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8.1 In class we sketched a proof that any linearly independent set in a finite-dimensional vector space is
contained in a basis of that space. The goal of this exercise is to complete this proof. Throughout, let V
be a finite-dimensional vector space, and recall that for any finite set A = {~v1, ~v2, . . . , ~vn} ⊆ V we define

span A :=

{
α1~v1 + · · ·+ αn~vn : αj ∈ R ∀j

}
(i.e. span A is the set of all vectors which can be formed by linearly combining the elements of A).

(a) Suppose L ⊆ V is linearly independent, and that S ⊆ V spans V . Prove that if span L ⊇ S then L
is a basis of V .

Since L is linearly independent, it suffices (by the Fundamental Property of Bases) to show
that L spans V , i.e., that an arbitrary ~v ∈ V can be written as a linear combination of the
elements in L. Pick ~v ∈ V . Since S spans V , we can write ~v as a linear combination of the
elements of S. Since S ⊆ span L, every element of S can be written a linear combination
of elements of L. It follows that ~v can be written as a linear combination of elements of L.
Since ~v was arbitrary, we conclude that L spans V , hence is a basis.

(b) Suppose L ⊆ V is linearly independent, and that ∃~v ∈ V such that ~v 6∈ span L. Prove that L ∪ {~v}
is linearly independent.

Since V is finite-dimensional, there exists a finite spanning set. We proved in class that every
spanning set is at least as large as every linearly independent set, hence L must be finite.
Write

L := {~̀1, ~̀2, . . . , ~̀n}

Suppose
α1
~̀
1 + · · ·αn~̀n + β~v = ~0

We immediately deduce that β = 0, else we would be able to express ~v as a linear combination
of the ~̀i’s, contradicting our hypothesis that ~v 6∈ span L. Thus

α1
~̀
1 + · · ·αn~̀n = ~0

But since these vectors are linearly independent, we deduce that αi = 0 for every i. We’ve
therefore shown that only the trivial linear combination of elements of L ∪ {~v} produces ~0.
In other words, L ∪ {~v} is linearly independent!



(c) Write out a careful proof that any linearly independent set in a finite-dimensional vector space is
contained in a basis of that space.

By definition, since V is finite-dimensional there must exist a finite set S which spans V .
Let L be a linearly independent subset of V . There are two possibilities:

(i) span L ⊇ S, or

(ii) ∃~s0 ∈ S such that ~s0 6∈ span L.

In the former scenario, part (a) implies that L is a basis, hence (in particular) is contained
in a basis. In the latter scenario, part (b) shows that L1 := L∪{~s0} is linearly independent.
Now iterate the process: if span L1 ⊇ S then we’re done, else there exists some element
~s1 ∈ S which doesn’t belong to span L1 and we can create a new linearly independent set
L2 := L1 ∪ {~s1}. This process must terminate, since S is finite so eventually (in the worst-
case scenario) we would arrive at a set Lk which contains all of S.

8.2 Consider the set F of all functions f : R → R satisfying the differential equation f ′′ + f = 0. (Here f ′′

means the second derivative of f . Note that we are implicitly assuming that both f ′ and f ′′ exist, since
otherwise it would be difficult to satisfy the given differential equation!)

(a) Prove that the F is a vector space.

First, we must identify the two operations with respect to which F is a vector space. Given
two functions f, g ∈ F , we define a new function f + g by setting (f + g)(x) := f(x) + g(x)
for every x ∈ R. Given a function f ∈ F and a real number α ∈ R, we define a new function
α · f by setting (α · f)(x) := α · f(x) for all x ∈ R.

With these notions in place, we can check the vector space axioms one at a time.

(1) Closure. Given f, g ∈ F and α ∈ R. Then

(f + g)′′ + (f + g) = f ′′ + f + g′′ + g = 0

whence f + g ∈ F , and

(α · f)′′ + (α · f) = α · f ′′ + α · f = α · (f ′′ + f) = 0

whence α · f ∈ F .

(2) Commutativity of addition. Inherited from R.

(3) Associativity of addition. Inherited from R.

(4) Existence of additive identity. Consider the function z : R → R defined z(x) = 0
for all x ∈ R. Then z + f = f for all f ∈ F .

(5) Existence of additive inverses. Given f ∈ F , I claim −f ∈ F as well. This is true
by closure, since −f = −1 · f .

(6) 1 is a multiplicative identity. Inherited from R.

(7) Associativity of multiplication. Inherited from R.

(8) Distributivity. Inherited from R.

Thus F is a vector space.
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(b) What is the dimension of F? Prove it! [Hint: Differentiate the functions g(x) = f(x) cosx−f ′(x) sinx
and h(x) = f(x) sinx+ f ′(x) cosx.]

Claim. The set {sinx, cosx} is a basis of F , whence dimF = 2.

Proof. It’s easy to see that sinx, cosx ∈ F . To prove these two functions form a basis, we
use the Fundamental Property of Bases: we prove they span F , and that they’re linearly
independent.

Spanning. Pick f ∈ F , and consider the functions g and h given in the hint. Differentiating
g(x) yields

g′(x) = f ′(x) cosx− f(x) sinx− f ′′(x) sinx− f ′(x) cosx = 0

and it follows that g must be a constant function; say g(x) = a. Similarly, we find that h is
constant, say h(x) = b. Thus, we get the simultaneous equations

f(x) cosx− f ′(x) sinx = a

f(x) sinx+ f ′(x) cosx = b

Multiplying the top equation by cosx, the bottom equation by sinx, and summing the two,
we find

f(x) = a cosx+ b sinx.

Thus, every f ∈ F can be represented as a linear combination of sinx and cosx.

Linear independence. Suppose a sinx+ b cosx = 0. Plugging in x = 0 shows that b = 0;
plugging in x = π

2 shows that a = 0. Hence only the trivial linear combination of sinx and
cosx yields the zero function.

(c) Consider the function T : F → R2 defined by

T (f) :=
(
f(0), f(π/2)

)
Is T a linear map? Either way, justify your answer.

From above, we see that given any f ∈ F there exist unique a, b ∈ R such that

f(x) = a cosx+ b sinx.

In terms of these coefficients, we have

T (f) = (a, b).

It’s now a simple matter to check that T (f + g) = Tf + Tg and T (c · f) = c · Tf for any
f, g ∈ F and any c ∈ R.

Note: It’s also not hard to prove that T is an isomorphism, whence F is isomorphic to R2.
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8.3 Given V a finite-dimensional vector space, let V̂ denote the set of all linear maps T : V → R.

(a) Prove that V̂ is a vector space.

[Note: V̂ is called the dual space of V .] We first define what the operations are. Given

S, T ∈ V̂ , we define a new function S + T : V → R by

(S + T )(~v) := S(~v) + T (~v).

Similarly, given α ∈ R we define a function α · T : V → R by

(α · T )(~v) := α · T (~v).

Next we verify the vector space axioms.

(1) Closure. Given S, T ∈ V̂ and ~v, ~w ∈ V . Then

(S+T )(~v+ ~w) = S(~v+ ~w)+T (~v+ ~w) = S~v+S ~w+T~v+T ~w = (S+T )(~v)+(S+T )(~w),

so S + T is additive. Also

(S + T )(α~v) = S(α~v) + T (α~v) = αS~v + αT~v = α · (S + T )(~v)

whence S + T scales. Thus S + T is linear, and hence belongs to V̂ . Similarly, for any
α ∈ R one can check that α · T ∈ V̂ .

(2) Commutativity of addition. Inherited from R.

(3) Associativity of addition. Inherited from R.

(4) Existence of additive identity. Consider the function z : V → R defined z(~v) = 0

for all ~v ∈ V . Then z + T = T for all T ∈ V̂ .

(5) Existence of additive inverses. Given T ∈ V̂ , the function −1 · T is an additive
inverse of T .

(6) 1 is a multiplicative identity. Inherited from R.

(7) Associativity of multiplication. Inherited from R.

(8) Distributivity. Inherited from R.
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(b) Prove that dimV = dim V̂ .

Since V is finite-dimensional, we know from class that there exists a finite basis of V , say,

{~v1, . . . , ~vn}.

Thus n = dimV .

We now construct n linear maps T1, T2, . . . , Tn ∈ V̂ , which we hope will form a basis of V̂ .
For each i ∈ {1, 2, . . . , n}, consider the function Ti : V → R defined by

Ti(α1~v1 + α2~v2 + · · ·αn~vn) := αi.

It is straightforward to verify that T is a linear map, and that

Ti(~vj) :=

{
1 if i = j

0 otherwise.

Claim. The set {T1, T2, . . . , Tn} is a basis of V̂ . (It follows that dim V̂ = n = dimV.)

Proof. As usual, we use the Fundamental Property of Bases.

Spanning. Given an arbitrary T ∈ V̂ , set

βi := T (~vi).

Then the functions T and β1T1 + β2T2 + · · ·+ βnTn agree on every basis element ~vi, hence
must agree everywhere:

T = β1T1 + β2T2 + · · ·+ βnTn.

Thus the Ti’s span V̂ .

Linear independence. Suppose γ1T1 + γ2T2 + · · ·+ γnTn = 0. Then for any i we have

γi = (γ1T1 + γ2T2 + · · ·+ γnTn)(~vi) = 0

which shows that only the trivial combination of the Ti’s produces 0. Thus, the Ti’s must
be linearly independent.
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(c) Give an explicit example of a non-constant linear map ϕ : V → ̂̂
V . (Here

̂̂
V denotes the set of all

linear maps V̂ → R.)

Given ~v ∈ V , first consider the function ϕ~v : V̂ → R defined by

ϕ~v(T ) := T (~v).

(This is called the evaluation map.) Note that ϕ~v is a linear map, since

ϕ~v(S + T ) = (S + T )(~v) = S~v + T~v = ϕ~v(S) + ϕ~v(T )

and
ϕ~v(α · T ) = (α · T )(~v) = α · (T~v) = α · ϕ~v(T ).

Now define ϕ : V → ̂̂
V by ϕ(~v) := ϕ~v. It remains only to prove that ϕ is linear. We have

ϕ(~v + ~w) = ϕ(~v) + ϕ(~w)

since
ϕ~v+~w(T ) = T (~v + ~w) = T~v + T ~w = ϕ~v(T ) + ϕ~w(T ).

Similarly,
ϕ(α~v) = αϕ(~v)

since
ϕα~v(T ) = T (α~v) = αT~v = αϕ~v(T ).
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