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Problem Set 9 — KEY

Suppose V and W are vector spaces. A linear map T : V — W is called left-invertible iff there exists a
linear map L : W — V such that L oT = Iy, and is called right-invertible if and only if there exists a
linear map R : W — V such that T o R = Iyy. (Here Iy denotes the identity map on V, ie. Iy (¥) = ¢
for all ¥ € V.) Prove that a linear map T : V — W is invertible (according to our definition from class)
if and only if T is both left- and right-invertible.

(=) We proved in class that if T'is invertible, then 771 o T = Iy and T o T~ = Iy,. Thus
T~ is both a right and a left inverse of 7. In particular, T is left- and right-invertible.

(<) Let L and R be left and right inverses of T, respectively. Pick « € W. By definition,
TR(w) = @, whence R(w) € T~}(w). In particular, On the other hand,
suppose ¥, and ¥ € T (). Then T(v7) = T(v2), whence ¢, = LT(0;) = LT () = vs.
This shows Combining the boxed inequalities, we see that #7171 () = 1.

Since w € W was arbitrary, we conclude that 7' is invertible.

If V is isomorphic to W, we write V ~ W. Prove that ~ is an equivalence relation.

We must show that the relation ~ satisfies the three properties of equivalence relations.

e Reflexivity. Given a vector space V', the identity map Iy, defined in part (a) is an
isomorphism from V to V.

e Symmetry. Suppose V >~ W, and let T : V' — W be an isomorphism. Then Proposition
3 of Lecture 31 implies that T—!' : W — V is also an isomorphism, whence W ~ V.

e Transitivity. Suppose X ~ V and V ~ W; say T : X — V and § : V — W are
isomorphisms. I claim that ST : X — W is an isomorphism. Indeed, pick w € W.
Then there exists 0 € V' such that St = 0, and there exists a & € X such that T% = v}
it follows that ST¥ = , so ’ #(ST) (W) > 1. ‘ Next, suppose ST(Z1) = ST (Z3) = .
Since S is invertible, we deduce that T'Z; = TZs; since T is invertible, we conclude
that #; = Z5. This shows that ’#(ST)_I(u_)’) < 1.‘ Combining the boxed quantities,
we see that ST is invertible, hence an isomorphism. Therefore, X ~ W.




9.3 Find an example of a finite-dimensional vector space V and a subset W C V such that W is a vector
space, but is not a subspace of V.

There are many possible solutions to this, but all of them have one feature in common: the
notions of ‘addition’ and ‘scalar multiplication” must be different for W than the ones for
V. The moral of this problem is: a vector space is not simply a set, but a set along with two
operations.

Here’s an example. Take V' to be R under the usual notions of + and -. Now let W := R+
(the set of all positive real numbers); clearly W C V. Now we define the following two
operations on W:

e L DY :=xY
o T =1

It is an exercise to check that W forms a vector space with respect to these operations. As
an example, let’s check one of the distributive laws:

a-(zdy)=(zy)* =2%Y" = (a-2) B (a-y).

Thus, W is a subset of V, is a vector space with respect to some operations, but is not a
subspace of V.

9.4 Given V a finite-dimensional vector space.
(a) Suppose W is a subspace of V. Prove that W =V iff dim W = dim V. [Hint: Use problem 8.1]

If W =V then of course dim W = dim V, so it suffices to prove the converse. Thus, suppose
dim W = dim V. Let {,...,w,} be a basis of W; in particular, these vectors are linearly
independent. By problem 8.1 we know that they must be contained in a basis of V. On the
other hand, any basis of V' must also have n vectors in it by hypothesis. Thus, {w,...,@,}
must already be a basis of V. This shows that any vector in V' can be written as a linear
combination of the w;’s, hence is contained in W. On the other hand, every vector in W is
clearly contained in V. It follows that W =V as claimed. O

(b) Suppose T : V — V is a linear map. Prove that T is an isomorphism if and only if ker 7" = {0}.

Once again, the forward direction is straightforward: if 7' is an isomorphism, then it is
invertible, whence T~1(0) = 0 as claimed. Thus it suffices to prove the converse. Suppose
ker T'= {0}. The rank-nullity theorem asserts that

dim(im 7T') 4+ dim(ker 7') = dim V..
Since ker T has dimension 0, it follows that
dim(im 7') = dim V.
Since im T is a subspace of V, part (a) implies that im 7" = V.

Now we are ready to show that 7' is an isomorphism. Pick any @ € V. Since im T =V,

we have Now suppose Tv; = @ and Tvy = . Then in particular Tv; = T,

whence (by additivity) T'(# — @) = 0. But ker T' = {0}, so ¥ — @i = 0! This shows that any

two elements in the preimage of @ must be the same, i.e. that Combining the

two boxed results shows that T is invertible, hence an isomorphism. ]




