Instructor: Leo Goldmakher

University of Toronto Mississauga Department of Mathematical and Computational Sciences

MAT 302: CRYPTOGRAPHY

Final Exam (held on April 21st in the Faculty Club, South Building 3140)

INSTRUCTIONS:

The final exam will consist of two questions, to be answered orally (you will have access to a whiteboard). The duration of the exam will be roughly 20 minutes. You are allowed to bring one $3^{"} \times 5^{"}$ cue ('index') card to the exam with writing on both sides. No other written notes are permitted.

The first question, Question A below, will be asked of each student. The second question will be selected from List B below, as follows: each student will draw two numbers out of a hat, and then will have a choice as to which of the two corresponding problems to discuss.

Best of luck!

QUESTIONS

Question A:

Describe the RSA algorithm: how it works, why it is secure, and any pertinent mathematics. Your discussion should include the square-and-multiply algorithm.

$\underline{\text{List } B}$

1. Classical ciphers and random number generators

Scytale, Caesar, Affine, and Substitution ciphers: how they work, what their weaknesses are. The idea of the stream cipher; the one time pad; the linear congruential generator.

2. Stirling's formula

State Stirling's formula, and sketch proof that $N! \asymp \sqrt{N} \left(\frac{N}{e}\right)^N$.

3. Group theory

Definitions of \mathbb{Z}_n and \mathbb{Z}_n^{\times} . Proof that $\mathbb{Z}_n^{\times} = \{a \in \mathbb{Z}_n : (a, n) = 1\}$. Proof that $a\mathbb{Z} + b\mathbb{Z} = (a, b)\mathbb{Z}$.

4. Euler φ -function

Definition; formula for $\varphi(p^n)$ and proof; proof that φ is multiplicative; Euler's theorem that $a^{\varphi(n)} = 1$ for all $a \in \mathbb{Z}_n^{\times}$.

5. Prime number theory

Statement of Fundamental Theorem of Arithmetic. Statement of Prime Number Theorem, and interpretation. Sketch of proof that \mathbb{Z}_p^{\times} is cyclic.

6. Primality testing

Describe the Fermat and Miller-Rabin tests, including all relevant mathematics. Prove that for any $a \in \mathbb{Z}_n^{\times}$, we have $(x + a)^n \equiv x^n + a \pmod{n}$ if and only if n is prime.

7. Diffie-Hellman and related ideas

Describe the Diffie-Hellman Key Exchange, and all relevant mathematics. The Diffie-Hellman problem, the discrete log problem, and their relationship to each other. The Elgamal cipher. Safe primes: what they are, why they're useful.

8. Elliptic curves

Explain how to determine all integer solutions to $x^2 + y^2 = z^2$. Describe the group law on elliptic curves. Describe the Elliptic Curve Diffie-Hellman Key Exchange.