MAT 302: LECTURE SUMMARY

Recall from last lecture that we were trying to prove that $\varphi(n)$ is a *multiplicative* function, i.e. that $\varphi(mn) = \varphi(m)\varphi(n)$ whenever (m, n) = 1. We had realized that this would follow from finding a bijection between \mathbb{Z}_{mn}^{\times} and $\mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$. Following a suggestion of Kiavash, we set out to prove that the map

$$\kappa : \mathbb{Z}_{mn}^{\times} \longrightarrow \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$$
$$a \longmapsto \left(a \pmod{m}, a \pmod{n}\right)$$

is a bijection. We proved that it was injective last time, so it remained only to show surjectivity. In other words, given any $(a, b) \in \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$, we wish to find an $x \in \mathbb{Z}_{mn}^{\times}$ such that $\kappa(x) = (a, b)$. Actually, we don't even need to find this x explicitly: we just need to show that such an x exists.

Let's translate this into a more concrete question. We are looking for an $x \in \mathbb{Z}_{mn}^{\times}$ such that

(1)
$$x \equiv a \pmod{m}$$
 and $x \equiv b \pmod{n}$

The trick is to realize that for any number of the form $x_0 = ()m + ()n$, reducing (mod m) or (mod n) kills one of the two terms. In our case, a good choice is

$$x_0 = bm^{-1}m + an^{-1}n$$

where m^{-1} denotes the inverse of $m \pmod{n}$ in the group \mathbb{Z}_n^{\times} , and similarly for n^{-1} . It is easily checked that x_0 simultaneously satisfies both congruences (1). This is promising, but we're not quite done yet: we need a solution in \mathbb{Z}_{mn}^{\times} , whereas x_0 is some random integer we've constructed. This is easy to fix, however. First, since adding any multiple of mn to x_0 yields another solution to (1), we see that $x = x_0 \pmod{mn}$ is a solution in \mathbb{Z}_{mn} . Moreover, since $(x_0, mn) = 1$ (why is this?), our lemma from last time implies that $x \in \mathbb{Z}_{mn}^{\times}$. This completes the proof that κ is a surjective map, and therefore, that it is bijective. It follows that $\varphi(mn) = \varphi(m)\varphi(n)$ whenever (m, n) = 1. (Where in the proof did we use that m and n are relatively prime?) QED

Having proved that $\varphi(n)$ is multiplicative, we generated some other examples of multiplicative functions. A simple example is the identity map I(n) = n. Actually, this function is not just multiplicative, but is also *completely multiplicative*: I(mn) = I(m)I(n) for any m and n, independent of whether or not they are relatively prime to each other. Other examples of completely multiplicative functions we discussed were 1(n) = 1, $f(n) = n^2$,

$$\chi(n) = \begin{cases} 1 & \text{if } n \equiv 1 \pmod{4} \\ -1 & \text{if } n \equiv -1 \pmod{4} \\ 0 & \text{if } n \text{ is even.} \end{cases}$$

Date: February 17th, 2011.

We also saw that we could 'force' complete multiplicativity by defining a function appropriately: we defined a function λ by setting $\lambda(1) = 1$, $\lambda(p) = -1$ for every prime p, and extending λ to all integers by setting $\lambda(mn) = \lambda(m)\lambda(n)$ for every m and n. For example,

$$\lambda(12) = \lambda(2 \times 2 \times 3) = \lambda(2)\lambda(2)\lambda(3) = -1.$$

Thus, $\lambda(n)$ is completely multiplicative by definition. Finally, we talked a bit about a related function, $\mu(n)$, defined by $\mu(1) = 1$, $\mu(n) = \lambda(n)$ whenever $n = p_1 p_2 \cdots p_k$ for some collection of distinct primes p_i , and 0 otherwise. For example, $\mu(6) = \lambda(6) = 1$, while $\mu(12) = 0$ (since 12 cannot be written as the product of distinct prime factors). In your problem set, you will explore the multiplicativity of $\mu(n)$.

We ended the lecture with a brief discussion of a familiar and important result about factorization of integers into primes:

Theorem 1 (Fundamental Theorem of Arithmetic, informal version). *Any positive integer can be factored in a unique way as a product of prime numbers.*

There are several issues with this statement. First, what does 'unique' mean? For example, $6 = 2 \times 3 = 3 \times 2$. Second, how does the theorem apply to the positive integer 1? It is standard to not consider 1 as a prime, in which case it is not clear how to write it as a product of primes, uniquely or otherwise. If we instead decide to call 1 a prime, then uniqueness begins to fail even more dramatically than above: $6 = 2 \times 1 \times 3 \times 1$ would be considered a 'new' factorization of 6. (Actually this is one of the reasons why mathematicians *don't* consider 1 to be prime.)

These difficulties force us to state the fundamental theorem in an uglier (but more precise) way.

Theorem 2 (Fundamental Theorem of Arithmetic, precise version). Given any positive integer n, there exists a unique sequence $n_2, n_3, n_5, n_7, n_{11}, \ldots \in \mathbb{N}$ such that

$$n = \prod_{p} p^{n_p}$$

where the product runs over all primes p.

For example, we have the following factorizations:

 $1 = 2^{0} 3^{0} 5^{0} 7^{0} 11^{0} \cdots$ $3 = 2^{0} 3^{1} 5^{0} 7^{0} 11^{0} \cdots$ $6 = 2^{1} 3^{1} 5^{0} 7^{0} 11^{0} \cdots$ $9 = 2^{0} 3^{2} 5^{0} 7^{0} 11^{0} \cdots$ $18 = 2^{1} 3^{2} 5^{0} 7^{0} 11^{0} \cdots$

This notation is obviously somewhat redundant, but has the advantages of being precise and quite useful. We ended the class by exploring this notation.

Proposition 3. $d \mid n$ if and only if $d_p \leq n_p$ for every prime p.

Proposition 4.

$$(a,b) = \prod_p p^{\min\{a_p,b_p\}}$$

(Can you prove these propositions?)

Theorem 5. Suppose (m, n) = 1 and $d \mid mn$. Then $(d, m) \times (d, n) = d$.

Proof. First, by Proposition 4, we have

$$(d,m) \times (d,n) = \prod_{p} p^{\min\{d_{p},m_{p}\} + \min\{d_{p},n_{p}\}}$$

Proposition 3 tells us that $d_p \le m_p + n_p$ for each p. Since (m, n) = 1, we see (from the uniqueness part of the Fundamental Theorem and Proposition 4) that for each p, either m_p or n_p must be 0. Suppose $m_p = 0$ for some particular prime p. Then $d_p \le n_p$, whence

$$\min\{d_p, m_p\} + \min\{d_p, n_p\} = d_p.$$

The same holds true if instead $n_p = 0$. Since either m_p or n_p must be zero for every prime p, we conclude that

$$(d,m) \times (d,n) = \prod_{p} p^{d_p} = d$$