Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

MATH 250 : LINEAR ALGEBRA

Problem Set 9 - KEY

9.1 Suppose V and W are vector spaces. A linear map $T: V \to W$ is called *left-invertible* iff there exists a linear map $L: W \to V$ such that $L \circ T = I_V$, and is called *right-invertible* if and only if there exists a linear map $R: W \to V$ such that $T \circ R = I_W$. (Here I_V denotes the identity map on V, i.e. $I_V(\vec{v}) = \vec{v}$ for all $\vec{v} \in V$.) Prove that a linear map $T: V \to W$ is invertible (according to our definition from class) if and only if T is both left- and right-invertible.

(⇒) We proved in class that if T is invertible, then $T^{-1} \circ T = I_V$ and $T \circ T^{-1} = I_W$. Thus T^{-1} is both a right and a left inverse of T. In particular, T is left- and right-invertible.

(\Leftarrow) Let *L* and *R* be left and right inverses of *T*, respectively. Pick $\vec{w} \in W$. By definition, $TR(\vec{w}) = \vec{w}$, whence $R(\vec{w}) \in T^{-1}(\vec{w})$. In particular, $\#T^{-1}(\vec{w}) \ge 1$. On the other hand, suppose \vec{v}_1 and $\vec{v}_2 \in T^{-1}(\vec{w})$. Then $T(\vec{v}_1) = T(\vec{v}_2)$, whence $\vec{v}_1 = LT(\vec{v}_1) = LT(\vec{v}_2) = \vec{v}_2$. This shows $\#T^{-1}(\vec{w}) \le 1$. Combining the boxed inequalities, we see that $\#T^{-1}(\vec{w}) = 1$. Since $\vec{w} \in W$ was arbitrary, we conclude that *T* is invertible.

9.2 If V is isomorphic to W, we write $V \simeq W$. Prove that \simeq is an equivalence relation.

We must show that the relation \simeq satisfies the three properties of equivalence relations.

- Reflexivity. Given a vector space V, the identity map I_V defined in part (a) is an isomorphism from V to V.
- Symmetry. Suppose $V \simeq W$, and let $T: V \to W$ be an isomorphism. Then Proposition 3 of Lecture 31 implies that $T^{-1}: W \to V$ is also an isomorphism, whence $W \simeq V$.
- <u>Transitivity.</u> Suppose $X \simeq V$ and $V \simeq W$; say $T : X \to V$ and $S : V \to W$ are isomorphisms. I claim that $ST : X \to W$ is an isomorphism. Indeed, pick $\vec{w} \in W$. Then there exists $\vec{v} \in V$ such that $S\vec{v} = \vec{w}$, and there exists a $\vec{x} \in X$ such that $T\vec{x} = \vec{v}$; it follows that $ST\vec{x} = \vec{w}$, so $\#(ST)^{-1}(\vec{w}) \ge 1$. Next, suppose $ST(\vec{x}_1) = ST(\vec{x}_2) = \vec{w}$. Since S is invertible, we deduce that $T\vec{x}_1 = T\vec{x}_2$; since T is invertible, we conclude that $\vec{x}_1 = \vec{x}_2$. This shows that $\#(ST)^{-1}(\vec{w}) \le 1$. Combining the boxed quantities, we see that ST is invertible, hence an isomorphism. Therefore, $X \simeq W$.

9.3 Find an example of a finite-dimensional vector space V and a subset $W \subseteq V$ such that W is a vector space, but is *not* a subspace of V.

There are many possible solutions to this, but all of them have one feature in common: the notions of 'addition' and 'scalar multiplication' must be different for W than the ones for V. The moral of this problem is: a vector space is not simply a set, but a set along with two operations.

Here's an example. Take V to be \mathbb{R} under the usual notions of + and \cdot . Now let $W := \mathbb{R}_{>0}$ (the set of all positive real numbers); clearly $W \subseteq V$. Now we define the following two operations on W:

• $x \oplus y := xy$

• $\alpha \cdot x := x^{\alpha}$

It is an exercise to check that W forms a vector space with respect to these operations. As an example, let's check one of the distributive laws:

$$\alpha \cdot (x \oplus y) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (\alpha \cdot x) \oplus (\alpha \cdot y).$$

Thus, W is a subset of V, is a vector space with respect to some operations, but is *not* a subspace of V.

9.4 Given V a finite-dimensional vector space.

(a) Suppose W is a subspace of V. Prove that W = V iff dim $W = \dim V$. [Hint: Use problem 8.1]

If W = V then of course dim $W = \dim V$, so it suffices to prove the converse. Thus, suppose dim $W = \dim V$. Let $\{\vec{w}_1, \ldots, \vec{w}_n\}$ be a basis of W; in particular, these vectors are linearly independent. By problem **8.1** we know that they must be contained in a basis of V. On the other hand, any basis of V must also have n vectors in it by hypothesis. Thus, $\{\vec{w}_1, \ldots, \vec{w}_n\}$ must already be a basis of V. This shows that any vector in V can be written as a linear combination of the \vec{w}_i 's, hence is contained in W. On the other hand, every vector in W is clearly contained in V. It follows that W = V as claimed. \Box

(b) Suppose $T: V \to V$ is a linear map. Prove that T is an isomorphism if and only if ker $T = {\vec{0}}$.

Once again, the forward direction is straightforward: if T is an isomorphism, then it is invertible, whence $T^{-1}(\vec{0}) = \vec{0}$ as claimed. Thus it suffices to prove the converse. Suppose ker $T = \{\vec{0}\}$. The rank-nullity theorem asserts that

$$\dim(\operatorname{im} T) + \dim(\ker T) = \dim V.$$

Since ker T has dimension 0, it follows that

 $\dim(\operatorname{im} T) = \dim V.$

Since im T is a subspace of V, part (a) implies that im T = V.

Now we are ready to show that T is an isomorphism. Pick any $\vec{w} \in V$. Since im T = V, we have $\boxed{\#T^{-1}\vec{w} \ge 1}$. Now suppose $T\vec{v}_1 = \vec{w}$ and $T\vec{v}_2 = \vec{w}$. Then in particular $T\vec{v}_1 = T\vec{v}_2$, whence (by additivity) $T(\vec{v}_1 - \vec{v}_2) = \vec{0}$. But ker $T = \{\vec{0}\}$, so $\vec{v}_1 - \vec{v}_2 = \vec{0}!$ This shows that any two elements in the preimage of \vec{w} must be the same, i.e. that $\boxed{\#T^{-1}\vec{w} \le 1}$. Combining the two boxed results shows that T is invertible, hence an isomorphism.