MAT 302: LECTURE SUMMARY

Recall that RSA works only because we don’t know how to efficiently solve congruences of the
form

x* = b (mod N)
for = (which in turn is due to our inability to efficiently calculate p(N) for large N). There are
plenty of other types of congruences we currently don’t know how to efficiently solve, for example
those of the form

*) a® = b (mod N).
It turns out that this, too, can be leveraged to make public key ciphers. The most famous of these,

which we will discuss next lecture, are the Diffie-Hellman key exchange, and Elgamal.

We started by building up some intuition for congruences of the form (*).

Example (1). Find all x such that 2* = 3 (mod 5).

List the powers of 2: 20 = 1,2' = 2,22 = 4,23 = 8 = 3 (mod b), ... We get the
following sequence: 1,2,4,3,1,2,4,3,1,2,4,3,... (Why does it repeat forever?)
Therefore, x = 3 (mod 4).

Example (2). Find all x such that 2* = 3 (mod 7).

As above, we generate a sequence by starting with 1 and multiplying by 2 (mod 7)
repeatedly: 1,2,4,1,2,4,1, ... Therefore we see that 2* will never be 3 (mod 7).

There’s a fundamental difference between the two examples: 2 ‘generates’ all of Z., but not all of
75 . What does generate Z?

1 generates the set {1} # Z>

2 generates the set {1,2,4} # Z7

3 generates the set {1,3,2,6,4} = Z7

4 generates the set {1, 4,2} # Z>

5 generates the set {1,5,4,6,2,3} = Z>
6 generates the set {1,6} # Z7

So 3 and 5 generate Z-, but nothing else does. Before developing this idea, we gave a formal
definition the term generate:

Definition. Given a group G and any g € G. The set generated by g, denoted (g), is defined to be
<g> = {gn}nez

Date: March 22nd, 2011.

Thus for example in Z; we have (2) = Z:', while in Z> we have (2) = (4) = {1,2,4}. Although
(g) is defined to be a set, it’s not hard to see that it’s actually a group:

Proposition 1. (¢) < G

Make sure you can prove this! Next, we reviewed a classical theorem from group theory:

Theorem 2 (Lagrange’s Theorem). If G is a finite group and H < G, then |H| | |G)|.

Here I am using the notation |S|, the order of S, to denote the number of elements of S.

We didn’t go over the proof in detail, but the idea is simple: tile G' by many copies of H. More
precisely, we can write G = H UaH UbH U ..., where a, b, . .. are elements of G and gH is just
H translated by ¢ (i.e. multiply every element of H by g). It isn’t too hard to cover all of G by
a collection of non-overlapping translations of H; since each translation of H has order |H|, this
shows that |G| is a multiple of |H|.

We can see this theorem in action in Z;:
Wi=1[2[=3 [&)=6 [Wl=3 [B=6 [6)]=2
all of which divide 6 = |Z|.

Rather than writing |(a)|, it is common to write |a|, which is called the order of a. In other words,
the order of a is the order of the group generated by a. Thus the order of 2 (mod 7) is 3, while the
order of 3 (mod 7) is 6. Observe that if G is a finite group and |g| = |G| for some element g € G,
then G = (g); in other words, g generates the entire group G. In this case, G is said to be cyclic,
and g is called a primitive root of G. For example, Z; is cyclic, and 2 is a primitive root; Z; is
cyclic, and 3 is a primitive root. It is important to note that a cyclic group may have many elements
which are not primitive roots — so long as at least one of the elements generates the whole group,
it is cyclic.

Is Z¢ always cyclic? No: ZF = {1,3,5,7} is not, since 3> = 5* = 7> = 1 in this group. It
turns out that Z% is cyclic iff n = 2,4, p*, or 2p*, where p is an odd prime. Next lecture we will
prove that Z; is cyclic for any prime p, a result due to Gauss. We will also discuss some of the
problems we don’t know how to solve about primitive roots, and how these can be used to create
new ciphers.

