrational
number « such that 0 < o < 1. Note that (B — A)a+ A is irrational by 1.3(a) and
(b). Now 0 < (B— A)a < B— A, whence A < (B— A)a+ A < B; we've found an
irrational between A and B. QED

(e) Prove that between any two real numbers there is an irrational. [Hint: use parts (b) and (d).]

Given two reals « and y. By (b), there exists a rational number A with x < A < y.
Again by (b), there exists a rational number B with A < B < y. By (d), there is
an irrational o between A and B. It follows that © < a < y. QED

1.5 Suppose f: R — R satisfies the following three properties:

(i) flz+y) = f(z)+ f(y) for all z,y € R.
(i) f(zxy) = f(x)f(y) for all z,y € R.
(iii) f(1) #0.
(a) Prove that f(1) = 1.

By (ii),

whence f(1) =0 or 1. By (iii), f(1) = 1. QED

(b) Prove that f(z) > 0 whenever x > 0. [Hint: As a warm-up, prove that f(v/2) = +v/2.]

Given x > 0. Then, by (ii), we have

It therefore suffices to prove that f(x) # 0. By (ii) and (a),
f@)f(1fz) = f(1) =1,

whence f(x) # 0. QED

(c) Prove that f(x) > f(y) whenever x > y. [Hint: use part (b).]

Given = > y. By (b) we know that
f@—y)>0.
Additivity of f implies that f(x —y) = f(x) — f(y), whence

f(x) > fy).

QED




(d) Prove that f(z) = z for all z € R. [Hint: What happens if this isn’t true? Use 1.4(b)]

Suppose the statement is false. Then there exists some x such that f(x) # z. It
follows that one of x or f(x) must be larger than the other. Say x < f(x) (the
proof of the other case is exactly the same). By 1.4(b), there is a rational number
q such that
z<q<f(z) 1)
From class and part (a), we know that f(¢) = ¢f(1) = ¢. Thus (1) becomes
r<q=f(q) < f(z) (**)
Since z < ¢, part (c¢) implies f(x) < f(g). But this contradicts (**)! Thus, no such
number x can exist, and the proof is done. QED




