Williams College Department of Mathematics and Statistics

MATH 250: LINEAR ALGEBRA

Problem Set 1 - KEY

1.1 The goal of this problem is to give an alternative proof that $\sqrt{2}$ is irrational. Let

$$\mathcal{A}:=\{n\in\mathbb{Z}:n>0,\ n\sqrt{2}\in\mathbb{Z}\}.$$

(a) Prove that if $a \in \mathcal{A}$, then $a(\sqrt{2} - 1) \in \mathcal{A}$.

First, since 1 < 2 < 4, we deduce that $1 < \sqrt{2} < 2$. In particular,

$$0 < \sqrt{2} - 1 < 1. \tag{*}$$

Now suppose $a \in \mathcal{A}$. By definition of \mathcal{A} , this means

- a > 0;
- $a \in \mathbb{Z}$; and
- $a\sqrt{2} \in \mathbb{Z}$.

We now verify that the same hold true of $a(\sqrt{2}-1)$:

- From above, we know a > 0 and $\sqrt{2} 1 > 0$, so $a(\sqrt{2} 1) > 0$.
- $a(\sqrt{2}-1)=a\sqrt{2}-a\in\mathbb{Z}$, since both a and $a\sqrt{2}$ are integers.
- $a(\sqrt{2}-1)\sqrt{2}=2a-a\sqrt{2}\in\mathbb{Z}$ as above.

Thus $a(\sqrt{2}-1) \in \mathcal{A}$, since it satisfies all the membership requirements. QED

(b) Use part (a) to show that the set \mathcal{A} must be empty. [Hint: Start by using (a) to prove that $1 \notin \mathcal{A}$.]

Suppose \mathcal{A} weren't empty, and let ℓ denote the smallest element of \mathcal{A} . By part (a), we would have $\ell(\sqrt{2}-1) \in \mathcal{A}$ as well. But by the inequality (*) above, $\ell(\sqrt{2}-1)$ is smaller than ℓ . Contradiction!

(c) Use part (b) to explain why $\sqrt{2} \notin \mathbb{Q}$.

Suppose $\sqrt{2} \in \mathbb{Q}$. Then we could write $\sqrt{2} = \frac{a}{n}$ for some positive integers a and n. But then this would imply that $n \in \mathcal{A}$, contradicting part (b). Thus $\sqrt{2} \notin \mathbb{Q}$. QED

- 1.2 The goal of this exercise is to explore how robust our proofs of irrationality are.
 - (a) Adapt the proof from class that $\sqrt{2} \notin \mathbb{Q}$ to prove that $\sqrt{7} \notin \mathbb{Q}$.

Suppose $\sqrt{7} \in \mathbb{Q}$. We will show that this leads to a contradiction.

Write $\sqrt{7} = \frac{a}{b}$, where we may safely assume that $\frac{a}{b}$ is a reduced fraction (i.e., that a and b are both positive integers with no common factor greater than 1; if not, reduce the fraction!). It follows that

$$a^2 = 7b^2, \tag{\dagger}$$

which implies that a^2 is a multiple of 7. I now claim:

Lemma 1. Given $n \in \mathbb{Z}$. If n^2 is a multiple of 7, then so is n.

I'll prove this below, but first let's use it to complete the current proof. Since a^2 is a multiple of 7, the lemma implies that a must be a multiple of 7. In other words, there exists some $k \in \mathbb{Z}$ such that a = 7k. Plugging this into (†) yields $b^2 = 7k^2$. Thus, b^2 is a multiple of 7; the lemma implies that b must also be a multiple of 7. Thus both a and b are multiples of 7, contradicting that the fraction $\frac{a}{b}$ was reduced.

Proof of Lemma. Given $n \in \mathbb{Z}$ such that n^2 is a multiple of 7. Let $q := \left[\frac{n}{7}\right]$ (the floor function; see problem **1.4** below). By definition of the floor function, $q \in \mathbb{Z}$ and

$$q \le \frac{n}{7} < q + 1.$$

It follows that $7q \le n < 7q + 7$; since both n and q are integers, we deduce that

$$n = 7q + r$$

for some r = 0, 1, 2, 3, 4, 5, or 6. Thus,

$$r^2 = n^2 - 7(7q^2 + 2qr)$$

which is a multiple of 7. It is easy to verify by trial and error that the only possible value of r such that r^2 is a multiple of 7 is r = 0. But this means that n = 7q, i.e., that n is a multiple of 7.

(b) Adapt the approach from problem 1.1 to give a different proof that $\sqrt{7} \notin \mathbb{Q}$.

Let $\mathcal{B} := \{n > 0 : n \in \mathbb{Z}, n\sqrt{7} \in \mathbb{Z}\}$, and let b denote the smallest element of \mathcal{B} . But then $b(\sqrt{7}-2)$ is a smaller element of \mathcal{B} , contradicting the minimality of b. This shows that \mathcal{B} must be empty, whence $\sqrt{7} \notin \mathbb{Q}$ by the same argument as in **1.1(c)**.

- **1.3** Given $\alpha, \beta \notin \mathbb{Q}$ and $q \in \mathbb{Q}$.
 - (a) Must it be true that $q + \alpha \notin \mathbb{Q}$? If so, prove it. If not, give a counterexample (i.e. give explicit choices of q and α such that $q + \alpha \in \mathbb{Q}$).

We first prove a useful

Lemma 2. For any $a, b \in \mathbb{Q}$ we have $a \pm b, ab \in \mathbb{Q}$. If $b \neq 0$ we also have $a/b \in \mathbb{Q}$.

Proof. Write $a=\frac{a_1}{a_2}$ and $b=\frac{b_1}{b_2}$ with all the $a_i,b_i\in\mathbb{Z}$. The assertions are now straightforward to verify.

Armed with this, it's easy to prove that $q + \alpha \notin \mathbb{Q}$. Indeed, if $q + \alpha = r \in \mathbb{Q}$, then $\alpha = r - q \in \mathbb{Q}$ by the lemma.

(b) Must it be true that $q\alpha \notin \mathbb{Q}$? If so, prove it. If not, give a counterexample.

Usually, but not always. If q = 0 (which is rational: $0 = \frac{0}{1}$) then $q\alpha \in \mathbb{Q}$. On the other hand:

Proposition 3. If $q \in \mathbb{Q}$ and $q \neq 0$, and $\alpha \notin \mathbb{Q}$, then $q\alpha \notin \mathbb{Q}$.

Proof. If $q\alpha = r \in \mathbb{Q}$, then (since $q \neq 0$) we would have $\alpha = r/q \in \mathbb{Q}$, contradicting the irrationality of α .

(c) Must it be true that $\alpha + \beta \notin \mathbb{Q}$? Justify your response with a proof or counterexamples.

Not necessarily. For example, $-\sqrt{2}+\sqrt{2}\in\mathbb{Q}$, even though $\pm\sqrt{2}\notin\mathbb{Q}$. On the other hand, often the sum of two irrationals *is* irrational; it's a fun exercise to prove that $\sqrt{2}+\sqrt{3}\notin\mathbb{Q}$.

(d) Must it be true that $\alpha\beta \notin \mathbb{Q}$? Justify your response with a proof or counterexamples.

Not necessarily: $\sqrt{2} \cdot \sqrt{2} \in \mathbb{Q}$. On the other hand, one can show (using either of the two methods we've seen) that $\sqrt{2} \cdot \sqrt{3} \notin \mathbb{Q}$.

- **1.4** Let [x] denote the largest integer smaller than x; this is called the *floor of* x. For example, $[\pi] = 3$, [7] = 7, and $[-\pi] = -4$. The goal of this problem is to explore the distribution of rationals and irrationals within \mathbb{R} . Note that the word *between* is used in a strict sense: x is between a and b means a < x < b.
 - (a) Given b > a + 1, prove that there exists an integer between a and b. [Hint: write down an explicit formula for such an integer.]

I claim that a < [a] + 1 < b. Indeed, from the definition of the floor function we deduce

$$[a] \le a < [a] + 1.$$

It follows that $a < [a] + 1 \le a + 1 < b$, as claimed.

QED

(b) Given x < y, prove that there exists a rational number between x and y. [Hint: use part (a).]

Pick any integer $b > \frac{1}{y-x}$. (In particular, b > 0.) Then by > bx + 1, so by part (a) there must exist some integer a such that bx < a < by. But this implies that

$$x < \frac{a}{b} < y$$
.

QED

(c) Prove that there exists an irrational number between 0 and 1. [Hint: it suffices to give a specific example. Of course, you must still prove that your example is irrational.]

Consider $\sqrt{2}/2$. By the Lemma from **1.3(a)**, this must be irrational. From **1.1(a)** we know

$$\frac{1}{2} < \frac{\sqrt{2}}{2} < 1.$$

(d) Prove that between any two rational numbers there exists an irrational number. [Hint: use part (c).]

Suppose A < B are two rationals. We know by (c) the existence of an irrational number α such that $0 < \alpha < 1$. Note that $(B - A)\alpha + A$ is irrational by **1.3(a)** and **(b)**. Now $0 < (B - A)\alpha < B - A$, whence $A < (B - A)\alpha + A < B$; we've found an irrational between A and B.

(e) Prove that between any two real numbers there is an irrational. [Hint: use parts (b) and (d).]

Given two reals x and y. By (b), there exists a rational number A with x < A < y. Again by (b), there exists a rational number B with A < B < y. By (d), there is an irrational α between A and B. It follows that $x < \alpha < y$.

- **1.5** Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies the following three properties:
 - (i) f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.
 - (ii) f(xy) = f(x)f(y) for all $x, y \in \mathbb{R}$.
 - (iii) $f(1) \neq 0$.
 - (a) Prove that f(1) = 1.

By (ii),

$$f(1)^2 = f(1),$$

whence f(1) = 0 or 1. By (iii), f(1) = 1.

QED

(b) Prove that f(x) > 0 whenever x > 0. [Hint: As a warm-up, prove that $f(\sqrt{2}) = \pm \sqrt{2}$.]

Given x > 0. Then, by (ii), we have

$$f(x) = f(\sqrt{x})^2 \ge 0.$$

It therefore suffices to prove that $f(x) \neq 0$. By (ii) and (a),

$$f(x) f(1/x) = f(1) = 1,$$

whence $f(x) \neq 0$.

QED

(c) Prove that f(x) > f(y) whenever x > y. [Hint: use part (b).]

Given x > y. By (b) we know that

$$f(x-y) > 0.$$

Additivity of f implies that f(x - y) = f(x) - f(y), whence

$$f(x) > f(y)$$
.

QED

(d) Prove that f(x) = x for all $x \in \mathbb{R}$. [Hint: What happens if this isn't true? Use 1.4(b)]

Suppose the statement is false. Then there exists some x such that $f(x) \neq x$. It follows that one of x or f(x) must be larger than the other. Say x < f(x) (the proof of the other case is exactly the same). By **1.4(b)**, there is a rational number q such that

$$x < q < f(x). \tag{\ddagger}$$

From class and part (a), we know that f(q) = qf(1) = q. Thus (‡) becomes

$$x < q = f(q) < f(x).$$
 (**)

Since x < q, part (c) implies f(x) < f(q). But this contradicts (**)! Thus, no such number x can exist, and the proof is done. QED