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Problem Set 9 – KEY

9.1 Suppose V and W are vector spaces. A linear map T : V → W is called left-invertible iff there exists a
linear map L : W → V such that L ◦ T = IV , and is called right-invertible if and only if there exists a
linear map R : W → V such that T ◦ R = IW . (Here IV denotes the identity map on V , i.e. IV (~v) = ~v
for all ~v ∈ V .) Prove that a linear map T : V → W is invertible (according to our definition from class)
if and only if T is both left- and right-invertible.

(⇒) We proved in class that if T is invertible, then T−1 ◦ T = IV and T ◦ T−1 = IW . Thus
T−1 is both a right and a left inverse of T . In particular, T is left- and right-invertible.

(⇐) Let L and R be left and right inverses of T , respectively. Pick ~w ∈ W . By definition,

TR(~w) = ~w, whence R(~w) ∈ T−1(~w). In particular, #T−1(~w) ≥ 1. On the other hand,

suppose ~v1 and ~v2 ∈ T−1(~w). Then T (~v1) = T (~v2), whence ~v1 = LT (~v1) = LT (~v2) = ~v2.

This shows #T−1(~w) ≤ 1. Combining the boxed inequalities, we see that #T−1(~w) = 1.

Since ~w ∈W was arbitrary, we conclude that T is invertible.

9.2 If V is isomorphic to W , we write V 'W . Prove that ' is an equivalence relation.

We must show that the relation ' satisfies the three properties of equivalence relations.

• Reflexivity. Given a vector space V , the identity map IV defined in part (a) is an
isomorphism from V to V .

• Symmetry. Suppose V 'W , and let T : V →W be an isomorphism. Then Proposition

3 of Lecture 31 implies that T−1 : W → V is also an isomorphism, whence W ' V .

• Transitivity. Suppose X ' V and V ' W ; say T : X → V and S : V → W are
isomorphisms. I claim that ST : X → W is an isomorphism. Indeed, pick ~w ∈ W .
Then there exists ~v ∈ V such that S~v = ~w, and there exists a ~x ∈ X such that T~x = ~v;

it follows that ST~x = ~w, so #(ST )−1(~w) ≥ 1. Next, suppose ST (~x1) = ST (~x2) = ~w.

Since S is invertible, we deduce that T~x1 = T~x2; since T is invertible, we conclude

that ~x1 = ~x2. This shows that #(ST )−1(~w) ≤ 1. Combining the boxed quantities,

we see that ST is invertible, hence an isomorphism. Therefore, X 'W .



9.3 Find an example of a finite-dimensional vector space V and a subset W ⊆ V such that W is a vector
space, but is not a subspace of V .

There are many possible solutions to this, but all of them have one feature in common: the
notions of ‘addition’ and ‘scalar multiplication’ must be different for W than the ones for
V . The moral of this problem is: a vector space is not simply a set, but a set along with two
operations.

Here’s an example. Take V to be R under the usual notions of + and ·. Now let W := R>0

(the set of all positive real numbers); clearly W ⊆ V . Now we define the following two
operations on W :

• x⊕ y := xy

• α · x := xα

It is an exercise to check that W forms a vector space with respect to these operations. As
an example, let’s check one of the distributive laws:

α · (x⊕ y) = (xy)α = xαyα = (α · x)⊕ (α · y).

Thus, W is a subset of V , is a vector space with respect to some operations, but is not a
subspace of V .

9.4 Given V a finite-dimensional vector space.

(a) Suppose W is a subspace of V . Prove that W = V iff dimW = dimV . [Hint: Use problem 8.1 ]

If W = V then of course dimW = dimV , so it suffices to prove the converse. Thus, suppose
dimW = dimV . Let {~w1, . . . , ~wn} be a basis of W ; in particular, these vectors are linearly
independent. By problem 8.1 we know that they must be contained in a basis of V . On the
other hand, any basis of V must also have n vectors in it by hypothesis. Thus, {~w1, . . . , ~wn}
must already be a basis of V . This shows that any vector in V can be written as a linear
combination of the ~wi’s, hence is contained in W . On the other hand, every vector in W is
clearly contained in V . It follows that W = V as claimed.

(b) Suppose T : V → V is a linear map. Prove that T is an isomorphism if and only if kerT = {~0}.

Once again, the forward direction is straightforward: if T is an isomorphism, then it is
invertible, whence T−1(~0) = ~0 as claimed. Thus it suffices to prove the converse. Suppose
kerT = {~0}. The rank-nullity theorem asserts that

dim(im T ) + dim(kerT ) = dimV.

Since kerT has dimension 0, it follows that

dim(im T ) = dimV.

Since im T is a subspace of V , part (a) implies that im T = V .

Now we are ready to show that T is an isomorphism. Pick any ~w ∈ V . Since im T = V ,

we have #T−1 ~w ≥ 1. Now suppose T~v1 = ~w and T~v2 = ~w. Then in particular T~v1 = T~v2,

whence (by additivity) T (~v1−~v2) = ~0. But kerT = {~0}, so ~v1−~v2 = ~0! This shows that any

two elements in the preimage of ~w must be the same, i.e. that #T−1 ~w ≤ 1. Combining the

two boxed results shows that T is invertible, hence an isomorphism.
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