
MAT 302: LECTURE SUMMARY

Last class we discussed two classical ciphers, both of which turned out to be rather insecure (as
evidenced by your cracking them manually during lecture):

• The Scytale cipher
• The Caesar (aka shift) cipher

We began today’s lecture by writing the latter down in mathematical notation. To this end, it is
convenient to use the set A = {0, 1, 2, . . . , 25} to represent the English alphabet, i.e. 0 represents
A, 1 represents B, etc.

The Caesar Cipher. The Caesar cipher (or shift cipher) consists of a key k ∈ Z, an encryption
function

ek : A −→ A
x 7−→ x+ k (mod 26)

and a decryption function

dk : A −→ A
x 7−→ x− k (mod 26).

The Caesar cipher is insecure because the space of all possible keys is rather small (how many are
there?), so it is a trivial matter for Oscar to check all possible keys. We next discussed a variant of
this, whose key space is somewhat larger: the affine cipher.

The Affine Cipher. The affine cipher consists of a key (a, b) ∈ Z2, an encryption function

e(a,b) : A −→ A
x 7−→ ax+ b (mod 26)

and a decryption function

d(a,b) : A −→ A
x 7−→ a−1(x− b) (mod 26)

Actually, as stated this isn’t well-defined: a−1 doesn’t always exist (mod 26). Recall that a−1 is
the element of A satisfying

a−1a ≡ 1 (mod 26).
For example, 0 has no (multiplicative) inverse (mod 26). Less trivially, 2 has no multiplicative
inverse. (To check this, one could test whether 2a ≡ 1 (mod 26) for every a ∈ A, but there are
much faster ways to see that 2 has no inverse... can you come up with one?) By contrast, we
figured out that 1−1 = 1, and 3−1 = 9.

Date: January 6th, 2011.
1



This brought us to the subject of group theory, which you hypothetically learned in a previous
course. We will review what we need from group theory more intensely in the future; for now
we contented ourselves with a couple of basic examples of groups. We started with the group
Z26 (more commonly denoted Z/26Z), which is just the set A together with the binary operation
of addition (mod 26). Although this binary operation is very similar to the ordinary addition we
all know and love, it is better to think of it as a totally unrelated operation (since it happens in a
different group). To emphasize this, I will temporarily denote this operation as ⊕. For example,
19⊕ 10 = 3 in Z26.

What makes Z26 a group? And why should we care? We will postpone the answer to the latter
question until next week. In this lecture, we focused on a technical answer to the first question:

(1) Closure: a⊕ b ∈ Z26 for any a, b ∈ Z26

(2) Associativity: a⊕ b⊕ c is unambiguously defined, for any a, b, c ∈ Z26

(3) Identity: The element 0 ∈ Z26 is called the identity because it has the special property that
0⊕ a = a⊕ 0 = a for all a ∈ Z26

(4) Inverses: Every a ∈ Z26 has an inverse in the group, traditionally denoted a−1, such that
a⊕ a−1 = a−1 ⊕ a = 0.

Associativity is an important but somewhat subtle point. Why wouldn’t a⊕b⊕c be unambiguously
defined? The issue is that⊕ is a binary operation – it’s a way of combining two elements, not three!
This makes a⊕ b⊕ c a questionable quantity, and it’s somewhat miraculous that it’s unambiguous.
By contrast, the binary operation÷ is not associative: 4÷2÷2 might be 4 or 1, depending on how
you group the terms. For this reason, associativity is often presented as the following technical
condition:

(a⊕ b)⊕ c = a⊕ (b⊕ c) holds for all a, b, c ∈ Z26.

Before moving on to our second example of a group, let’s take a moment to discuss inverses. You
might object to the notation a−1. Wouldn’t −a be a more natural notation for the inverse of a?
After all, a + (−a) = (−a) + a = 0. The merits of one notation over the other are debatable, but
I prefer a−1 for the same reason I prefer ⊕ over +: it reinforces that we are working in a totally
different universe from that of Z and ordinary addition. After all, −5 isn’t even an element in Z26!
Of course, there are advantages to thinking of −5 as just another name for the element 21, but I
think this is secondary to becoming fully conscious that we’re not in the comfortable universe of
Z.

We next considered the group Z×
26, the multiplicative group (mod 26). This group is similar to Z26,

except that rather than the additive operation ⊕ we use the multiplicative operation ⊗, multiplica-
tion (mod 26). For example, 5 ⊗ 7 = 9 in Z×

26. However, Z×
26 cannot contain all the elements of

A, since many do not contain multiplicative inverses (as discussed above). It turns out that

Z×
26 = {a ∈ A : (a, 26) = 1}

(recall that (m,n) is the greatest common divisor of m and n). By counting directly, we figured
out that there were 12 elements in Z×

26. This can be written in shorthand in the following way:∣∣Z×
26

∣∣ = 12.
2



Let’s return to the affine cipher for a moment. How big is the key space? Well, a must be an
element of Z×

26, whereas b can be anything in Z26. This leads to a total of 12×26 different possible
keys (a, b). This seems like a lot, but in fact can be checked by a household PC in under a second.
(Even by hand it wouldn’t take particularly long to check every possibility.)

What if we’re working with a language other than English? Or we add symbols to the English
alphabet? Let’s say we’re working with an alphabet of n letters. Then again we have the additive
group Zn, and the multiplicative group Z×

n . It’s clear that
∣∣Zn

∣∣ = n; what’s not at all clear is the
size of Z×

n . This is traditionally called Euler totient function, ϕ(n), i.e.

ϕ(n) =
∣∣Z×

n

∣∣
This function has all sorts of nice properties. It is clear, for example, that ϕ(p) = p − 1 for any
prime p. In class you then came up with a proof that ϕ(p2) = p(p− 1), by writing all the integers
between 1 and p2 in the following row:

1 2 3 · · · p
p+ 1 p+ 2 p+ 3 · · · 2p
2p+ 1 2p+ 2 2p+ 3 · · · 3p

...
...

...
...

(p− 1)p+ 1 (p− 1)p+ 2 (p− 1)p+ 3 · · · p2

In every row, the only number not relatively prime to p2 is in the rightmost column; this implies
that all the other numbers in the table are coprime to p2, giving the formula above. The same proof
also shows that ϕ(pn) = pn−1(p− 1) for any prime p and positive integer n.

I also mentioned (but didn’t prove) that ϕ is a multiplicative function, i.e.

ϕ(mn) = ϕ(m)ϕ(n)

whenever (m,n) = 1. We shall explore this in the future, but for now, we apply it to calculate
ϕ(26):

ϕ(26) = ϕ(2× 13) = ϕ(2)× ϕ(13) = 12.

This is much quicker than counting!

Both the Caesar and affine ciphers involved a permutation of the alphabetA. A natural generaliza-
tion of both of these is

The Substitution Cipher. Suppose A is an alphabet, and let S(A) denote the set of of all bijec-
tions from A to itself. The substitution cipher consists of a key σ ∈ S(A), which serves as an
encryption function

σ : A −→ A
x 7−→ σ(x).

Accordingly, the decryption function is

σ−1 : A −→ A
x 7−→ σ−1(x)

3



For example, if σ(A) = T , σ(B) = L, σ(C) = A, σ(D) = K, etc. then the message “A BAD
CD” would be encrypted as “T LTK AK ”.

How secure is the substitution cipher? The key space has size
∣∣S(A)∣∣, which in the case of the

English alphabet is 26!. This is quite huge, around 4 × 1026 ≈ 288. (We approximated this using
Stirling’s formula, which asserts that

N ! ∼
√
2πN

(N
e

)N

.

We will prove this formula next week.) How long would it take for a computer to run through all
these possibilities? The fastest supercomputer in the world can run at around 2 petaflops, i.e. it can
compute 2 × 1015 operations (e.g. addition, subtraction, or multiplication) per second. (FLOPS
stands for floating-point operations per second. The prefix ‘peta-’ means 1015.) However, huge
computer clusters can achieve rates on the order of 100 petaflops. This means that it would take
well upward of 26!/1017 ≈ 4×109 seconds for the fastest computing systems to check all possible
keys to a given substitution cipher – roughly a century! So, the substitution cipher is secure against
the brute-force attack of simply testing every possible key in the key space.

However, there are other approaches to cracking the substitution cipher, rendering it highly in-
secure. One is to examine letter frequencies. For example, the letter E is the most frequently
occurring letter in the English language, followed by T, A, O, I, N, etc. For a long message en-
crypted using the substitution cipher, one can simply look at the letter frequencies of the encoded
message – this gives a hint of what the key might be. Moreover, one can look for short words,
vowels, combinations of letters (qu-, th-, etc.), double letters, ... you name it. This turns out to be
a robust attack, as you will explore on your first problem set.

In summary, the main weakness of the substitution cipher is that while it disguises the letters in the
original message, it does not disguise their statistical properties.

We have now presented four ciphers, each of which are appealing, but none of which are secure.
In the rest of the course, we will focus on ciphers which seem to be secure.

4


