MAT 302: LECTURE SUMMARY

Thus far in this course, we’ve discussed symmetric ciphers, in which Alice and Bob use the same
key and (essentially) the same algorithm to encrypt and decrypt. This has been the main weakness
in all of these: because both Alice and Bob require the key, it must be securely transported between
the two of them at some point. This is presumably a nontrivial task, since otherwise Alice and Bob
wouldn’t need to use encryption in the first place!

In the 1970s, several researchers independently arrived at the idea of a different type of cryptogra-
phy, known as asymmetric or public key cryptography, which solves the problem of key exchange.
The underlying idea is that Bob establishes a “mailbox” into which anyone (including Alice) can
easily deposit a message, but which only Bob can open to view the messages inside. To accomplish
this, Bob sets up a one-way function, i.e. a procedure which is simple to do (and hence makes it
easy for Alice to encode a message) but difficult to undo without extra information (and hence
tough to decode for anyone other than Bob). We will discuss one-way functions more carefully in
the next lecture, but for now we gave an example of a procedure which is simple to do but difficult
to undo: factorization.

Calculating 23 x 27 = 621 is a triviality. However, factoring a number of comparable size (say,
623) is a very involved task. One (not so clever) approach is check divisibility by all numbers
between 2 and 623, and proceed recursively. A much better approach is to just check divisibility
by all the numbers between 2 and /623 ~ 25. An even better approach is to check divisibility
by the primes smaller than v/623; there are only nine of these, so this is not an overwhelming
task. Still, if rather than dealing with 623 we were trying to factor a 200 digit number, we’d be
checking all the primes less than 10'%°. This is an enormous (and totally infeasible) computation.
By contrast, multiplying two 100-digit numbers takes rouchgly 1002 = 10, 000 operations, which
is very doable.

This led us to a discussion of the approximating the number of primes less than x. A famous
theorem, first conjectured by Gauss when he was 14 but not proved until more than a century later,
is the following:

Theorem 1 (The Prime Number Theorem). Let 7(x) denote the number of primes < x. Then

Todt

m(w) ~ 5 logt

where log denotes the natural logarithm.

You may wonder why the right hand side is left as an integral. This is for a simple reason: the
function @ has no antiderivative in elementary functions. Thus, the integral cannot be simplified.
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However, it can be approximated: integrating by parts shows that
Todt x
5 logt logx

which gives a more down-to-earth asymptotic for 7(z). However,

mation to 7(x) than is the integral given in the Prime Number Theorem. This is a natural point to
state one of the most notorious unsolved problems in mathematics:

Conjecture 2 (The Riemann Hypothesis). For any € > 0,
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where the implicit constant in the error term depends only on e.

It’s worth noting that if we replace the integral by @, the above approximation is false.

Before leaving the subject of counting primes, I asked for the proportion of positive integers which
are prime. This is not a well-posed question, in the sense that it’s not obvious exactly what the
word proportion means: there are infinitely many positive integers, and infinitely many primes.
Still, this can be precise in a way which is fairly intuitive. To illustrate the idea, what proportion of
positive integers are even? The only reasonable answer is 1/2. One way to obtain this formally is
to determine the proportion of the integers < x which are even, divide this by z, and let = tend to
infinity; in other words, the proportion of positive integers which are even should be
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We can do a similar calculation to determine the proportion of positive integers which are prime:
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Colloquially, this says that the primes are extremely sparse: or rather more crudely, that 0% of all
positive integers are prime.

Next lecture, we will take up the topic of asymmetric cryptography in more detail, beginning with
one of the classic examples of such a cipher: RSA.



