Williams College Department of Mathematics and Statistics

MATH 250: LINEAR ALGEBRA

Problem Set 4 - KEY

4.1 Suppose $f, g, h : \mathbb{R}^2 \to \mathbb{R}^2$ are linear maps. Without using matrices, prove that $f \circ (g+h) = f \circ g + f \circ h$.

Pick an $x \in \mathbb{R}^2$. Then

$$(f \circ (g+h))(x) = f(g(x) + h(x))$$

$$= f(g(x)) + f(h(x))$$
 (by additivity)
$$= (f \circ g)(x) + (f \circ h)(x)$$

$$= (f \circ g + f \circ h)(x).$$

Thus the two functions $f \circ (g+h)$ and $f \circ g + f \circ h$ agree on every input. It follows that they are the same function. QED

NOTE: Simply saying f is additive does not suffice, since additivity applies to the sum of points as inputs, not to the sum of functions.

4.2 Prove that a singular linear map $f: \mathbb{R}^2 \to \mathbb{R}^2$ is not invertible.

Given a singular linear map $f: \mathbb{R}^2 \to \mathbb{R}^2$. Since it is linear, we can write f as a matrix, say,

$$f = \begin{pmatrix} a & b \\ c & d \end{pmatrix};$$

since f is singular, ad - bc = 0. I claim that the preimage of **0** has at least two elements; this immediately implies that f is not invertible.

First, if a = b = c = d = 0, then both **0** and (1,1) live in $f^{-1}(\mathbf{0})$, hence f is noninvertible. Thus, we may assume that at least one of a, b, c, d are nonzero.

Next, observe that

$$f(b, -a) = \mathbf{0} = f(d, -c).$$

One of (b, -a) or (d, -c) must be different from **0**. It follows that $\#f^{-1}(\mathbf{0}) \geq 2$, and we conclude.

4.3 The zero function is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, i.e., the function mapping $\mathbb{R}^2 \to \mathbb{R}^2$ which outputs **0** for all inputs. Now suppose $f \circ g$ is a linear map $\mathbb{R}^2 \to \mathbb{R}^2$, where neither of $f, g : \mathbb{R}^2 \to \mathbb{R}^2$ are the zero function. Must f be linear? If so, prove it. If not, produce a counterexample.

No, f is not necessarily linear. For example, consider

$$f(x,y) := \begin{cases} (\frac{1}{x},0) & \text{if } x \neq 0\\ (0,0) & \text{otherwise.} \end{cases}$$

f is not additive – for example, $f(1,0)+f(1,0)=(2,0)\neq f(2,0)$ – so it is also not linear. However, $f\circ f=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is linear.

4.4 Given $f: A \to B$ a function and $a \in A$. (Note: f is not necessarily linear!) What can you say about $f(f^{-1}(f(a)))$? Be as specific as you can, and justify your answer.

I claim that

$$f(f^{-1}(f(a))) = f(a).$$

By definition,

$$f^{-1}(f(a)) = \{x \in A : f(x) = f(a)\}.$$

In particular, $a \in f^{-1}(f(a))$, so $f^{-1}(f(a)) \neq \emptyset$. Thus we have

$$f(f^{-1}(f(a))) = f(\{x \in A : f(x) = f(a)\})$$

$$= \{f(x) : x \in A, f(x) = f(a)\}$$

$$= \{f(a)\}$$

$$= f(a).$$

QED

- **4.5** Suppose $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a nonsingular linear map with matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
 - (a) Without using matrices, prove that $f^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map.

Given $x, y \in \mathbb{R}^2$ and $\alpha \in \mathbb{R}$.

ADDITIVITY. Let $p := f^{-1}(x)$ and $q := f^{-1}(y)$. (p and q exist and are well-defined because f is invertible.) By definition, f(p) = x and f(q) = y, whence

$$f^{-1}(x+y) = f^{-1}(f(p) + f(q))$$

$$= f^{-1}(f(p+q))$$

$$= p+q \quad \text{(since } f \text{ is invertible)}$$

$$= f^{-1}(x) + f^{-1}(y).$$

SCALING. Let $p := f^{-1}(x)$. Then f(p) = x, whence $\alpha x = \alpha f(p) = f(\alpha p)$. Thus,

$$f^{-1}(\alpha x) = f^{-1}(f(\alpha p)) = \alpha p = \alpha f^{-1}(x)$$

It follows that f^{-1} is linear.

QED

(b) What is the matrix of f^{-1} ? Show your work.

Note that

$$f(-b,a) = (0,ad-bc)$$

$$f(d,-c) = (ad-bc,0)$$

Thus, since f is invertible, we have

$$f^{-1}(ad - bc, 0) = (d, -c)$$
$$f^{-1}(0, ad - bc) = (-b, a)$$

Since f^{-1} is linear and nonsingular, we deduce

$$f^{-1}(1,0) = \frac{1}{ad - bc}(d, -c)$$
$$f^{-1}(0,1) = \frac{1}{ad - bc}(-b, a)$$

Finally, since f^{-1} is linear, we know it can be written as a matrix. Moreover, the first column of this matrix is given by $f^{-1}(1,0)$, and the second column by $f^{-1}(0,1)$. Hence

$$f^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

4.6 Do not use a computer or calculator for this exercise!

In each of the following examples, determine (i) the matrix of $(f \circ g)$, (ii) the matrix of $(g \circ f)$, (iii) the matrix of f^{-1} . If the matrix of f^{-1} does not exist, carefully explain (with suitable examples) why not.

(a)
$$f = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $g = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

$$(f \circ g) = \begin{pmatrix} 3 & 1 \\ 7 & 3 \end{pmatrix}$$
$$(g \circ f) = \begin{pmatrix} 4 & 6 \\ 1 & 2 \end{pmatrix}$$
$$f^{-1} = \begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}$$

(b)
$$f = \begin{pmatrix} 2 & -6 \\ -3 & 9 \end{pmatrix}$$
, $g = \begin{pmatrix} 2 & 5 \\ 4 & -1 \end{pmatrix}$

$$(f \circ g) = \begin{pmatrix} -20 & 16\\ 30 & -24 \end{pmatrix}$$

$$(g \circ f) = \begin{pmatrix} -11 & 33\\ 11 & -33 \end{pmatrix}$$

f is not invertible. Indeed,

$$f(3,1) = \mathbf{0} = f(\mathbf{0}),$$

whence $\#f^{-1}(\mathbf{0}) \ge 2$.

(c)
$$f = \begin{pmatrix} 1 & 2 \\ 0 & -4 \end{pmatrix}$$
, $g = \begin{pmatrix} 3 & -1 \\ 0 & 2 \end{pmatrix}$

$$(f \circ g) = \begin{pmatrix} 3 & 3 \\ 0 & -8 \end{pmatrix}$$

$$(g \circ f) = \begin{pmatrix} 3 & 10 \\ 0 & -8 \end{pmatrix}$$

$$f^{-1} = \begin{pmatrix} 1 & 1/2 \\ 0 & -1/4 \end{pmatrix}$$

(d)
$$f = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$$
, $g = \begin{pmatrix} k & 0 \\ 0 & \ell \end{pmatrix}$, $ad \neq 0$

$$(f \circ g) = \begin{pmatrix} ak & 0 \\ 0 & d\ell \end{pmatrix}$$

$$(g \circ f) = \begin{pmatrix} ak & 0 \\ 0 & d\ell \end{pmatrix}$$

$$f^{-1} = \begin{pmatrix} 1/a & 0\\ 0 & 1/d \end{pmatrix}$$

- **4.7** This exercise explores what linear maps do to triangles. Throughout, let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map.
 - (a) Given $A, B \in \mathbb{R}^2$, the notation \overline{AB} denotes the line segment whose endpoints are A and B. Prove that $f(\overline{AB}) = \overline{f(A)f(B)}$. In particular, a linear map sends line segments to line segments.

Let
$$A=(x_1,x_2)$$
 and $B=(y_1,y_2)$. Then
$$\overline{AB}=\left\{\left((1-\alpha)x_1+\alpha y_1,(1-\alpha)x_2+\alpha y_2\right):0\leq\alpha\leq1\right\}.$$

By linearity we therefore have

$$\begin{split} f(\overline{AB}) &= \big\{ f\big((1-\alpha)x_1 + \alpha y_1, (1-\alpha)x_2 + \alpha y_2 \big) : 0 \le \alpha \le 1 \big\} \\ &= \big\{ f\big((1-\alpha)x_1, (1-\alpha)x_2 \big) + f(\alpha y_1, \alpha y_2) : 0 \le \alpha \le 1 \big\} \\ &= \big\{ (1-\alpha)f(x_1, x_2) + \alpha f(y_1, y_2) : 0 \le \alpha \le 1 \big\} \\ &= \big\{ (1-\alpha)f(A) + \alpha f(B) : 0 \le \alpha \le 1 \big\} \\ &= \overline{f(A)f(B)}. \end{split}$$

QED

(b) Consider a triangle $\triangle ABC$ in the plane. What can you say about the shape of the image of $\triangle ABC$ under f? [Hint: f might be singular or nonsingular.]

There are three possibilities:

- $f(\triangle ABC)$ is a point. For example, this is the case for $f=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- $f(\triangle ABC)$ is a line segment. For example, this is the case for $f = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
- $f(\triangle ABC)$ is a triangle. Indeed, by part (a) we know that

$$f(\overline{AB}) = \overline{f(A)f(B)} \qquad f(\overline{AC}) = \overline{f(A)f(C)} \qquad f(\overline{BC}) = \overline{f(B)f(C)}.$$

It follows that

$$f(\triangle ABC) = \triangle f(A)f(B)f(C).$$

We must have that f(A), f(B), and f(C) are not collinear, else the output would be a line. Thus, the three points form an honest triangle.

4.8 Consider the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. If ad - bc < 0, what does this tell you about the geometric effect the matrix has on the plane? Try to describe this as precisely as you can. [Hint: play around with what the matrix does to a triangle.]

If ad - bc < 0, then the map $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ changes the chirality of the plane (i.e., it flips the plane over).