
MAT 302: LECTURE SUMMARY

Recall the following theorem, which we proved last lecture:

Theorem 1. H ≤ Z if and only if H = nZ for some n ∈ N.

We first deduced the following nonobvious consequence:

Corollary 2. For any a, b ∈ N\{0}, we have aZ+ bZ = (a, b)Z.

Here aZ + bZ = {ax + by : x, y ∈ Z}, and (a, b) denotes the greatest common divisor of a and
b. For example, (28, 49) = 7.

Proof of Corollary. We proceed in stages:

Step 1: aZ+ bZ ≤ Z. (This is an exercise!)

Step 2: aZ+ bZ = nZ for some n ∈ N. (This immediately follows from Theorem 1.)

Step 3: n is a common factor of a and b.

Observe that a ∈ nZ, since a ∈ aZ + bZ. It follows that n | a. Similarly, n | b.
(Recall the notation d | N means that N is a multiple of d.)

Step 4: n = (a, b)

First, observe that n ∈ aZ + bZ, since n ∈ nZ. It follows that n = ax + by for
some integers x and y. Therefore, if d is a common factor of a and b, d must also
be a factor of n; in particular, d ≤ n. Thus, n is the largest common factor of a and
b.

�

Calculating (28, 49) was relatively easy, since we know the factorizations of both numbers. But
what if we don’t know the factorizations, for example, if the numbers are large?

As a first example, we looked at (198, 199). Intuitively, it’s clear that these are relatively prime
(i.e. have GCD equal to 1); they’re too close together to have common factor. We can make this
intuition rigorous as follows. Let d be a common factor of 198 and 199, i.e. d | 198 and d | 199.
Then d must divide 199− 198 (why?). But this implies that d must be 1. Note that at no point did
we factor 198 or 199.
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We next applied the same method to (154, 164). Suppose d is a common factor. Then d must
divide the difference, i.e. d | 10. This means d must be 1, 2, 5, or 10. Which of these can it be?
It’s clear that d could be 1 or 2, and that it cannot be 5 or 10; it follows that (154, 164) = 2. Once
again, we did not need the factorization of either 154 or 164; instead, we only needed to know the
factorization of their difference.

But what if the difference between the two numbers isn’t so small? For example, what’s (203, 416)?
Suppose d is a common factor of 203 and 416. Then d must divide their difference, 213. So now
we know that d | 203, d | 213, and d | 416. This implies that d | 213 − 203 = 10, so once again
d must be 1, 2, 5, or 10. This time, 1 is the only possible common factor of 203 and 416, so we
conclude that 203 and 416 are relatively prime.

One final example: (282, 947). As before, suppose d is a common factor. Then d | 947−282 = 665
as well. We deduce that d | 665 − 282 = 383, and therefore, that d | 383 − 282 = 101. From
all of this, it follows that d | 282 − 101 = 181, whence d | 181 − 101 = 80. Now, 80 is pretty
easy to factor, but it has a lot of factors, so it’s annoying to check. So rather than stopping here, we
make one more iteration: since d | 101 and d | 80, we must have d | 101 − 80 = 21. This leaves
few possibilities for d: it must be 1, 3, 7, or 21. It is easy to check that 947 isn’t divisible by 3,
and that 282 isn’t divisible by 7; it follows that d can only be 1, so (282, 947) = 1. Note that in
this example, we first subtracted 282 three times from 947; of course, if d | 947 and d | 282, then
d | 947− 3× 282, so we could have subtracted all three 282’s right away. Similarly, we subtracted
101 twice from 282; we could have saved some time by subtracting 2 × 101. The idea is: at each
stage, take the two smallest numbers of the ones you’ve deduced to be multiples of d, and subtract
the smaller from the larger as many times as possible. For example, we couldn’t subtract 282 a
fourth time from 947, since that would lead to a negative result. This type of approach in which
we repeat a process as many times as possible, it called a greedy algorithm.

In each of these examples, we saw that one can determine the GCD of two large numbers by first
reducing the problem to factoring a very small number, and then checking directly whether the two
original (large) numbers are divisible by the factors of the small one. The moral is this: it’s very
hard to factor large numbers, but given any large number N and a potential factor d, it’s easy to
check whether or not d | N . This idea will play a crucial role in our future discussions.

In class, I referred to this process as the Euclidean algorithm. However, we never really decided
when to stop – we simply stopped when the output was small enough that we could easily factor it.
It is traditional to include in the Euclidean algorithm an instruction on when to stop: start with the
original inputs a and b (say a > b), subtract b as many times as possible from a to get c, subtract c
as many times as possible from b to get d, etc. At each stage of this procedure the output is smaller
than all the previous outputs, so eventually you will reach 0. It turns out that the final positive
output of this algorithm is (a, b). The key to proving this is the following observation:

Lemma 3. Suppose x and y are positive integers, and x > y. Then (x, y) = (x, x− y).

Thus in our description of the algorithm above, we have (a, b) = (b, c) = (c, d) = · · · This
guarantees that the last positive output of the algorithm will be (a, b). (Why?)

Proof of Lemma. As usual, we do this in two steps.
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Step 1: (x, y) ≤ (x, x− y)

Suppose d is a common factor of x and y. Then d | x − y, so that d is a common
factor of x and x − y. In particular, d ≤ (x, x − y). Since this is true for any
common divisor of x and y, we conclude that (x, y) ≤ (x, x− y).

Step 2: (x, x− y) ≤ (x, y)

Suppose d is a common factor of x and x− y. Then d | x− (x− y), whence d is a
common factor of x and y. Thus, d ≤ (x, y). It follows that (x, x− y) ≤ (x, y).

�

We finished the lecture with a discussion of two fundamental examples of groups: the integers
modulo n under addition, and under multiplication.

Let Zn = {0, 1, 2, . . . , n − 1}.∗ We make Zn into a group by endowing it with binary operation
⊕: a ⊕ b = a + b (mod n), where + is standard addition on Z. Equivalently, one can define the
operation by

a⊕ b =

{
a+ b if a+ b < n

a+ b− n otherwise.

We must verify that Zn is a group under this operation. Closure and identity are straightforward.
Inverses are also pretty easy: the inverse of a ∈ Zn is n − a. (Note that −a is not the inverse of
a, since −a 6∈ Zn.) This leaves only associativity, which (unlike our previous examples) is not
automatic, since ⊕ is quite a different operation from ordinary addition. To prove this, one must
show that (a⊕ b)⊕ c = a⊕ (b⊕ c) for any a, b, c ∈ Zn. Can you do this?

We next turned to multiplication (mod n). A natural first attempt is to take Zn and endow it with
⊗, defined a ⊗ b = ab (mod n). This would certainly be closed, can be shown to be associative,
and has identity element 1. Trouble is, Zn contains elements which are not invertible with respect
to ⊗, for example, the element 0. We fix this by simply removing all the non-invertible elements!
Namely, let Z×

n = {a ∈ Zn : a is invertible under ⊗}. Clearly, every element of Z×
n is invertible

– but are the other group axioms satisfied? Let’s check:

• Closure: Suppose a, b ∈ Z×
n . Then a has an inverse a−1 ∈ Z×

n and b has inverse b−1 ∈ Z×
n ,

i.e. a⊗ a−1 = 1 = a−1 ⊗ a and b⊗ b−1 = 1 = b−1 ⊗ b. We wish to show that a⊗ b ∈ Z×
n ,

which is the same as showing it’s invertible. In fact, we can explicitly write down the
inverse: b−1 ⊗ a−1. This is straightforward to verify, but note the crucial role played by
associativity.
• Associativity: Think about this one; we’ll discuss it next lecture.
• Identity: The element 1 is the identity.
• Inverses: By definition.

∗This group is more commonly called Z/nZ, but we will use Zn for notational convenience.
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So Z×
n is indeed a group under ⊗. The following theorem gives a more concrete way of thinking

about the elements of this group.

Theorem 4. Z×
n = {a ∈ Zn : (a, n) = 1}

Proof. As usual, we do this in two steps.

Step 1: Z×
n ⊆ {a ∈ Zn : (a, n) = 1}

Pick any a ∈ Z×
n , and let d = (a, n). There exists an a−1 ∈ Z×

n such that a⊗a−1 =
1, whence a×a−1 ≡ 1 (mod n). In other words, a×a−1 = 1+kn for some integer
k. Since d | a and d | n, we deduce that d | a×a−1−kn, which implies that d = 1.

Step 2: {a ∈ Zn : (a, n) = 1} ⊆ Z×
n

Suppose a ∈ Zn and (a, n) = 1. By Corollary 2, we can find integers x and y such
that ax+ny = 1. It follows that ax ≡ 1 (mod n). We’re almost done, but note that
x might not belong to Zn. Accordingly, set a−1 = x (mod n). This is easily seen to
be the inverse of a; in particular, a is invertible.

�

We finished lecture with the following remarkable result, which we will prove next time:

Theorem 5 (Fermat’s Little Theorem). Let p be a prime. Then for any a ∈ Z×
p , we have ap−1 = 1.
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