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GUEST LECTURE BY AARON CHOW

Notation

An integer X can be written as:

X =
n−1∑
j=0

xj2
j = xn−12

n−1 + xn−22
n−2 + · · ·+ 2x1 + x0

where each xj ∈ {0, 1}. Here, X is said to be an n-bit integer. Hence,
there are three ways to represent an n-bit integer:

X = xn−1xn−2 · · ·x1x0 = (x0, x1, . . . , xn−2, xn−1).

The first way is just, well, the usual way. The second term is the binary
expansion of X. The last term is the sequence/vector representation.

1. Stream Ciphers and Block Ciphers

1.1. The One-Time Pad (OTP). The one-time pad is an encryption
scheme that uses a sequence of random numbers. Suppose Alice wants
to transmit a message to Bob securely.

(1) Let s0, s1, s2, . . . be a sequence of random 0’s and 1’s (called
the keystream).

(2) The keystream is known only to Alice and Bob.
(3) Every keystream bit si is used only once.

Then Alice can encrypt the plaintext x0, x1, x2, . . . by computing

yi = esi = xi + si (mod 2) i = 0, 1, 2, . . . .

The ciphertext y0, y1, y2, . . . is sent to Bob, who decrypts it by com-
puting

xi = dsi = yi + si (mod 2) i = 0, 1, 2, . . . .

The problem with this scheme is that the keystream bits si can
never by reused, so the keystream length must equal the length of the
plaintext. That is, to encrypt a 1000-bit message, a 1000-bit secret
keystream must first be pre-shared!
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1.2. Stream Cipher. The one-time pad serves as a template for the
general stream cipher. A stream cipher takes plaintext x0, x1, x2, . . .
and a keystream s0, s1, s2, . . . , and produces the ciphertext y0, y1, y2, . . .
via the encryption

yi = esi = xi + si (mod 2) i = 0, 1, 2, . . . .

Decryption is given by

xi = dsi = yi + si (mod 2) i = 0, 1, 2, . . . .

Notice encryption and decryption are the same functions.

1.3. Block Ciphers. A block cipher processes the plaintext in blocks.
Specifically, the plaintext is broken up into blocks, so X = X0, X1, . . . .
Each block is then encrypted with the secret key K. Therefore, each
block of the ciphertext of a block cipher has the form

Yi = fK(Xi) i = 0, 1, . . .

with the ciphertext Y = Y0, Y1, . . . .
In practice, block ciphers are used in most applications.
Examples of block ciphers:

(1) DES (Data Encryption Standard) has a block size of 64 bits
and key size 56 bits.

(2) AES (Advanced Encryption Standard) has a block size of 128
bits and supports a key size of 128, 192, or 256 bits.

2. Security of Ciphers

2.1. Unconditional Security.

Definition 1 (Unconditional Security). A cryptosystem is uncondi-
tionally secure if it cannot be broken even with infinite computational
resources.

Example 1. OTP is unconditionally secure. To see this, observe that
the ciphertext bits satisfy the linearly independent equations

yi = xi + si (mod 2) i = 0, 1, 2, . . . .

An attacker knowing yi cannot determine xi with probability greater
than 50% since xi = 0 or 1 are equally likely if si is truly random.
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2.2. Computational Security.

Definition 2 (Computational Security). A cryptosystem is computa-
tionally secure if the best known attack takes an infeasible number of
operations.

Example 2. Imagine a cryptosystem with a 100,000-bit key length
and the only attack is the brute force attack (exhaustive search). Then
2100000 computations will break it, so it not unconditionally secure!
However, 2100000 is far beyond current capabilities, so it is computa-
tionally secure.

3. Random Number Generators (RNG)

A random number generator is a function that outputs an (infinite)
sequence of “random” numbers s0, s1, s2, . . . . RNGs are important be-
cause the security of stream ciphers depends entirely on this sequence.

3.1. True Random Number Generators (TRNG). A true ran-
dom number generators is a RNG whose output cannot be reproduced.
For example, one can flip a coin and record a 0 or 1 depending on
which side lands; this is a TRNG. TRNGs usually arises from physical
processes such as semi-conductor noise, clock jitter in circuits, etc. In
cryptography, TRNGs are needed for sessional keys distributed to the
relevant communicating parties.

3.2. Pseudorandom Number Generators (PRNG). A pseudo-
random number generator generate sequences computed from an initial
value, called the seed. It has the form

S0 = seed

Si+1 = f(Si) i = 0, 1, 2, . . . .

More generally, it has the form

S0 = seed

Si+1 = f(Si, Si−1, . . . , Si−t) i = 0, 1, 2, . . .

for some fixed integer t.

Example 3 (Linear Congruential Generator). Let a, b, and m be fixed
integers.

S0 = seed

Si+1 = ASi + B (mod M) i = 0, 1, 2, . . .
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If the parameters A and B are chosen carefully,then this generator will
have good statistical properties. For example, the ASCI C function
rand() uses A = 1103515245, B = 12345, M = 231, and S0 = 12345.

Note that PRNGs are not truly random (i.e. can be reconstructed)
since the sequence is computed and is therefore completely determin-
istic. Instead, they try to “imitate” TRNGs in that the sequence pro-
duced possesses “good” statistical properties (i.e. passes certain sta-
tistical tests).

PRNGs are useful, especially in simulations, where there are no phys-
ical processes for a TRNG. However, they are usually not suitable for
cryptographic applications such as stream ciphers.

3.3. Cryptographically Secure Pseudorandom Number Gener-
ators (CSPRNG). A cryptographically secure pseudorandom number
generator is a PRNG with two additional properties:

(1) It is “unpredictable”; that is, given n bits of the keystream
si, si+1, . . . , si+n−1 it is computationally infeasible to compute
the next bit si+n.

(2) Given si, si+1, . . . , si+n−1 it is computationally infeasible to com-
pute the previous bit si−1.

Example 4 (Blum-Blum-Shub). Let M = PQ where P and Q are two
large primes. Let

Xi+1 = X2
i (mod M)

The output keystream bit si is either the parity-bit of Xi (i.e. the
parity of the number of 1’s in the binary expansion), or the rightmost
bit of Xi (sometimes referred to as the least significant bit).

The problem of distinguishing the output of the Blum-Blum-Shub
generator from a string of random bits has been shown to be as compu-
tationally difficult as that of factoring M . This is good news, because
factoring is currently considered to be a hard problem (when P and Q
are large enough primes). Although the BBS generator itself is quite
simple to implement, it is too slow to be used in practice.

4. Linear Feedback Shift Registers (LFSR)

A linear feedback shift register consists of clocked storage (called flip-
flops) and a feedback path connecting some/all of them.
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Example 5 (Simple LFSR). Mathematical description: Let (s0, s1, s2)
be the initial state.

s3 = s1 + s0 (mod 2)

s4 = s2 + s1 (mod 2)

...

si+3 = si+1 + si i = 0, 1, 2, . . . .

4.1. General Linear Feedback Shift Register. In general, each
flip-flop has a switch into the feedback path. Let

pi =

{
1 if the i-th switch is active

0 if the i-th switch is inactive.

Suppose there are m flip-flops. Then a general linear feedback shift
register of degree m can be described by

si+m =
m−1∑
j=0

pjsi+j (mod 2).

The output is related to previous outputs by a linear equation, hence
the equations define linear recurrences.

There are a finite number of flip-flops, therefore the output of a LFSR
is periodic.

Theorem 3. The maximum sequence length generated by a LFSR of
degree m is 2m − 1.

Proof. Note that once the internal flip-flops assumes a state that has
previously occurred, the output will start to repeat. Also, the zero state
must be avoided, otherwise the LFSR will be “stuck”. Since there are
m flip-flops, the number of different nonzero m-bit string is 2m − 1.


